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F. Guzḿan-Cajica
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In this paper, we numerically solve the time-dependent Schrödinger equation for scenarios using wave packets. These examples include the
free wave packet, which we use to show the difference between group and phase velocities, and the packet in a harmonic oscillator potential
with non-trivial initial conditions in one and two dimensions, which is compared with their classical analogs to show how Ehrenfest theorem
holds. We also include simulations of the diffraction through the single and double slit potentials, the refraction with a step potential and the
dispersion by a central potential. The aim of this paper is to illustrate with simulations, nowadays easy to implement, scenarios that can help
explain the basics of the wave-particle duality.
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1. Introduction

It is common to find illustrative examples of quantum sys-
tems in books and courses, mostly concerning stationary sce-
narios, like the particle in a box, the particle in a harmonic os-
cillator potential and the Hydrogen atom found in typical text
books. Nowadays, with the help of numerical methods and
affordable computing power, it is relatively simple to con-
struct non-stationary scenarios with certain dynamics, which
help illustrate some basics like the wave-particle duality, un-
derstood from solutions of Schrödinger equation.

With this aim, we produced a number of programs that
solve Schr̈odinger equation for some interesting scenarios in-
volving modulated wave packets whose dynamics concerns
the particle and wave nature described by the wave func-
tion. The cases we selected for illustration concern typical
problems with nearly trivial potentials, however using non-
stationary and non-trivial initial conditions. We also point to
supplemental material that includes animations of the prob-
lems solved here, that serve as complement to the snapshots
included in paper and may help for educational purposes in
the classroom [1]. We believe that this work can be a com-
plement of some educative analytical [2] and numerical [3]
solutions of Schr̈odinger equation.

We first present problems defined in one spatial dimen-
sion and start with the well studied case of the free wave
packet. We use this example to show how a Gaussian packet
spreads during the evolution as predicted by the exact solu-
tion, and also to point out the difference between group and
phase velocities. We evolve a packet subject to the effects of

the Harmonic Oscillator potential for non trivial initial condi-
tions, first the quasi-classical state and later a rather arbitrary
Gaussian wave packet to show the differences in terms of dis-
tortion of the density. We also solve the classical analog to
verify that the Ehrenfest theorem holds.

Problems defined on two spatial dimensions are also
solved, specifically the evolution of a packet on a two-
dimensional harmonic trap, and it is shown how the Ehrenfest
theorem holds for a system with two degrees of freedom. In
more elaborate scenarios the diffraction of the wave-packet
by a single and double slit potentials are studied, for which
we calculate the interference pattern. We also present the re-
flection and refraction by a step potential. This case concerns
the deflection of the wave front, and implies the Snell law for
the wave packet evolving according to Schrödinger equation.
Finally we study the dispersion by a central potential, which
according to theory [3] a modulated plane wave interacting
with a central potential would produce a spherical wave front.

The paper is organized as follows. We first specify the
numerical methods used to solve Schrödinger equation in
Sec. 2, then in Secs. 3 and 4 we describe the problems in
one and two spatial dimensions. Finally in Sec. 5 we present
some final comments.

2. Numerical methods

The fully time-dependent Schrödinger equation for a particle
of massm subject to the action of a potentialU reads
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i~
∂Ψ
∂τ

= − ~
2

2m
∇2

ξΨ + U(~ξ, τ)Ψ, (1)

whereΨ = Ψ(~ξ, τ) and i :=
√−1; we define this number

because, below we will keep the traditional notation ofi for
integer labels of the numerical domain andı̂ for the unitary
basis vector, both along thex−direction. In order to solve
this equation numerically, we rescale variables according to
the transformation:

~x =
~ξ

a0
, t =

E0

~
τ, V (~x, t) =

1
E0

U(~ξ, τ),

ψ(~x, t) =
√

ak
0Ψ(~ξ, τ), p̂ =

a0

~
p̂ξ = −i∇x,

a0 = Bohr radius, E0 =
~2

ma2
0

, (2)

wherea0 is a length scale appropriate for each problem to
be treated. If we are working with atomic scales, it could
be one Angstrom or Bohr’s radius. These new variables are
dimensionless and will simplify numerical calculations. In
the redefinitions above, the wave function is also rescaled to
ensure it has norm of one, whilek is the dimension of the spa-
tial domain, in this paper one and two. The resulting equation
reads

i
∂ψ

∂t
= −1

2
∇2

xψ + V (~x, t)ψ, (3)

whereψ = ψ(~x, t). We call these dimensionless unitscode
unitsand they will be used from this point on.

Equation (??) is solved numerically as an initial value
problem provided some initial conditions forψ. The numer-
ical method used for integration is based on Finite Differ-
ences defined on a uniformly discrete domain for one and
two-dimensional scenarios.

One-dimensional problems.The space-time domain of
solution isD = [xmin, xmax]×[0, tf ]. The numerical domain
is the set of points(xi, t

n) ∈ D such thatxi = xmin + i∆x,
where∆x = (xmax − xmin)/Nx andi = 0, 1, ..., Nx where
Nx is the number of cells along the spatial domain, whereas
tn = n∆t with ∆t = CFL∆x2 andn = 0, 1, ..., Nt =
tf/∆t, whereCFL stands for the Courant-Friedrichs-Lewy
factor between spatial and time resolutions. In this domain
the wave function and potential at the arbitrary point(xi, t

n)
are denoted byψn

i andV n
i respectively.

For the evolution from timetn to tn+1 we implement the
Crank-Nicolson average, which leads to the following second
order accurate evolution scheme for Eq. (??):

(−α)ψn+1
i−1 + (1 + 2α + βV n+1

i )ψn+1
i + (−α)ψn+1

i+1

= (α)ψn
i−1 + (1− 2α− βV n

i )ψn
i

+ (α)ψn
i+1, (4)

whereα = (1/4)i(∆t/∆x2), β = (1/2)i∆t. This scheme
defines a tridiagonal linear system that is valid for inner

points i = 1, ..., Nx − 1, whereas boundary conditions at
xmin = x0 and xmax = xNx determine the equation for
space labelsi = 0 andi = Nx. In all the examples we use
a big enough domain as to impose the zero boundary condi-
tion ψ(∂D, t) = 0, which according to [4] implies the equa-
tions (1 + 2α + βV n+1

0 )ψn+1
0 = (1 − 2α − βV n

0 )ψn
0 and

(1+2α+βV n+1
Nx

)ψn+1
Nx

= (1−2α−βV n
Nx

)ψn
Nx

at points with
labelsi = 0 andi = Nx respectively. These two equations
complete the system for alli = 0, ..., Nx and is then solved
for ψn+1

i using forward and backward substitution following
the recipe in Ref. [5].

Two-dimensional problems.In this case the domain of in-
tegration isD = [xmin, xmax]× [ymin, ymax]× [0, tf ] and the
numerical domain is defined by the points(xi, yj , t

n) ∈ D
such thatxi = xmin + i∆x, yj = ymin + j∆y with ∆x =
(xmax−xmin)/Nx, ∆y = (ymax−ymin)/Ny with Nx andNy

the number of cells alongx andy-directions,i = 0, 1, ..., Nx,
j = 0, ..., Ny. In all the examples we use∆x = ∆y, so
that time discretization can be defined bytn = n∆t with
∆t = CFL∆x2 andn = 0, 1, ..., Nt. In this domain at point
(xi, yj , t

n) any involved functionf is denoted byfn
i,j .

The evolution is carried out using the Crank-Nicolson
method as well, along with the Alternating Direction Implicit
(ADI) order of integration across spatial directions. With this
scheme the evolution fromtn to tn+1 is implemented in three
steps as follows [4]:

(
1− i

4
∆t δ2

x

)
Ri,j =

(
1 +

i
4
∆t δ2

x

)
ψn

i,j ,

(
1− i

4
∆t δ2

y

)
Si,j =

(
1 +

i
4
∆t δ2

y

)
Ri,j ,

(
1 +

i
2
∆t Vi,j

)
ψn+1

i,j =
(

1− i
2
∆t Vi,j

)
Si,j , (5)

whereRi,j andSi,j are auxiliary grid functions that update
the values of the wave function after applying the deriva-
tive operator along each spatial directionδ2

x, δ2
y, which

are the second-order derivative discrete operators. In two-
dimensional problems, we only deal with time-independent
potentials, thus we omit the superindex onVi,j in Eq. (??).
These are two tridiagonal and one diagonal systems of linear
equations that are formulated likewise in Eq. (??), explicitly

(−α)Ri−1,j + (1 + 2α)Ri,j + (−α)Ri+1,j

= (α)ψn
i−1,j + (1− 2α)ψn

i,j + (α)ψn
i+1,j ,

(−α)Si,j−1 + (1 + 2α)Si,j + (−α)Si,j+1

= (α)Ri,j−1 + (1− 2α)Ri,j + (α)Ri,j+1,

ψn+1
i,j =

1− βVi,j

1 + βVi,j
Si,j , (6)

whereα = (1/4)i(∆t/∆x2) andβ = (1/2)i∆t. These sys-
tems are completed with equations at boundary sides by im-
posing the boundary conditionψ(∂D, t) = 0. The boundary
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conditions on the numerical domain are analogous to those
for the one-dimensional fori, j = 0 and for i = Nx, j =
Ny. Once with the complete systems of equations, we solve
the two tridiagonal systems following the implementation in
Ref. [5] of the forward-backward substitution, and the diago-
nal system is solved using direct substitution.

3. Problems in 1D

Beyond stationary problems, time-dependent cases in one
spatial dimension are the first scenarios discussed in Quan-
tum Mechanics. Here, we elaborate and discuss the simplest
ones from a simulation based approach.

3.1. Free gaussian wave packet

Moving free particles in Quantum Mechanics are sometimes
represented by wave packets. Most of the time, the momen-
tum of a particle is not known with complete certainty, it
does not have a definite wavelength. Their wave functions
are rather a sum of waves which cover a spectrum of wave
numbers. A simple way to represent this is through a Gaus-
sian wave packet, which is nothing more than a sum of plane
waves with amplitudes that vary according to a Gaussian dis-
tribution. If the wave number of maximum amplitude corre-
sponds tok0 and the standard deviation of the distribution is√

2/a, then the normalized wave function of such particle at
t = 0 is [3]:

ψ(x, 0) =
√

a

(2π)3/4

∫ ∞

−∞
e−

a2
4 (k−k0)

2
eikxdk

=
(

2
πa2

)1/4

eik0xe−x2/a2
. (7)

The time evolution of such packet can be found by sum-
ming each plane waveeikx multiplied by e−iw(k)t, its time
evolution. After doing the integral, the probability density of
the particle happens to be [3]:

|ψ(x, t)|2 =

√
2

πa2

1√
1 + 4t2

a4

exp−2(x− k0t)2

a2 + 4t2

a2

. (8)

What we do is evolve the initial conditions (??) and illustrate
the dynamics of the wave packet in Fig. 1. What happens
is that the Gaussian density (??) widens and moves to the
right. Fortunately, there is an exact solution of this problem
to compare with, so that we can show that the error between
numerical and exact solution converges to zero with resolu-
tion.

This spreading property of particles reminds us of the
Quantum Safari, defined by George Gamow in his book [6,7].
When Mr. Tompkins and the professor go on an expedition
to this place, they soon face a mosquito. But because of its
quantum properties, after being spotted, its position becomes
less certain over time. After a while, they are covered by a
uniform mosquito probability density. This is exactly what

FIGURE 1. At the left, snapshots of±|ψ| and <ψ at times
t = 0, 0.01, 0.02, showing how the wave packet spreads. At the
right, convergence of theL1 norm of the error to zero, of the den-
sity with respect to the exact solution (??).

happens with the Gaussian packet,∆x grows indefinitely un-
til it covers the entire space.

Another thing that can be done with the evolution is illus-
trate the difference between group and phase velocities. It is
still difficult to explain the difference between the group and
phase velocities in a few snapshot, thus we have placed an
animation of this effect at [1].

The numerical parameters used for the numerical domain
arex ∈ [−1, 3], Nx = 2000, CFL = 0.125, Nt = 40000,
whereas the initial conditions in (??) are k0 = 100 and
a = 0.1.

3.2. 1D Harmonic oscillator

We now proceed to evolve a moving Gaussian wave packet
subject to the effects of a harmonic oscillator potential. The
potential and the initial conditions are:

V (x) =
1
2
ω2x2,

ψ(x, 0) = eip0xe−(x−x0)
2/a2

, (9)

wherep0 is the initial velocity of the wave packet of width
a, initially centered atx0 = 0. The classical analog would
be a particle of massm attached to a spring, whose position
and momentum arex(t) andp(t). These functions obey the
following equations of motion and initial conditions:

dx

dt
= p,

dp

dt
= −ω2x,

x(0) = 0,

p(0) = p0, (10)

whose solution reads:

x(t) =
p0

ω
sin(ωt),

p(t) = p0 cos(ωt). (11)
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FIGURE 2. Evolution of the quasi-classical wave packet onto a
harmonic oscillator potential. At the top-left there are three repre-
sentative snapshots, two at turning points and one atx = 0, the
minimum of the potential. At the top-right we draw the expec-
tation values of the position and momentum as functions of time
with continuous lines and the values of the equivalent classical os-
cillator with points. At the bottom-left we show the uncertainties
in position and momentum along with their product for two res-
olutions, low/high with continuous/dashed lines that are different,
which reveals the influence of numerical approximations; neverthe-
less, the extrapolation of the uncertainties obtained from solutions
with low and high resolutions is constant. Finally, at the bottom-
right we show the behavior of the expectation values of the energy
components as functions of time, where the points correspond to
the values of the classical system at a few times.

An interesting theorem that holds for all quantum mechanical
systems is Ehrenfest’s theorem; which probes the following
equalities between expectation values:

d〈x̂〉
dt

= 〈p̂〉,

d〈p̂〉
dt

= −〈∇xV̂ 〉. (12)

This set of equations looks very similar to Newton’s second
law, it seems like the expectation value ofx̂ follows the tra-
jectory of a classical particle. Nevertheless, this is only true
when〈∇V̂ 〉 = ∇V (〈x̂〉) [3]. In particular, this equality holds
for the harmonic oscillator. Therefore, we can expect〈x̂〉(t)
and〈p̂〉(t) to behave likex(t) andp(t) respectively if we start
with 〈x̂〉(0) = 0 and〈p̂〉(0) = p0.

This result is independent of the value ofa. Nevertheless,
whena takes on the special valuea =

√
2/ω, the total en-

ergy of the particle is minimum and the wave packet does not
spread, a case calledquasi-classical state[3]. In Fig. 2 we
show snapshots of the evolution that illustrate how the pulse
oscillates around the minimum. Two snapshots are taken at
turning points and the other one at the minimum of the po-
tential. Notice that at turning points the wave function has
no nodes, whereas at the center the number of nodes is maxi-
mum, which is consistent with the fact that bigger the number
of nodes the higher the kinetic energy. Also shown are the ex-
pectation values of position〈x̂〉 and momentum〈p̂〉

FIGURE 3. Evolution of a wave packet different from the quasi-
classical case, in a harmonic oscillator potential. At the top-left
there are the three representative snapshots at center and turning
points. At the top-right the expectation values of the position and
momentum as functions of time are drawn with continuous lines
and some values of the equivalent classical oscillator with points.
At the bottom-left we show the uncertainties in position and mo-
mentum along with their product. Finally, at the bottom-right we
show the behavior of the expectation values of the energy com-
ponents as functions of time along with dots corresponding to the
classical solution.

as functions of time, on top of them the points indicate the
position and momentum of the classical system (??) at some
times. Turning points can be identified as the maximae and
minimae of〈x̂〉 at times0.08k + 0.04 with k integer.

Additional information in Fig. 2 are the uncertainties∆x
and∆p. As expected, since the wave packet does not spread,
∆x remains nearly constant whereas∆p seems to change,
however we verified that the variations are due to numeri-
cal errors, which is why we also show the uncertainties us-
ing a higher numerical resolution with dashed lines; in fact
a Richardson extrapolation of the momentum uncertainty us-
ing the two resolutions reveals that∆p is constant. The prod-
uct∆x∆p is also illustrative. Notice that, in agreement with
the uncertainty principle,∆x∆p is always≥ 1/2. Since
the uncertainty in momentum is affected by numerical errors,
then the product is also affected, reason why we also show in
dashed line the product using high resolution. The extrapo-
lation corresponds to a constant value in the continuum limit
of 1/2, which coincides with the theoretical value [3].

Finally, in the figure we also show the conservation of
the expectation value of the total energy, whereas the poten-
tial 〈T 〉 and kinetic〈V 〉 energies oscillate. Dots indicate the
values of these energies in the classical case (??) at various
times.

In Fig. 3, we present snapshots of the wave packet evo-
lution with a =

√
1/ω, different from the quasi-classical

profile. It can be seen that the Gaussian spreads as it ap-
proaches the turning points. The expectation values of the
position and momentum are still the same as the classical
analogs, however the uncertainties look very different to the
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quasi-classical wave packet, for example in this case∆x is
not constant in time anymore but oscillates. Unlike in the
quasi-particle wave packet, the uncertainties genuinely oscil-
late and an extrapolation of their values using higher reso-
lution does not lead to constant values anymore. The figure
shows that the uncertainty principle∆x∆p ≥ 1/2 holds, as
well as the conservation of total energy. An animation of the
evolution of this system can be found in Ref. [1].

The parameters that define the numerical domain are the
same for the two wave packets, namelyx ∈ [−2, 2], Nx =
2000, CFL = 0.125, Nt = 640000, whereas the parameters
for the initial conditions arep0 = 50 andω = 12.5π.

3.3. Perturbed harmonic oscillator

A more dynamical scenario that involves a time dependent
potential is the forced harmonic oscillator. For this, we per-
turb the ground state of the harmonic oscillator with a sinu-
soidal wave, which can correspond to a harmonic trap per-
turbed with an electromagnetic wave, a case used to illustrate
resonance [3]. The potential and initial condition used for
this scenario are:

V (x, t) =
1
2
ω2x2 + αω2x sin ωt,

ψ(x, 0) =
(ω

π

)1/4

e−
1
2 ω2x2

. (13)

Notice that the frequency of the perturbation coincides with
the natural frequency of the harmonic potential, which is ex-
pected to produce resonance. For comparison, we use the
solution of the classical problem, given by:

x(t) =
α

2
(ωt cos ωt− sin ωt) , (14)

which is an oscillation of the particle with linearly growing
amplitude.

We solve Schr̈odinger equation for the evolution of this
system withα = 0.2 andω = 12.5π, on the numerical do-
main defined byx ∈ [−2, 2], Nx = 2000, CFL = 0.125

FIGURE 4. On the left, snapshots of the probability density of the
perturbed ground state taken everyt = 0.032, earliest at the bot-
tom and latest on top. On the right, the expectation value ofx̂ with
continuous line and the classical solutionx(t) indicated with dots
for a few values of time that coincide with those of the snapshots in
the left graph.

andNt = 640000. The results are shown in Fig. 4. The wave
packet oscillates with increasing amplitude, so that turning
points are each time further out from the center. The am-
plitude growth reflects the resonance caused by the sinu-
soidal perturbation with the appropriate frequencyω. The
right graph of Fig. 4 also shows that the Ehrenfest theorem
continues to hold for this time-dependent potential. Notice
that the Gaussian packet preserves its shape during the evolu-
tion because the width used corresponds to the quasi-classical
packet. For visual grasp we show the animation of this prob-
lem at [1].

Finally, as far as we can tell, there is no exact solution to
compare these results with.

4. Problems in 2D

In this section, we solve Schrödinger equation on two space
dimensions that help illustrate the dynamics of wave-packets
in widely used scenarios in basic Quantum Mechanics.

4.1. 2D Harmonic oscillator

Our first example is the quasi-classical analog of the one-
dimensional case above, which does not show dispersion of
the density of probability. The potential and wave function
profile we use are the following:

V (x, y) =
1
2
ω2(x2 + y2),

ψ(x, y, 0) =

√
2

πa2
ei ~p0·~xe−((x−x0)

2+(y−y0)
2)/a2

, (15)

which corresponds to a circularly symmetric wave packet
with momentum~po. The classical analog of this problem is a
particle in the central potential:

V (r) =
1
2
ω2r2, (16)

wherer2 = x2 +y2. We also use the solution of the classical
version of the problem and set initial conditions suitable for
the particle’s trajectory to be a circle. We do this by equating
the centripetal acceleration to the force:

p2

r
= ω2r ⇒ p = ωr, p = ||~p||. (17)

We define initial conditions for the circular trajectory with
ω = 12.5π andr = 0.2, then~p, with magnitude of2.5π,
is chosen perpendicular to the position vector. The period of
this trajectory would be:

T =
2πr

p
=

2π

ω
= 0.16, (18)

which is independent of the radius of the trajectory.
Quasi-classical case.In Fig. 5 we illustrate the result of

the evolution of this wave packet. The wave packet indeed
moves on a circle of radius0.2 with a period of 0.16 in the

Rev. Mex. Fis. E21020219
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FIGURE 5. Snapshots of the evolution for the wave packet corre-
sponding to the quasi-classical solution on a two-dimensional har-
monic oscillator travelling on a circular trajectory. The initial posi-
tion and momentum are−0.2̂ııı and0.2ω̂ respectively. The dotted
circle is the trajectory formed by the expectation value of the posi-
tion 〈~̂x〉, which describes a circle of radius0.2. In fact, the solution
of the classical problem would be exactly on top of this circle as
well. The shape of the wave packet does not disperse away while it
orbits around the origin.

clockwise direction. The shape of the packet does not change
because the width of the packet is set to the special value
a =

√
2/ω. This width is that of the ground state of the

two-dimensional harmonic potential. For these reasons, we
call this packet thequasi-classical solution. The circle in
this figure corresponds to the trajectory of a classical parti-
cle with the same initial conditions under the influence of the
classical potential described by Eqs. (??) and (??), and also
corresponds to the trajectory of the expectation value of the
position〈~x〉(t). This solution of Schr̈odinger equation was
calculated in the numerical domain defined byx ∈ [−1, 1],
y ∈ [−1, 1], Nx = Ny = 200, CFL = 0.125 and
Nt = 12800, which corresponds totf = T

Another case. Likewise in the 1D scenario we also
present the case with a non-educated Gaussian pulse with
a =

√
1/ω. The evolution is very interesting and the den-

sity appears in Fig. 6. The pulse evolves in clockwise direc-
tion. It starts with a concentrated probability distribution and
like in the one dimensional case, it starts spreading as can be
seen in the second snapshot, until it crosses they−axis; after-
wards, the packet begins to compress again until it acquires
its original shape at thex−axis again in the third snapshot.
The evolution repeats itself with the pulse compressing at the
x−axis and most expanded at they−axis.

The circle in this figure corresponds to the expectation
value 〈~x〉(t) as well as the trajectory of the classical parti-
cle with the same initial conditions under the influence of the
classical potential. One takeaway from this exercise is

FIGURE 6. Evolution of the wave packet on the two-dimensional
harmonic oscillator potential witha =

√
1/ω. The initial position

and momentum are the same as for the quasi-classical state. The
expectation value of the position follows the same trajectory as the
classical analog likewise in the quasi-classical particle case. The
wave packet widens when it crosses they−axis and recovers its
initial shape when it crosses thex−axis during the evolution.

that the Ehrenfest theorem still holds, that is, the expectation
value of the position keeps behaving like that of the equiva-
lent classical particle when we jump to two dimensions.

An animation of the quasi-classical state and one with
crazy initial conditions can be seen at [1].

4.2. Diffraction by a single slit

This problem is defined on a two space dimensions domain as
follows. A Gaussian wave packet is launched towards a po-
tential wall with a “hole”. The wave function partly bounces
from the potential wall and partly passes through. What is
illustrative is the well known diffraction pattern that has to be
detected beyond the wall.

The initial condition for the wave function is

ψ(x, y, 0) =

√
2

πa2
eip0xe−((x−x0)

2+y2)/a2
,

which has a Gaussian profile with a momentum along the
x−direction. The potential wall is centered at they − axis
and technically has a finite thickness of five domain cells.
The slit is implemented as a segment of they−axis where
the potential is zero. This potential can be expressed as fol-
lows:

V (x, y) =





V0 (x, y) ∈ [−0.025, 0.025]×
([−1,−0.15) ∪ (0.15, 1])

0 else

The potential barrier is high enough, withV0 = 4000, as to
mimic an infinite potential. Technically this avoids one the
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FIGURE 7. Three snapshots of the density at different times prior
and post-interaction with the slit of width0.3. In the third snap-
shot we show the location of a detector at the linex = 0.35, where
we measure the density at timet = 0.0244 and show the resulting
diffraction pattern in the fourth plot. This pattern resembles part of
the sinc function, expected for monochromatic light.

need to implement zero boundary conditions on the wave
function at the boundary of the wall. The domain parameters
used for the numerical solution arex ∈ [−1, 1], y ∈ [−1, 1],
Nx = Ny = 200, CFL = 0.125 andNt = 1950, whereas
the initial conditions are defined byx0 = −0.4, p0 = 12.5π,
a = 0.25.

In Fig. 7, one can see the evolution of the wave packet
during and after passing through the slit. When the packet
arrives at the slit, it starts interfering with itself and then a
major part of the wave passes through. The reflected pulse
looks interesting, with various fringes although not very well
discussed in books. Concerning the pulse that passes through,
the pattern forward is the one most analyzed. In order to pic-
ture this pattern, we implemented a detector screen placed at
x = 0.35, where we measure the probability density, shown
on the fourth image of Fig. 7, measured at the time of the
third snapshot. The pattern is composed of three intensity
peaks and two minima located aty = ±0.22. This result can
be compared with the Fraunhofer diffraction of a wave go-
ing through a slit, which issin(u)/u function with minima
located at the following positions [8]:

a sin θ = mλ, m = ±1,±2, ... (19)

wherea is the width of the slit,λ the wave length,θ the de-
flection output angle andm the label of the minima [8]. If
we substitute the values from our simulation, we find that the
first minimum should be located at:

sin θ =
λ

a
=

2π/p0

0.3
=

8
15

, (20)

which, in the case of a screen located0.35 units of length
away from the slit, corresponds to ay value of0.2206. This

corresponds to an error of0.3% which can be attributed
to factors like the non-monochromatic nature of the wave
packet, and the fact that the distance between the slit and the
screen is too small to be considered in the Fraunhofer regime.
The important result is that, before the slit, the particle was
not completely localized, but we knew that its momentum
was around a specific value with∆p = contant. However,
after the slit, the particle could be directed towards any of the
diffracted rays, and there is noa priori clue of which path it
might have taken until we measure it. One interesting fact is
that we can be sure that it will not be detected at angles like
±32o because of its wave-like properties.

4.3. Experiment of the double slit

One of the most used examples of Quantum Mechanics is
the experiment of the double slit. A single particle governed
by Schr̈odinger equation is thrown against a barrier with two
slits. After the barrier, a screen detector is placed to mea-
sure the position of the particle. The experiment is performed
multiple times and a detecting plate records the distribution
of arriving positions. If the particle were to behave classi-
cally, one should only see two spots in the screen, each one
associated to the pass of the particle through each of the slits.
Nevertheless, what is observed is a set of stripes that reassem-
bles an interference pattern produced by a wave. This is what
we will reproduce.

The particle state will be represented by the wave func-
tion ψ on a two-dimensional space. The barrier with two slits
will be represented by a potential barrier of heightV0 and
0.05 units thick. The two slits are separated by the distance
d = 0.4 and0.1 units wide. The explicit potential is:

V (x, y) =





V0 (x, y) ∈ [−0.025, 0.025]×
([−1,−0.25) ∪ (−0.15,−0.15)∪
(0.25, 1]),

0 else.

The initial value ofψ will be that of a Gaussian wave packet:

ψ(x, y, 0) =

√
2

πa2
eip0xe−((x−x0)

2+y2)/a2
,

with a = 0.3, x0 = −0.4, p0 = 12.5π and V0 =
6000. Finally, the domain parameters are the following:
x ∈ [−1.5, 1.5], y ∈ [−1.5, 1.5], Nx = Ny = 300,
CFL = 0.125 andNt = 2000.

Figure 8 illustrates the behavior during the evolution of
the wave packet. After the barrier, the expected interference
pattern is formed. The location of the intensity peaks can be
compared with the ones predicted by the Young interferom-
eter, originally designed for electromagnetic waves [8]. Ac-
cording to Young, the intensity peaks are located at the angles
given by the formula

d sin θ = mλ, m = 0,±1,±2, .... (21)
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FIGURE 8. Snapshots of the evolution of the Gaussian packet ini-
tially moving to the right and colliding against the potential barrier
with two slits. Part of the packet is reflected and part of it goes
through, creating an interference pattern. On the third snapshot, a
screen detector is placed along the linex = 0.4. The density mea-
sured along such line is shown on the fourth figure that records the
interference pattern, which reassembles that of Young interferome-
ter.

In our case,d = 0.4 and λ = 0.16, thus the zero-th or-
der peak should be aty = 0, the first order peak should
be located atθ = ±23.57◦ and the second order peak at
θ = ±53.13◦. We measure the density at a screen located
at the linex = 0.4, where the first and second order peaks
would be centered aty = ±0.1745 andy = ±0.5333 re-
spectively. From our simulations these peaks are centered
at y = ±0.18 andy = ±0.43. The error between the pre-
diction and our measurements are3.1% and19.32% respec-
tively, that we attribute to both, the approximations of Young
formula and the non-monochromatic nature of the Gaussian
packet.

The appealing interference pattern seen in the third snap-
shot of Fig. 8 reminds again of the Quantum Safari [6,7].
In one of the scenes described, a flock of gazelles grazed
peacefully when a lioness suddenly appeared. The gazelles
ran scared against a row of trees with two small gaps. Af-
ter crossing the trees, the gazelles divided in columns each
one headed directly against a group of hungry lionesses. The
gazelles were actually behaving like the quantum particle of
Fig. 8, and the lionesses where position in the intensity peaks
of the interference pattern.

Animations of the single and double slit problems are
found at [1].

4.4. Reflection and refraction

In this example, we illustrate what happens when a wave
packet collides against a finite height step potential in two
dimensions:

FIGURE 9. Evolution of a Gaussian wave packet moving with
oblique incidence against the step potential (??). In this case,
k = 15π, V0 = 750 and θi = 34◦. The numerically calcu-
lated reflection and transmission angles are:θr = 38.93◦ and
θt = 52.13◦. The dashed paths are the trajectories followed by the
expectation value〈~x〉(t) of the initial and the two resulting pulses,
reason why they are not quite straight lines.

V (x, y) =





0 x ≤ 0, y ∈ D,

V0 x > 0, y ∈ D.
(22)

This setting is just like the case when light changes from one
medium to another, in the quantum case, particle-waves get
reflected and refracted when they face a step potential. For
a plane monochromatic wave, the laws that rule this phe-
nomenon are the reflection and refraction laws:

θi = θr,

k sin θi =
√

k2 − k2
0 sin θt, (23)

whereθi, θr andθt are the angles of incidence, reflection and
transmission, considering the same conventions used in op-
tics [8]; k is the wave number andk2

0 = 2mV0/~2 or 2V0 in
code units. One very interesting fact is that aclassical parti-
cle that goes through the same potential follows the refraction
law when its horizontal velocity is greater or equal to

√
2V0;

and follows the reflection law when the horizontal velocity is
not big enough.

In Fig. 9 appears the density of a Gaussian wave packet
initially located at(−0.6,−1.2) with momentum||~p0|| =
15π heading towards the potential step with an incidence an-
gle of 34◦. In the second snapshot, the wave packet hits the
interface and interferes with itself. In the third snapshot the
packet splits into two as the result of the interaction with the
step: one bump reflected and another one refracted. Notice
that the black dashed line indicates the trajectory of〈~x〉(t) of
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the packet prior to the collision. Finally, in the last snapshot,
we indicate with red and blue dashed lines the trajectory that
〈~x〉(t) follows for each of the two wave packets. From these
expectation values, we find that the reflection and transmis-
sion angles are approximatelyθr = 38.93◦ andθt = 52.13◦

respectively. A classical particle, as well as a monochromatic
wave, would refract with an angle of 80◦. We can see that
the value obtained numerically doesn’t match the theoretical
one very well. This is because the refraction angle depends
on the wave number, not only onθi. Since the wave packet is
a sum of plane waves with different momentum, each of the
plane waves refracts at a different angle, changing the shape
of the packet and the refraction angle of〈~x〉.

The domain parameters used for this simulations arex ∈
[−2, 2], y ∈ [−2, 2], Nx = Ny = 400, CFL = 0.125
andNt = 3900, and the initial conditions are set to~x0 =
−0.6̂ııı−1.2̂, ~p0 = 15π(cos(34◦)̂ııı+sin(34◦)̂), packet width
a = 0.15 andV0 = 750.

4.5. Dispersion by a central potential

As a final example, we look at a case of dispersion by a cen-
tral potential. In this experiment, a particle (or wave packet)
is directed against a potential that is spherically symmetric.

FIGURE 10. Evolution of a Gaussian wave packet directed against
the origin of the central potential of equation (??). In this case
p0 = 5π, V0 = 120 anda = 0.15. After the interaction with the
potential, the wave function appears to have a circular wave front.
In the last two snapshots, the black spot grows in size in all direc-
tions. A map of the probability current vector field is on top. The
current emerges radially from the center, suggesting a circular but
nonuniform wavefront.

One not so obvious assumption that is made by [3] for the
treatment of this problem, is that after the plane wave inter-
acts with the potential, the wave function becomes the sum
of a plane wave that goes through and a spherical wave front
with nonuniform amplitude. The objective of this section is
to show numerically that the outgoing wave function truly has
a spherical component.

We treat the two dimensional case, with potential and ini-
tial conditions as follows:

V (x, y) = V0e
−(x2+y2)/2σ2

,

ψ(x, y, 0) =

√
2

πa2
eip0xe−((x−x0)

2+y2)/a2
. (24)

In Fig. 10, one can see the outcome of the interaction be-
tween the wave packet and the central potential, which in this
case is repulsive. The packet starts moving to the right, but as
it approaches the origin it slows down and deforms to avoid
the potential peak. The particle then becomes a blur that
starts spreading in all directions. In the last two snapshots,
the probability current is mapped on top ofρ. The vector
field looks almost radial, evidence of the particle spreading
in all directions as predicted [3].

The domain parameters used for this simulations were:
x ∈ [−1.5, 1.5], y ∈ [−1.5, 1.5], Nx = Ny = 300,
CFL = 0.125 and Nt = 3900, and initial conditions
x0 = −0.7, p0 = 5π, a = 0.15, V0 = 120 andσ = 0.3.

5. Final comments

We have solved the time dependent Schrödinger equation us-
ing numerical methods in scenarios involved with the wake-
particle duality.

We expect these examples help illustrate the robustness of
Schr̈odinger equation solutions in the wave and particle inter-
pretation of elementary Quantum Mechanics. More detailed
pictures and animations corresponding to the examples de-
scribed in this paper are available at [1], which can be useful
for teaching purposes. Finally, we want to stress that also for
educational purposes, the codes needed for the reproduction
of these results can be available under request.
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1. Time-dependent schrödinger equation,https://servi

cio-social.gitbook.io/computational-phy

sics/time-dependent-schroedinger-equation .
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ics, A Wiley - Interscience publication v. 1 (Wiley, 1977).
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