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In this paper, we numerically solve the time-dependent &tihger equation for scenarios using wave packets. These examples include the
free wave packet, which we use to show the difference between group and phase velocities, and the packet in a harmonic oscillator potentia
with non-trivial initial conditions in one and two dimensions, which is compared with their classical analogs to show how Ehrenfest theorem
holds. We also include simulations of the diffraction through the single and double slit potentials, the refraction with a step potential and the
dispersion by a central potential. The aim of this paper is to illustrate with simulations, nowadays easy to implement, scenarios that can help
explain the basics of the wave-particle duality.
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1. Introduction the Harmonic Oscillator potential for non trivial initial condi-

. o . tions, first the quasi-classical state and later a rather arbitrary
It is common to find illustrative examples of quantum sys-Gaussian wave packet to show the differences in terms of dis-
tems in books and courses, mostly concerning stationary scgrtion of the density. We also solve the classical analog to
narios, like the particle in a box, the particle in a harmonic 0Serify that the Ehrenfest theorem holds.
cillator potential and the Hydrogen atom fou_nd in typical text Problems defined on two spatial dimensions are also
b?fokj.bll\lowadays_, with the h?"‘? of ?u_melr'ca_l mlethods an%olved, specifically the evolution of a packet on a two-
arfordable computlng power, it IS re atlvg y simpié to €ON" dimensional harmonic trap, and it is shown how the Ehrenfest
struct non-stationary scenarios with certain dynamics, whicly ..o holds for a system with two degrees of freedom. In
help illustrate some basics like the wave-particle duality, Un, e ejaborate scenarios the diffraction of the wave-packet
derstqod fr.om -solut|ons of Sabdinger equation. by a single and double slit potentials are studied, for which

With this aim, we produced a number of programs thal;e caiculate the interference pattern. We also present the re-

solve Schedinger equation for some interesting scenarios iNyjection and refraction by a step potential. This case concerns
volving modulated wave packets Wh_ose dynamics CONCEME e deflection of the wave front, and implies the Snell law for
the particle and wave nafure de_scrlbed_by the wave fL_‘ncfhe wave packet evolving according to Satlinger equation.
tion. The cases we selected for illustration concern typicatin iy we study the dispersion by a central potential, which
problems with nearly trivial potentials, however using Non-g..rding to theory [3] a modulated plane wave interacting
stationary and non-trivial initial conditions. We also point to with a central potential would produce a spherical wave front.

supplemental material that includes animations of the prob- The paper is organized as follows. We first specify the
lems solved here, that serve as complement to the snapshots pap g ' P

included in paper and may help for educational purposes inumerlcal mgthods used to solve S‘mﬂhnger equation in .
the classroom [1]. We believe that this work can be a com- ec. 2, then in Secs: 3 anq 4 we desc.rlbe the problems in
plement of some educative analytical [2] and numerical [3]one an_d two spatial dimensions. Finally in Sec. 5 we present
: g . some final comments.

solutions of Schisdinger equation.

We first present problems defined in one spatial dimen-
sion and start with the well studied case of the free wave
packet. We use this example to show how a Gaussian packét Numerical methods
spreads during the evolution as predicted by the exact solu-
tion, and also to point out the difference between group and he fully time-dependent Sobdinger equation for a particle
phase velocities. We evolve a packet subject to the effects aff massm subject to the action of a potentidl reads
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pointsi = 1,..., N, — 1, whereas boundary conditions at
o B2 . Tmin = Zo andz,.; = xn, determine the equation for
iha— = ——V?I/ +U(E,T)7, (1)  space labels = 0 andi = N,. In all the examples we use
T 2m . . ; .
a big enough domain as to impose the zero boundary condi-
whereV¥ = \If({, 7) andi := v/—1; we define this number tion(dD,t) = 0, which according to [4] implies the equa-
because, below we will keep the traditional notatiori &@r  tions (1 4 2a + BV Hyd™ = (1 — 2o — V) and
integer labels of the numerical domain ainfbr the unitary — (1+2a+38Vy Y™ = (1-2a—8VE )4y, atpoints with
basis vector, both along the—direction. In order to solve labelsi = 0 andi = N, respectively. These two equations
this equation numerically, we rescale variables according taomplete the system for all= 0, ..., N, and is then solved

the transformation; for wf“ using forward and backward substitution following
é B 1 . the recipe in Ref. [5].
r=—=, t= —OT, V(Zt)==U(&, 1), Two-dimensional problem#n this case the domain of in-
o h Eo tegration isD = [Zmin; Tmax| X [Ymins Ymax) X [0, t¢] and the
oo kT & L G0 .. numerical domain is defined by the poirts;, y;,t") € D
V(@) = agP&T), P= e = —iVa, such thaty; = @i + iAZ, ¥ = Ymin +r§'Ay with )Aac -
) h2 (:Emax_xmin)/Nma Ay = (ymax_ymin)/Ny with N:r andNy
ap = Bohrradius  Ep = mad’ (2)  the number of cells alongandy-directions; = 0, 1, ..., N,

_ _ j = 0,..,N,. In all the examples we usAxz = Ay, so
whereaqy is a length scale appropriate for each problem tothat time discretization can be defined 8y = nAt with
be treated. If we are working with atomic scales, it couldA¢ = CFLAz2 andn = 0,1, ..., N,. In this domain at point

be one Angstrom or Bohr’s radius. These new variables arez;,y;,t") any involved functionf is denoted byf"..

dimensionless and will simplify numerical calculations. In  The evolution is carried out using the Crank-Nicolson
the redefinitions above, the wave function is also rescaled tgethod as well, along with the Alternating Direction Implicit
ensure ithas norm of one, whites the dimension of the spa-  (ADI) order of integration across spatial directions. With this
tial domain, in this paper one and two. The resulting equatioscheme the evolution fron® to "+ is implemented in three

reads steps as follows [4]:
0y Lo
i—— = — V24 + V(Z, 1)1, 3 i i
ot 2 @) 3 <1 - iAt 6%) R;; = (1 + iAt 55) s
wherey = ¢(Z,t). We call these dimensionless unitsde
unitsand they will be used from this point on. i 2 i 2
. . ) I 1—- i = |1+~ i
Equation @?) is solved numerically as an initial value ( 4At 5?’) Sig ( + 4At 6-”) Bij

problem provided some initial conditions fgr The numer- ; ;

ical method used for integration is based on Finite Differ- (1 + - At Vm‘) %jl = (1 — -At Vm) Sij»  (5)
ences defined on a uniformly discrete domain for one and 2 2

two-dimensional scenarios.

One-dimensional problemsThe space-time domain of
solution iSD = [Zmin, Tmax) X [0, t¢]. The numerical domain
is the set of point$x;, t™) € D such thate; = iy + 1Az,
whereAz = (Zmax — Tmin)/Nz andi = 0,1, ..., N, where
N, is the number of cells along the spatial domain, Whereaf)otentials, thus we omit the superindex Bp; in Eq. (27).

t" = nAt with At = CFLA2* andn = 0,1,...N; = Tpese are two tridiagonal and one diagonal systems of linear

t7/At, whereC'F'L stands for the Courant-Friedrichs-Lewy oqations that are formulated likewise in E2[) explicitly
factor between spatial and time resolutions. In this domain

whereR; ; and.S; ; are auxiliary grid functions that update
the values of the wave function after applying the deriva-
tive operator along each spatial directiép, 2, which

are the second-order derivative discrete operators. In two-
dimensional problems, we only deal with time-independent

the wave function and potential e}t the arbitrary pdint t") (—a)Ri_1;+ (1+20) R ; + (—a)Riz1
are denoted by andV;" respectively.
For the evolution from time” to t"** we implement the = ()Piq; + (1= 2a); + (@)¥ihq 5,

Crank-Nicolson average, which leads to the following second
order accurate evolution scheme for E@?)
= (O[)Riyjfl + (1 — QOZ)RL]' + (Q)Ri,j+1,

(—)eih + (L 20+ BV + (—a)uf R
= ()i, + (1= 20 = BV )} L o T (6)
+ )i, *) wherea = (1/4)i(At/Az?) and = (1/2)iAt. These sys-

wherea = (1/4)i(At/Az?), 3 = (1/2)iAt. This scheme tems are completed with equations at boundary sides by im-
defines a tridiagonal linear system that is valid for innerposing the boundary conditian(0D, t) = 0. The boundary

(704)51'0'_1 —+ (1 -+ 20&)51',3' + (704)52"]'4_1
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Free wave packet Convergence Test

conditions on the numerical domain are analogous to those :
for the one-dimensional fot,; = 0 and fori = N,, j = 3 o if,ff,f) 0.05
N,. Once with the complete systems of equations, we solve , , 0.04
the two tridiagonal systems following the implementation in | H ‘““ M”HH
Ref. [5] of the forward-backward substitution, and the diago- = | Al ' Wi M%
nal system is solved using direct substitution. |||t"‘

—— Resolution 1
Resolution 2

il

‘l“
F
3. Problemsin 1D R 0.00
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Beyond stationary problems, time-dependent cases in one re 1
spatial dimension are the first scenarios discussed in Quan- :
tum Mechanics. Here, we elaborate and discuss the simpleg
ones from a simulation based approach.

L1 error norm

-1 i '.J
J

At the left, snapshots oft|y)| and R at times

= 0,0.01,0.02, showing how the wave packet spreads. At the
bht, convergence of thé; norm of the error to zero, of the den-
sity with respect to the exact solutiof?).

3.1. Free gaussian wave packet happens with the Gaussian pack&t; grows indefinitely un-

Moving free particles in Quantum Mechanics are sometimeéiI it covers the entire space.
Another thing that can be done with the evolution is illus-

represented by wave packets. Most of the time, the momer][- te the diff bet d oh locities. It i
tum of a particle is not known with complete certainty, it rate the diflerence between group and phase velocities. 1t IS

does not have a definite wavelength. Their wave function till ditficult to explain the difference between the group and

are rather a sum of waves which cover a spectrum of wav hase velocities in a few snapshot, thus we have placed an

numbers. A simple way to represent this is through a Gays2nimation of th_'s effect at [1]. i i
The numerical parameters used for the numerical domain

sian wave packet, which is nothing more than a sum of plane
waves with amplitudes that vary according to a Gaussian di2€® € [=1,3], No = 2000, CFL = 0.125, N; = 40000,
tribution. If the wave number of maximum amplitude corre- Whereas the initial conditions in?¢) are ko = 100 and

sponds tdk, and the standard deviation of the distribution is ¢ = 0.1.

ﬂ/a, then the normalized wave function of such particle at

t=0is[3]: 3.2. 1D Harmonic oscillator

Y(x,0) = va h o= & (k—ko)? ikz gp. We now proceed to evolve a moving Gaussian wave packet
(2m)3/* J_o subject to the effects of a harmonic oscillator potential. The
9 \ /4 . potential and the initial conditions are:
— (2) 67,]{?01167(13 /a ) (7)
s

1
Viz) = §w2:172

7

The time evolution of such packet can be found by sum-

ming each plane wave’** multiplied by e~ ()t its time ¥(,0) = ePore(@=m0)*/a* 9)
evolution. After doing the integral, the probability density of
the particle happens to be [3]: wherep is the initial velocity of the wave packet of width

) a, initially centered atry = 0. The classical analog would
2 [ 2 1  2(z — kot) g) be a particle of mass attached to a spring, whose position
(. B = exp—S—2 . (8) .
ma* fy a2 a2+ = and momentum are(t) andp(t). These functions obey the
following equations of motion and initial conditions:

What we do is evolve the initial condition87%) and illustrate
the dynamics of the wave packet in Fig. 1. What happens dx =p,
is that the Gaussian densit9?) widens and moves to the dt
right. Fortunately, there is an exact solution of this problem dp .
to compare with, so that we can show that the error between dt ’
numerical and exact solution converges to zero with resolu- 2(0) =0,
tion.
This spreading property of particles reminds us of the p(0) = po, (10)
Quantum Safari, defined by George Gamow in his book [6,7].
When Mr. Tompkins and the professor go on an expeditiorvhose solution reads:
to this place, they soon face a mosquito. But because of its Do
quantum properties, after being spotted, its position becomes a(t) = — sin(wt),
less certain over time. After a while, they are covered by a
uniform mosgquito probability density. This is exactly what p(t) = po cos(wt). (11)
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FIGURE 2. Evolution of the quasi-classical wave packet onto a pgyre 3. Evolution of a wave packet different from the quasi-
harmonic oscillator potential. At the top-left there are three repre- g|agsical case, in a harmonic oscillator potential. At the top-left
sentative snapshots, two at turning points and one &t 0, the  there are the three representative snapshots at center and turning
minimum of the potential. At the top-right we draw the expec- points. At the top-right the expectation values of the position and
tation values of the position and momentum as functions of time y\omentum as functions of time are drawn with continuous lines
with continuous lines and the values of the equivalent classical 0S-gnq some values of the equivalent classical oscillator with points.
cillator with points. At the bottom-left we show the uncertainties a; the bottom-left we show the uncertainties in position and mo-

in position and momentum along with their product for two res- mentym along with their product. Finally, at the bottom-right we
olutions, low/high with continuous/dashed lines that are different, ghow the behavior of the expectation values of the energy com-

which reveals the in.fluence of numeri(.:all approxi'mations; never.the-ponemS as functions of time along with dots corresponding to the
less, the extrapolation of the uncertainties obtained from solutionsgassical solution.

with low and high resolutions is constant. Finally, at the bottom-

right we show the behavior of the expectation values of the energy. < functions of time. on top of them the points indicate the
components as functions of time, where the points correspond to ’

the values of the classical system at a few times. position and momentum of the classical syst&? at some
times. Turning points can be identified as the maximae and

An interesting theorem that holds for all quantum mechanicaMinimae of(z) at times0.08% + 0.04 with & integer.

systems is Ehrenfest’s theorem; which probes the following Additional information in Fig. 2 are the uncertaintias

equalities between expectation values: andAp. As expected, since the wave packet does not spread,
Qi Ax remains nearly constant whereA® seems to change,
% = (p), however we verified that the variations are due to numeri-
t

cal errors, which is why we also show the uncertainties us-
d(p) ing a higher numerical resolution with dashed lines; in fact
dt a Richardson extrapolation of the momentum uncertainty us-
This set of equations looks very similar to Newton’s secondnd the two resolutions reveals thap is constant. The prod-
law, it seems like the expectation valuedofollows the tra-  UCtAzAp is also illustrative. Notice that, in agreement with
jectory of a classical particle. Nevertheless, this is only trudh€ uncertainty principleAzAp is always> 1/2. Since
when(VV) = VV({#)) [3]. In particular, this equality holds the uncertainty in momentum is affected by numerical errors,
for the harmonic oscillator. Therefore, we can exp@o(t) then the product is also affe_cted,_ reason Why we also show in
and(p)(t) to behave like:(t) andp(t) respectively if we start dashed line the product using high resolution. The extrapo-

= —(V,V). (12)

with (2)(0) = 0 and (5)(0) = po. lation corresponds to a constant value in the continuum limit
This result is independent of the valuerofNevertheless, ©Of 1/2, which coincides with the theoretical value [3].
whena takes on the special value= ,/2/w, the total en- Finally, in the figure we also show the conservation of

ergy of the particle is minimum and the wave packet does nothe expectation value of the total energy, whereas the poten-
spread, a case callepliasi-classical stat§3]. In Fig. 2 we tial (T") and kinetic(V') energies oscillate. Dots indicate the
show snapshots of the evolution that illustrate how the puls&alues of these energies in the classical caSg 4t various
oscillates around the minimum. Two snapshots are taken 4imes.

turning points and the other one at the minimum of the po- In Fig. 3, we present snapshots of the wave packet evo-
tential. Notice that at turning points the wave function haslution with « = /1/w, different from the quasi-classical

no nodes, whereas at the center the number of nodes is maxirofile. It can be seen that the Gaussian spreads as it ap-
mum, which is consistent with the fact that bigger the numbeproaches the turning points. The expectation values of the
of nodes the higher the kinetic energy. Also shown are the exposition and momentum are still the same as the classical
pectation values of positiofi:) and momentunp) analogs, however the uncertainties look very different to the
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guasi-classical wave packet, for example in this cAseis  andN; = 640000. The results are shown in Fig. 4. The wave
not constant in time anymore but oscillates. Unlike in thepacket oscillates with increasing amplitude, so that turning
guasi-particle wave packet, the uncertainties genuinely oscipoints are each time further out from the center. The am-
late and an extrapolation of their values using higher resoplitude growth reflects the resonance caused by the sinu-
lution does not lead to constant values anymore. The figureoidal perturbation with the appropriate frequency The
shows that the uncertainty principexAp > 1/2 holds, as  right graph of Fig. 4 also shows that the Ehrenfest theorem
well as the conservation of total energy. An animation of thecontinues to hold for this time-dependent potential. Notice
evolution of this system can be found in Ref. [1]. that the Gaussian packet preserves its shape during the evolu-
The parameters that define the numerical domain are thiion because the width used corresponds to the quasi-classical
same for the two wave packets, namelye [-2,2], N, = packet. For visual grasp we show the animation of this prob-
2000, CFL = 0.125, N; = 640000, whereas the parameters lem at [1].
for the initial conditions ar@, = 50 andw = 12.57. Finally, as far as we can tell, there is no exact solution to
compare these results with.

3.3. Perturbed harmonic oscillator
A more dynamical scenario that involves a time dependen?" Problems in 2D

potential is the forced harmonic oscillator. For this, we PEr|1 this section. we solve Sabdinger equation on two space
tur_b the ground _state of the harmonic oscillator W'th a sinU-yimensions that help illustrate the dynamics of wave-packets
soidal wave, which can correspond to a harmonic trap PeT, widely used scenarios in basic Quantum Mechanics.
turbed with an electromagnetic wave, a case used to illustrate
resonance [3]. The potential and initial condition used for4 1

this scenario are:

2D Harmonic oscillator

Our first example is the quasi-classical analog of the one-

1 .
V(z,t) = §w21‘2 + aw’zsinwt, dimensional case above, which does not show dispersion of
14 the density of probability. The potential and wave function
Y(x,0) = (f) e—3wiz? (13)  profile we use are the following:
™

1
Notice that the frequency of the perturbation coincides with V(z,y) = §¢«12(:v2 +1?),
the natural frequency of the harmonic potential, which is ex-

pected to produce resonance. For comparison, we use the _ | 2 imd —((a—20)+(y—y0)?)/a’
solution of the classical problem, given by: Pl,9,0) = a2 ¢ - (19

which corresponds to a circularly symmetric wave packet
with momentunp;,. The classical analog of this problemis a
particle in the central potential:

x(t) = % (wt coswt — sinwt) , (14)

which is an oscillation of the particle with linearly growing
amplitude. 1 55
We solve Schisdinger equation for the evolution of this V(r) =gwor, (16)

2
system witha: = 0.2 andw = 12.57, on the numerical do- i )
main defined by: € [~2,2], N, = 2000, CFL = 0.125 wherer? = 22 4 y2. We also use the solution of the classical

version of the problem and set initial conditions suitable for
the particle’s trajectory to be a circle. We do this by equating

Forced oscillations s Expectation value of x . -
o oi? T e the centripetal acceleration to the force:
10 clasical x(t) p2
g° —=ur = p=wr, p=|fl (17)
"g 6 0.5 T
H . 00 We define initial conditions for the circular trajectory with
é w = 12.57 andr = 0.2, thenp, with magnitude of2.5,
2 -0.5 is chosen perpendicular to the position vector. The period of
0 this trajectory would be:
g 2 -1 0 1 2 :'0 0.0 0.1 0.2 0.3 9 9
a X t
N . 7="""2 T _ .16, (18)
FIGURE 4. On the left, snapshots of the probability density of the P w

perturbed ground state taken every- 0.032, earliest at the bot- o . .
tom and latest on top. On the right, the expectation valuiwith which is independent of the radius of the trajectory.

continuous line and the classical solutieft) indicated with dots Quasi-classical caselin Fig. 5 we illustrate the result of
for a few values of time that coincide with those of the snapshots inthe evolution of this wave packet. The wave packet indeed
the left graph. moves on a circle of radius2 with a period of0.16 in the
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FIGURE 6. Evolution of the wave packet on the two-dimensional
harmonic oscillator potential with = /1 /w. The initial position

and momentum are the same as for the quasi-classical state. The
expectation value of the position follows the same trajectory as the
classical analog likewise in the quasi-classical particle case. The
wave packet widens when it crosses theaxis and recovers its
initial shape when it crosses the-axis during the evolution.

FIGURE 5. Snapshots of the evolution for the wave packet corre-
sponding to the quasi-classical solution on a two-dimensional har-
monic oscillator travelling on a circular trajectory. The initial posi-
tion and momentum are0.21 and0.2wj respectively. The dotted
circle is the trajectory formed by the expectation value of the posi-
tion (&), which describes a circle of radi0<. In fact, the solution

of the classical problem would be exactly on top of this circle as

well. The shape of the wave packet does not disperse away while it . . .
orbits around the origin. that the Ehrenfest theorem still holds, that is, the expectation

value of the position keeps behaving like that of the equiva-

clockwise direction. The shape of the packet does not chandg"t classical particle when we jump to two dimensions.
because the width of the packet is set to the special value AN @nimation of the quasi-classical state and one with
a = \/2Jw. This width is that of the ground state of the crazy initial conditions can be seen at [1].

two-dimensional harmonic potential. For these reasons, Wﬁ 5
call this packet thejuasi-classical solution The circle in e

this figure corresponds to the trajectory of a classical partitpig problem is defined on a two space dimensions domain as
cle with the same initial conditions under the influence of thefollows. A Gaussian wave packet is launched towards a po-
classical potential described by Eqg?(and (°?), and also  tgntig| wall with a “hole”. The wave function partly bounces
corresponds to the trajectory of the expectation value of thg.q - the potential wall and partly passes through. What is

position (Z)(¢). This solution of Sctadinger equation was jjjstrative is the well known diffraction pattern that has to be
calculated in the numerical domain definedby [-1,1],  yetected beyond the wall.

Diffraction by a single slit

y € [-11), Noe = Ny = 200, CFL = 0.125 and The initial condition for the wave function is
Nt = 12800, which corresponds toy = T

Another case. Likewise in the 1D scenario we also W(z,y,0) = /ieipoxe—((z—wo)2+y2)/a27
present the case with a non-educated Gaussian pulse with ma?

a = /1/w. The evolution is very interesting and the den-which has a Gaussian profile with a momentum along the
sity appears in Fig. 6. The pulse evolves in clockwise direc;_direction. The potential wall is centered at the- axis
tion. It starts with a concentrated probability distribution andand technically has a finite thickness of five domain cells.
like in the one dimensional case, it starts Spreading as can m]e slit is imp]emented as a Segment of ﬂ'}eaxis where

seen in the second snapshot, until it crosseg thexis; after-  the potential is zero. This potential can be expressed as fol-
wards, the packet begins to compress again until it acquirggyys:

its original shape at the—axis again in the third snapshot.

The evolution repeats itself with the pulse compressing at the

x—axis and most expanded at theaxis. Vz,y) =
The circle in this figure corresponds to the expectation

value (Z)(t) as well as the trajectory of the classical parti-

cle with the same initial conditions under the influence of theThe potential barrier is high enough, witly = 4000, as to

classical potential. One takeaway from this exercise is mimic an infinite potential. Technically this avoids one the

Vo (z,y) € [-0.025,0.025] x
([~1,-0.15) U (0.15,1])

0 else
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SIMULATION OF GAUSSIAN WAVE PACKETS USED TO ILLUSTRATE ELEMENTARY QUANTUM MECHANICS SCENARIOS 7

L o._rhoft = 0.0000) Lo rholt = 0.0122) corresponds to an error @f.3% which can be attributed
to factors like the non-monochromatic nature of the wave
051 051 packet, and the fact that the distance between the slit and the
- o0l . - o0l > screen is too small to be considered in the Fraunhofer regime.
[ The important result is that, before the slit, the particle was
-0.51 -0.51 not completely localized, but we knew that its momentum
was around a specific value withp = contant. However,
'l)_l'gl.o 05 00 05 1o b)_1'91.o =05 00 05 10 after the slit, the particle could be directed towards any of the
’ X X diffracted rays, and there is ropriori clue of which path it
1.0, ot = 0.0244) Difffaction Fatiemn might have taken until we measure it. One interesting fact is
> that we can be sure that it will not be detected at angles like
051 41 +32° because of its wave-like properties.
> 00, -
24 4.3. Experiment of the double slit
-0.51
1o . , (1) , ‘ . . . One of the most used examplgs of .Quantum' Mechanics is
, TLo-0s o).(o 05 10 "-10 -05 090 05 1.0 the experiment of the double slit. A single particle governed

by Schibdinger equation is thrown against a barrier with two
FIGURE 7. Three snapshots of the density at different times prior sjits, After the barrier, a screen detector is placed to mea-
and post-interaction with the slit of widt.3. In the third snap-  gyre the position of the particle. The experiment is performed
shotwe Sho"‘{:‘he dlocatt'ontotf, a dege(c);%lat ”(‘je ?3 (i'h35' Wheltr,e multiple times and a detecting plate records the distribution
we measure the density at time= 0.0244 and show the resuling ¢ 4 rjving positions. If the particle were to behave classi-
diffraction pattern in the fourth plot. This pattern resembles part of cally, one should only see two spots in the screen, each one
the sinc function, expected for monochromatic light. ' . ! .

P g associated to the pass of the particle through each of the slits.

function at the boundary of the wall. The domain parameter$les an interference pattern produced by a wave. This is what

used for the numerical solution arec [—1,1],y € [-1,1], ~ We Will reproduce.

N, = N, = 200, CFL = 0.125 and Nt = 1950, whereas The particle state will be represented by the wave func-
the initial conditions are defined by, = —0.4, p, = 12.5x,  tiony on atwo-dimensional space. The barrier with two slits
a = 0.25. will be represented by a potential barrier of heidfgt and

In F|g 7, one can see the evolution of the wave packe@.05 units thick. The two slits are Separated by the distance

during and after passing through the slit. When the packe# = 0.4 and0.1 units wide. The explicit potential is:
arrives at the slit, it starts interfering with itself and then a
major part of the wave passes through. The reflected pulse
looks interesting, with various fringes although not very well V(w,y) = ([-1,-0.25) U (~0.15, ~0.15)U
discussed in books. Concerning the pulse that passes through, Y (0.25,1]),

the pattern forward is the one most analyzed. In order to pic- 0
ture this pattern, we implemented a detector screen placed at

r = 0.35, where we measure the probability density, shownThe initial value ofy> will be that of a Gaussian wave packet:
on the fourth image of Fig. 7, measured at the time of the

third snapshot. The pattern is composed of three intensity $(,5,0) = /%eimmei((%xo)zwz)/f’
a

Vo (z,y) € [-0.025,0.025]x

else.

peaks and two minima locatedsat= +0.22. This result can
be compared with the Fraunhofer diffraction of a wave go-

ing through a slit, which isin(«)/u function with minima ~ With @ = 03, zp = 0.4, pp = 1257 andVp =
located at the following positions [8]: 6000. Finally, the domain parameters are the following:
z € [-1.51.5, y € [-1.5,1.5], No = Ny = 300,
asin® = m), m = %1,42, ... (19) CFL =0.125 andNt = 2000.

Figure 8 illustrates the behavior during the evolution of
the wave packet. After the barrier, the expected interference
éaattern is formed. The location of the intensity peaks can be
compared with the ones predicted by the Young interferom-
eter, originally designed for electromagnetic waves [8]. Ac-

whereq is the width of the slit\ the wave lengthd the de-
flection output angle angh the label of the minima [8]. If
we substitute the values from our simulation, we find that th
first minimum should be located at:

sinf — A _ 2m/po _ 8 (20) cording to Young, the intensity peaks are located at the angles
a 0.3 15’ given by the formula
which, in the case of a screen locat@g5 units of length )
away from the slit, corresponds tajavalue 0f0.2206. This dsing =mA, m=0,+£1,£2, ... (21)
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=0. ho(t = 0.012 = -
10 rho(t = 0.0000) 10 rho( 0.0125) 15 rho(t = 0.0000) 1E rho(t = 0.0163)
05/ 05 1.0 1.0
0.51 0.51
> 0.0 . > 0.0 t" > 0.0 > 0.01
-0.51 -0.5 —0.51 —0.51
M
-1.01 - -1.01 L
-1.0 - . - -1.0 ‘ : : L4
a -1.0 05 00 05 1.0 ) -1.0 -05 00 05 1.0 -15 . } . -15 . ! .
X X -1 0 1 b -1 0 1
a) X ) X
rho(t = 0.0250) Interference Pattern
Lo 150 rho(t = 0.0325) rho(t = 0.0488)
15 1.5
1.251
0.51 | |
1.001 1.0 1.0
> 0.0 :. 20.75] 0.51 0.51
0.50 > 0.09 > 0.01 ?
~0.5 . . o /6 \
0.25 -0.51 -0.51 71‘9rré 6t
Al \ Bi,
-1.0 : 0.00 -1.01 pocid -1.01 7
-1.0 -0.5 0.0 05 1.0 -1.0 -05 00 05 1.0
c) X d) y -1.5 =15
-1 0 1 p -1 0 1
FIGURE 8. Snapshots of the evolution of the Gaussian packet ini- ©) X ) X

tially moving to the right and colliding against the potential barrier FIGURE 9. Evolution of a Gaussian wave packet moving with
with two slits. Part of the packet is reflected and part of it goes oblique incidence against the step potenti2®)( In this case,
through, creating an interference pattern. On the third snapshot, & = 157, Vo = 750 andf; = 34°. The numerically calcu-
screen detector is placed along the line= 0.4. The density mea-  lated reflection and transmission angles afg: = 38.93° and
sured along such line is shown on the fourth figure that records thed; = 52.13°. The dashed paths are the trajectories followed by the
interference pattern, which reassembles that of Young interferome-expectation valuéz) (¢) of the initial and the two resulting pulses,
ter. reason why they are not quite straight lines.

In our cased = 0.4 and X = 0.16, thus the zero-th or-

der peak should be at = 0, the first order peak should 0 z<0,yeD,
be located a = +23.57° and the second order peak at Vi(z,y) = (22)
0 = +53.13°. We measure the density at a screen located Vo 2>0,y€eD.

at the linex = 0.4, where the first and second order peaks
would be centered af = +0.1745 andy = +0.5333 re-
spectively. From our simulations these peaks are center
aty = +0.18 andy = +0.43. The error between the pre-
diction and our measurements &r&@% and19.32% respec-
tively, that we attribute to both, the approximations of Young

This setting is just like the case when light changes from one
er(rj1edium to another, in the quantum case, particle-waves get
reflected and refracted when they face a step potential. For
a plane monochromatic wave, the laws that rule this phe-
nomenon are the reflection and refraction laws:

formula and the non-monochromatic nature of the Gaussian 0, =0,
packet.
The appealing interference pattern seen in the third snap- ksin@; = \/k? — k2 sin 0y, (23)

shot of Fig. 8 reminds again of the Quantum Safari [6,7].

In one of the scenes described, a flock of gazelles grazeghered;, 6, andd, are the angles of incidence, reflection and
peacefully when a lioness suddenly appeared. The gazellégansmission, considering the same conventions used in op-
ran scared against a row of trees with two small gaps. Aftics [8]; k is the wave number ankf = 2mV;/h? or 2V; in

ter crossing the trees, the gazelles divided in columns eactode units. One very interesting fact is thalassical parti-

one headed directly against a group of hungry lionesses. Thelethat goes through the same potential follows the refraction
gazelles were actually behaving like the quantum particle ofaw when its horizontal velocity is greater or equakt@Vvy;

Fig. 8, and the lionesses where position in the intensity peakand follows the reflection law when the horizontal velocity is

of the interference pattern. not big enough.
Animations of the single and double slit problems are In Fig. 9 appears the density of a Gaussian wave packet
found at [1]. initially located at(—0.6, —1.2) with momentum||pg|| =
157 heading towards the potential step with an incidence an-
4.4. Reflection and refraction gle of 34°. In the second snapshot, the wave packet hits the

interface and interferes with itself. In the third snapshot the
In this example, we illustrate what happens when a waveacket splits into two as the result of the interaction with the
packet collides against a finite height step potential in twostep: one bump reflected and another one refracted. Notice
dimensions: that the black dashed line indicates the trajector{adft) of
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SIMULATION OF GAUSSIAN WAVE PACKETS USED TO ILLUSTRATE ELEMENTARY QUANTUM MECHANICS SCENARIOS 9

the packet prior to the collision. Finally, in the last snapshot,One not so obvious assumption that is made by [3] for the
we indicate with red and blue dashed lines the trajectory thatreatment of this problem, is that after the plane wave inter-
(Z)(t) follows for each of the two wave packets. From theseacts with the potential, the wave function becomes the sum
expectation values, we find that the reflection and transmisef a plane wave that goes through and a spherical wave front
sion angles are approximately = 38.93° andf; = 52.13°  with nonuniform amplitude. The objective of this section is
respectively. A classical particle, as well as a monochromatito show numerically that the outgoing wave function truly has
wave, would refract with an angle of 80 We can see that a spherical component.
the value obtained numerically doesn’t match the theoretical e treat the two dimensional case, with potential and ini-
one very well. This is because the refraction angle depend$g| conditions as follows:
on the wave number, not only @y. Since the wave packet is
a sum of plane waves with different momentum, each of the Viz,y) = Vi o~ (@7 +y?) /20
plane waves refracts at a different angle, changing the shape Y 0 ’
of the packet and the refraction angle(af. [ . gy

The domain parameters used for this simulationsrare ¥(z,y,0) = @elmle_((m_m /e (24)
[-2,2], y € [-2,2], No = Ny = 400, CFL = 0.125
and Nt = 3900, and the initial conditions are set iy =
—0.61—1.2j, pp = 157(cos(34°)i+sin(34°)j), packet width
a = 0.15 andVy = 750.

In Fig. 10, one can see the outcome of the interaction be-
tween the wave packet and the central potential, which in this
case is repulsive. The packet starts moving to the right, but as
it approaches the origin it slows down and deforms to avoid
the potential peak. The particle then becomes a blur that
As a final example, we look at a case of dispersion by a cerstarts spreading in all directions. In the last two snapshots,
tral potential. In this experiment, a particle (or wave packetjthe probability current is mapped on top @f The vector
is directed against a potential that is spherically symmetricfield looks almost radial, evidence of the particle spreading
in all directions as predicted [3].

rho(t = 0.0000) rho(t = 0.0208) The domain parameters used for this simulations were:

4.5. Dispersion by a central potential

1.5 1.5
101 104 r € [-15,1.5, y € [-1.5,1.5], Nz = Ny = 300,
' ' CFL = 0.125 and Nt = 3900, and initial conditions
> *] 29 = —0.7, po = 57, a = 0.15, Vy = 120 ando = 0.3.
> 0.0 . > 0.0 .
—0.51 —0.5
-1.01 -1.04 )
- — : : sl , , 5. Final comments
Ay -1 0 1 by -1 0 1
a) < b) M
rho(t = 0.0416) rho(t = 0.0625) We have solved the time dependent Sctinger equation us-

L5 15 ing numerical methods in scenarios involved with the wake-

1.01 1.0 particle duality.
0.51 0:5] We expect these examples help illustrate the robustness of
> 0.0 > 0.0 Schiddinger equation solutions in the wave and particle inter-
~0.51 —0.51 pretation of elementary Quantum Mechanics. More detailed
~1.01 ~1.01 pictures and animations corresponding to the examples de-

151 : . 15l . ; , scribed in this paper are available at [1], which can be useful
o 0 . d 0 i for teaching purposes. Finally, we want to stress that also for
educational purposes, the codes needed for the reproduction
of these results can be available under request.

FIGURE 10. Evolution of a Gaussian wave packet directed against
the origin of the central potential of equatioR?. In this case

po = 5m, Vo = 120 anda = 0.15. After the interaction with the
potential, the wave function appears to have a circular wave front.
In the last two snapshots, the black spot grows in size in all direc-
tions. A map of the probability current vector field is on top. The ACknOWledgmentS

current emerges radially from the center, suggesting a circular but

nonuniform wavefront. This work is supported by grant CIC-UMSNH-4.9.
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