Education in Physics Revista Mexicana dsi€a E22 020214 1-15 JULY-DECEMBER 2025

Cartesian isotropic tensors for beginners

O. Palillero-Sandoval
Centro de Investigabn en Ingenieia y Ciencias Aplicadas, UAEM, Cuernavaca, Morelos 62209, Mexico.

R. Carrada-Legaria
Facultad de Ciencias Bico-Matenaticas, BUAP, Puebla, Puebla 72572, Mexico.

Y. E. Bravo-Garta and E. Reynoso-Lara
Facultad de Ciencias de la Eleénica, BUAP, Puebla, Puebla 72572, Mexico.

A. Alejo-Molina

CONAHCYT-Centro de Investigaai en Ingenidia y Ciencias Aplicadas, UAEM, Cuernavaca, Morelos 62209, Mexico.
e-mail: adalberto.alejo@uaem.mx.

Received 29 May 2024; accepted 6 November 2024

In this paper, we show how to find the isotropic tensors from rank one to four and suggest a way to calculated higher orders following one
of the methods exposed here. We describe two methods for calculating the isotropic tensors from rank one to four, almost step by step. An
explicit representation of the components of the isotropic tensor from rank one to four is given.

Keywords: Fourth-rank; isotropic; tensor.

DOI: https://doi.org/10.31349/RevMexFisE.22.020214

1. Introduction ever, a matrix is just an array of numbers relating two sets of
axes and a tensor is a physical quantity that, for one given set
of axes, is represented by nine numbers [3]. Still sometimes,

Tensors are very important in Physics and Mathematicss|oppi|y a tensor of rank two is called a matrix [2].

Originally, tensors appeared just as a logic structure and then ¢ course, a third-rank tensor has three subinditgs

they were used naturally in advanced theoretical fields Ofi,j, k = 1,2, 3) and in general has 27 components and could

physics, such as Relativity, Electrodynamics and Field Thepq imagined as an array of numberssof 3 with three lay-

ory, Nonlinear Optics, among others. In particular, Nonlinearers’ 3 cubes in length, 3 cubes of height and 3 cubes of width

Optics is just the application of Electromagnetic theory to 8see Fig. 1). This is what usually people call a tensor and

specific problem in which the nonlinear response of the matesuperior ranks too. The-rank tensor, always ii?, hasn

rial is described by the interaction between the electric ﬁe"j%ubindice@(m$2$3mwn and3” components. Thus, the num-

and matter. The nonlinear response of a particular materigler of subindices is the rank of the tensor. A pictorial repre-

is given by the susceptibility tensor, which have all the in-genation for the tensors from rank zero to three is shown in
formation of the structure of the material and the symmetneq:ig_ 1.

present in it. In the case, this material is a crystal, there are

tables listing the tensors for their group of symmetry [1,2]. .
Thus, the physical properties of matter can be described by a

tensor. Historically, Voigt was the first person to use the term . .
tensor in reference to mechanical stress [3]. A tensor is an Zero-rank tensor

array of numbers representing a physical quantity for a spe- (Scalar) .
cific set of coordinate axes [3], in our case, Cartesian axes. First-rank tensor
When this array of numbers is just one number, we call it a (Vector)

scalar or tensor of rank zero. Plain numbers or scalars have
no subindex (subscript or suffix or sometimes just index) and . . .
just one component. First-rank tensors are commonly known

under the name of vectors, which R? have three compo- . . .

nents with a short representation(: = 1,2,3 or z, y and

z directions), wheré is the subindex and there is only one.

A quantity with two subindices is a second-rank tensoy . . .

(i, 7 = 1,2,3) and, as in general, people are is familiarized Secofid fankitemsor

with a matrix, it is a common mistake to consider that a ma- (Array similar to amatrix)  Third-rank tensor

trix and a second-rank tensor are the same thing; this is n@®icure 1. A pictorial representation of tensors from rank zero to
strange because the written representation is the same. Howhird.
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Up to this point, students start to have problems underis called dummy index andis a free subindex. The subindex
standing the concepts. The second-rank tensor is easily uthat has been summed (pictorially people called this “con-
derstood by the students because they are familiarized wittracted”) could be any letter, = R;;v; = R;,v,, provided
matrices and the representation of both entities is basicallwe do not use a letter that occurs elsewhere in the same term.
the same. But for third-rank tensors and beyond, they do ndtlere, R;; is a rotation matrix, relating two sets of Cartesian
have a mental image of these mathematical entities. Also, #éixes. The second-rank tensor follows the rule of transforma-
is common that the professors show the more compact antibn
elegant notation since the beginning, working only with the
more general properties and avoiding to show explicitly the méj = Ry Rjknmug, 2
elements of the tensors. In some way this approach is harder
for the students who face this topic for the first time and dark-Where now the summation is over subindi¢esdk, and this
ened the concept and the procedure of calculating througﬁansformation rule is similar to the one of the product of two
tensors. independent transformations of the coordinates of two points

Finally, for closing this section, we resume the organi-(#i%j = Rin@TnRjmTm = RinRjmznzm). In general, an
zation of this work. There is a section for each subsequerfeth-rank tensor transforms by [3]
tensor from rank one to four (Secs. 2 to 5) and the conclu- B
sions are in Sec. 6 with a summary and comments. Also, Xarzsws..aon = Barys Rz Regys - Ry Xyryays oyns (3)
in Appendix A we explain the path followed to calculate the
isotropic tensor of rank four step by step and Appendix B
is devoted to mention some applications for isotropic tensor
and specific topics, where knowing the isotropic tensors o
rank up to four is essential.

note that in general, each index is “transformed” and then,
we required to contract-rotation matrices (this is in real-

ﬁy the same rotation matrix) with theth-rank tensor. Now,

something is isotropic when it does not change in function of
the direction. In this sense, a tensor is isotropic when it is
invariant under rotations. Therefore, all scalars are isotropic
2. Isotropic first-rank tensor tensors, a zeroth-rank tensor is identical to itself because it is

] i ) not associated to any system of coordinates, whereas there is
Mathematically, all the tensors are defined by following a isotropic first-rank tensor (vector) [4]. Next, we are going

specific transformation rule. The components of a tensor d&g show this. An anticlockwise rotation around thexis by
scribe some physical quantity associated with a particular sef, angles. transforms the elements of the vector (first-rank

of orthogonal axes, but if we choose another set of OrthOQOt'ensor)ﬁ in a new ona’. Thus. the rotation matrix is
nal axes, the numerical value of the components change and

this physical quantity remains the same. It happens that for cos¢p, sing, 0
a first-rank tensor the transformation rule is exactly the same R(¢,)=| —sing, cos¢, 0 |, 4)
than the one for transforming the coordinates of a point 0 0 1

3 where the subscript in the angle of rotatipmmeans that the

v = Z Rijvj = Rijvg, (D) axis of rotation is the direction (it is true that the elements in
=1 the matrixR tell us already that, but later on we will see the
where in the last equality the summation is implied, follow- necessity of labeling the angle of rotation when we change
ing Einstein convention: when a letter subindex occurs twicdo a more compact notation). This is illustrated in Fig. 2a).
in the same term, summation with respect to that subindex i¥hen, applying Eq.X), there are three equations relating the
to be automatically understood [3]. The subinger Eq. (1) components of the vectors:

a)

FIGURE 2. Graphical representation of a rotation aroundz-axis by an anglé¢., b) z-axis by an anglé¢... ¢) Two successive rotations,
first by an anglex and then by an anglé around the same axis, in this case thaxis, have the additive result= « + .

Rev. Mex. Fis. E21 020214
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U; = COS ¢,V + sin ¢Z?)y, (5) 0= d¢wvza (16)
Uzl; — —sin gbzvz + cos ¢;ﬂ)y7 (6) Vz = Vg, (17)
’U; = ’Uz, (7)

where, as before, in the case of small angless,, ~ 1 and
In the case of small angles)s ¢, ~ 1 andsin ¢, =~ d¢,, sing, =~ d¢,. In general,de, is different from zero (or

therefore the last equations can be rewritten as no rotation is applied) and thereforg = 0 from Eq. (16),
, whereas Eq.17) is still consistent with this solution. We
Uy = Vg + dPzvy, (8)  want to remember to the lector that successive small rota-
v = —d,vy + v (9) tions around the same axis of rotation, just add and the result
y zVx Yo . . . . .
is the same that if only one rotation is applied for the total
vl = wv,. (10)  angle given by the combination of the small rotations, as can

be seen in Fig. 2c). So, the last result should be valid too for
no differential angles.

So, recapitulating, there is no isotropic first-rank tensor

However, as the tensor should be isotropie- ¥, com-
ponent to component

Vg = Vg + ddvy, (11) other than vector zero. The procedure carried up before, can
be performed in any order, this means that it is possible to
Uy = —do,vs + vy, (12)  start doing a rotation around theaxis and then rotate the
o = (13) resulting vector around the-axis or thez-axis, and in the
= = end the result should be the same. For high-rank tensors the
which reduces immediately to, = v, = 0 andwv, is still three rotations around each of the coordinate axis are needed

undetermined. Now we can apply a second rotation arountp establish the non-zero components of the isotropic tensor.
the z-axis, see Fig. 2b) to the resulting vector with only the

v, component. Thus, using the rotation matrix .
3. Isotropic second-rank tensor

1 0 0
R(¢z)=| 0 cos¢, sing, |, (14)  As mentioned before, a second-rank tensor has nine compo-
0 —sing, coso, nents and two subindices;;(i,j = 1,2,3), that we can

. L represent in the same way that & 3 matrix:
the resulting equation is

0 1 0 0 0 - mi1 M2 M3
0 =| 0 cos¢, sing, 0 , (15) m o= | Mm21r M22 M23 |. (18)
Vy 0 —sing, cos¢, vy m31 M3z M33

and for the first row, after doing the inner product, we getA graphical representation of a second-rank tensor is given
identity 0 = 0. The second and third rows yield respectively, in Fig. 3. The first subindice represents the surface normal to

the equations that direction and the second subindice is associated with the
7 VA
M2z T7(é3)
1 —>mzy
I
: ‘4nzx Yz
m I
- -
L My My AN
________ B A
R y y
7nx:\'/ 4

X a)

FIGURE 3. Graphical representation of a second-rank tensor. a) The different elements of the tensor. b) An stress vector deformed slightly
the cube.
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direction of that element of the tensor. For examplg,. is an element in a plane normal to thexis and in the directiom.
Also, it is possible to say that a second-rank tensor is formed for a basis of three sets of three orthogonal vectors, as can be seen
at the top part of Fig. 3. This representation comes from topics of Continuum Mechanics [5], where a small deformation can
be modeled using Cauchy Stress tensgrand the stress vectd?€), the latter is shown in the bottom of the Fig. 3, where
the deformation is exaggerated for a better appreciation and it is calculdféé hs- 03;€;.

In order to look for the second-rank isotropic tensor, we need to apply the transformation expresse@)nf&gd¢ing
this we can multiply directly the matrix given in E@)( this is, we are going to apply a rotation around thaxis. Then
the resulting tensor is transposed and multiplied again for the same rotation matr#) Bgd(finally the resulting tensor is
transposed again. All this is necessary because the way in which the subindices appe@)imitpdjes a specific order in the
multiplication between the components of the matrices and the tensor. Then, mathematically

W =[R-R-7)| =R-T) R =R()- T R(-0), (19)
this is becauséA - B)" = B7 - AT and thafR (¢)]” = R (—¢) = [R(¢)] ", for the particular case of the rotation matrices

around Cartesians axesy andz. Also, the superscrigt is the transposition operation whereas the superscript fs the
inverse matrix. Combining Eq16) with Eqgs. @) and (L8) for doing the transformation described by E2), {sields

mi1 Mz M3 1 de, 0 mip M1z M3 1 —d¢. 0O
Mmo1 M2z Moz | =| —d¢, 1 0 Ma1 M2  Ma3 do. 1 01, (20)
ms1 maso mss 0 O 1 ms1 mso mss 0 0 1

whereas as before we assume small angles and after doing all the products and just keeping terms until firslggrdee in
arrive to

mi1 M1z M3 mir +mig +dp.mar miz —dd. (M1 —maz) maz + do.moas
ma1 MM22 M23 = ma1 — d¢z (mn - m22) mag — d¢z (m12 + m21) ma3 — d¢zm13 . (21)
m31 M3z M33 ma1 + d¢.maz maz — do.m31 m33

From the last equality, Eq20), we can establish nine independent relations, with very direct solutions. For example, it
is easy to see thatss = ms3, whereasnos = mi3 = mszs = mg; = 0. After equaling to zero Eq2Q), in the resulting
tensor, the componeiit, 2), givesmi; = mas; and the componeri®, 2) yieldsm,, = —mao;. Finally, combining this very
last equality with componert, 1), we get

(dp. —1)ma =0, (22)

which immediately leads taw;2 = mo; = 0. Now that all the relations between the components (for the transformation
around thez-axis) were found, we need to do the same but rotate around a different axis. For the next transformation, we
choose ther-axis with the rotation matrix given by Edl4) and already substituting the relations found previously. Thus

mi1 0 0 1 0 0 mi1 0 0 1 0 0
0 mi1 0 = 0 1 d¢m 0 mi1 0 0 1 —d¢z y (23)
0 0 mss 0 _d(b:v 1 0 0 mss 0 d(Z)I 1

where, as before, after doing the products and dismissing second-order tets ihe result is

my; 0 0 miy 0 0
0 mi1 0 = 0 mi1 —dd)z (m11 — m33) . (24)
0 0 ma3 0 —dog (mi1 —mas3) ma3

Therefore, the solution is133 = m; and the second-rank isotropic tensor is
1 00

R d
I,=1 010
0 01

; (25)

with my, taken as one. This tensor coincides with the identity matrix in its elements and this coincidence generates some
confusion about the fact that the identity matrices for higher orders are also the isotropic tensors of that rank, but this is not
true as we will see in the next sectian;; = 1 is not the isotropic tensor of rank three. Moreover, higher-rank isotropic tensors
sometimes have zeros in the “diagonal terms”. To finish this section, it is worth mentioning that there is a compact form to
represent the second-rank isotropic tensor, the Kronecker’'sdgltetakes the value one when= j and zero otherwise. In

the next section, we will carry on the same procedure to determine the isotropic tensor form for third-rank.

Rev. Mex. Fis. E21 020214
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4. lsotropic third-rank tensor

The number of components in a tensor escalates faster,
a third-rank tensor there are three subindiégs (i,j,k =

1,2,3) and in general 27 components. One representation Q

this tensor is as follows

( di11 di21 diszt \
di12  diza  di32
d113  di2z  dis3
. d211  da21  da3i
d = do12  daga  da32 . (26)
do13  daa3z  doa33
d311  dz21  d331
d312  d3z2  d332
K d313  d323  d333 )

whered;;;, can be understood in the following way. The first
index “" is related to the external column vector and deter-
mines a row in it, the second index™and the third one £”

are associated with the columns and rows in the internal
arrays. Then, the transformation for rotating around an axi
is

'/ijk = Ry RjmRindimn, (27)

where one matrix of rotation is applied to each index. A sim-

ilar procedure than the one described for the second-rank te
sor should be done, first applying a rotation arounc:taeis,

then solving the equations and simplifying a second rotatiothe Eq.

f

5

when they are in the order 1-2-3 (et cyclic., even permuta-
ion) the component is one, otherwise it is minus one (1-3-2,
8hd permutation).

Now that we have introduced the isotropic third- and
fecond—rank tensors, we are going to come back to the
isotropic first-rank tensor and show that it is zero in a more
elegant way. Also, this way of writing the transformation in
terms of the isotropic third- and second-rank tensors will be
useful to calculate higher order isotropic tensors.

The Egs. &—(L0Q) are writing explicitly for each Carte-
sian component but it is possible to combine all these expres-
sions in a vectorial one

7 =0—dj x 7, (29)
Whered<5 = dogt + doyj + d¢.k and the only angle dif-
ferent from zero is the one that corresponds with the axis of
rotation. Eq. 29) has a compact form for the components,
which is
v = v — €ijrdd;vg. (30)

On the other hand, the isotropic second-rank tensor can
ge used to write

V; = 0ikVk, (31)
which, after being combined with the EQ) results in
v; = (Oik — €4j1d;) V. (32)

n_
It is possible to interchange the index ‘with “ £” in all
32), but this is going to originate a change in the

around thec-axis and again the resulting equations should baign of the Levi-Civita tensos;;, = —e;x;, then

solved. After that, a final rotation around thpeaxis should

be done, and one more time, it is needed to solve the set of

equations to arrive at the isotropic third-rank tensor

0 0 O
0 0 -1
01 0
- 0 0 1
I 3 =dio3 0 0 0 , (28)
-1 0 0
0 -1 0
1 0 0
0O 0 O

which is nothing else than the Levi-Civita tensgy [4]
when we choos@;>3 = 1. This result can be verified us-
ing Mathematica with the procedure explained in Ref. [6] ap
plied to the tensor given in Eg29), where for anticlockwise
rotations around all the Cartesian axeg andz the resultis
d123€451 and in the case of clockwise rotation there is only a
minus one multiplying the last result.

As can be seen from Ec2g) when two subindices in the
Levi-Civita tensore;;;, are equal the component is zero and

’U; = ((5@' + Eikjd¢k) vj. (33)

Finally, to arrive at a useful expression, we can inter-
change again the index™and “k” only in the Levi-Civita
tensors;,; = —ei; , With the result

U,g = (51] — d¢k5k1]) Vj.

Equation B4) is a compact and elegant relation that is
equivalent to Eqs §) to (17), but these three at the same time
come from the rotation defined in EdL)( Thus, by direct
comparison with this latter:

(34)

R;j = 0;5 — dpregij. (35)

So, the last equation is another way to calculate a rotation
applied to a vector, just expressed in terms of the Kronecker’s
delta and the Levi-Civita tensor. Coming back to E3g( if

an isotropic first-rank tensor exists it must satisfy

v; = (055 — dorerij) vy, (36)
that is rewritten as
62‘]‘1)]' = (67J — d¢k5kij) Vj, (37)

Rev. Mex. Fis. E21020214
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which immediately yields
So after doing the products, we arrive to
0= dqﬁkakijvj. (38)
mi; = (0udjr — duddeeqjr — ddpepindjk
The last equation for the particular case of a rotation
around thez-axis (d¢ = d¢.k) takes us directly to the sim- + dpepiddqcn)mik, (42)

plified version of Eqs.11) to (13, wherem;j = myj, because the isotropic condition that we

dé,v are asking for, after the rotation, the original tensor and the

zVy .

—d,v, | =0, (39) transformed one must be the same. The last term in the paren-
0 thesis in Eq.42) is going to be dropped because it is second

order ind¢. Thus, we can rewrite the last equation as
which immediately implies, = v, = 0 andw, is still un-
determined as before. If, now, a second rotation around the 77%i; —0id;kmuk= — (d¢qdueqjr+ddpdinepir) mur, (43)

-axis (d¢ = do,i) is applied, then we get _ o . .
w-axis (o ¢-1) 1S appli wed but the left side of the equality is zero and in a similar fash-

0 ion with Eq. 88), should not be dependence with the angle
dogv, | =0, (40)  thereforedg, = d¢,, this meang = ¢, which can also can
0 be justified because we are only doing a rotation around one

axis; thus in one rotation, in particular, all the angles implied
which is the same result given by the simplified version ofare the same around a particular fixed axisy or z but not
Egs. (6) and (7), with the final result that all the compo- mixed. For this condition Eq4@) changes to
nents of the vector are zero and the only isotropic first-rank
tensor is the null vector. 0 = ducqirmir + OjrEqitmMik- (44)

Moreover, with this new powerful definition of the rota- ) , )

tion matrices Eq.3E), we can redo the procedure to find the _ Finally, we can contract the Kronecker's deltas with the
second-rank isotropic tensor as follows: According to 2. ( tensors and after some manipulation of the subindices it

and 35) is possible to write it as
m;j = Rilekmlk MikEkqj = EiglMij- (45)
= (0i — dopepir) (01 — ddgeqgjr) M- (41) Now, something that we can do, is check directly in the

tensors which are these conditions between the tensor com-
| ponents ofn?. This is

0 —mi3 M2 0 m31 —ma
mi3 0 —mi 0 m32 —ma2
—miz2 M1l 0 0 m33 —mas
0 —Ma23 Mo -m31 0 my
mos3 0 —Mma1 = —M39 O mi2 5 (46)
—Ma2 M2 0 —m33 0 mi3
0 —mg3  M32 m21 —mi1 0
m3s3 0 —m3y may —miz2 0
—m3z  Ma31 0 ma3 —myz 0

and it is easy to establish directly that s = mo; = mi3 = mg; = mo3z = mge = 0 @andmy; = maoy = mgz. Therefore, as
we already know from Eq25), the second-rank isotropic tensor will be

d
1o =

SO =

00

10 |, (47)
0 1

after takingm; = 1; which is nothing else that the Kronecker’s defta. This can be verified immediately from E@S),
changingm;,, = dx andmlj = 5lj- Thus

Oik€kqj = €iqidlj — €iqj = Eiqj- (48)

Rev. Mex. Fis. E21 020214
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There is a more elegant way of arriving at the second-rankbecause;; = d;;. Now coming back to Eq/54) or (55),
isotropic tensor, we can multiply Ec43) by €,, and using  we get

the identity
EabeEade = ObdOce — Obeded, (49)
then
MikEkqi€iqf = EiqfEiglMij, (50)
changes to
Mk (0kid 5 — Ok f0ji) = (Ogq0p1 — 6qidpq) muj.  (51)

Please, note that before applying the identity E4$),(
the subindices have to be reorganizedie;qr = cqrjcqif-

After multiplying and taking account thaf,, = 3 and
dq105q = 071, We arrive at
miq;(ij - mjkékf = 3mfj - 5fﬂnlj, (52)

Mg

mif = —5-0jf- (58)
The last equation implies that
mi; = adij, (59)

wherea is a constant (scalar). This proves that the second-
rank isotropic tensor is the Kronecker’s delta.
Now, we wish to come back to E@%), and rewrite it in
a standard way that appears in the literature [7]:
(60)

MikEkqj — EiqMij = 0,
or

(61)

EqjkMik + Equmyj = 0,

where some delta contractions were already done. Contracithere in the first term we interchanged twice the order of

ing the remaining deltas whatever it is possible
Miidjp —mjp = 3mypj —mpyj, (53)

finally
mi0if = 2myg; +mjs. (54)

In this expression it is possible to interchange ingexd
f, arriving at

M0 = 2mjr + myj, (55)
and subtracting Eq56) from Eq. 64)
mii (855 — 0fj) = mjp —my;. (56)
Therefore
mjp = myj, (57)

dijk = RilemRkndlmn = (5i15jm -

the indices, then the Levi-Civita tensor remains positive; and
in the second term we interchanged one time the Levi-Civita
tensor indices, which makes it negative. As a final step, the
indices that are going to be contracted@nd!, are dummy
and can be renamed equal, this is
EqikMik + EqikMpj = 0. (62)

This expression, Eql6@), will be generalized for the
higher-order tensors discussed in the paper. Then we will
start with the next isotropic tensor, which is the third-rank
tensor.

The procedure, which we started in E41) can be ap-
plied to look for the third-rank isotropic tensor but in this
case making use of ERT)

d;‘jk = RilemRkndlmn = (51l - d¢p5pil)

X (6] - d¢q5qjm) (5kn - d¢050kn) dlmn7 (63)
for the first two factors we already knew that
5ild¢q5qjm - d¢p€pil5jm) (5kn - d¢ogokn) Qi (64)

where, as before, we only keep terms to first ordefdgrand because we are asking for isotropy the tensor to the left must be
the same as the one to the right after the transformation. If the third factor is multiplied, yields

dijk = (0i10jmOkn — 0510 jmdPoEokn — 0i1dDgEqimOkn — APpEpitdjmOkn) dimn, (65)
in the last expression second-order terinsvere neglected. Reorganizing the terms
dijk - 5il§jm6kndlmn = - (d¢06i16jm50kn + d¢q§i16kn€qjm + dqbp(;jm(sk:ngpil) dlmn- (66)

In Eq. (66) the left term of the equality is identically zero and for the right side, the same argumentation holds that for
Eq. 43), this isd¢, = d¢, = d¢, or equivalentlyg = p = o. Therefore

6il6jm5qkndlmn + 5il6kn5qjmdlmn + 5jm5k:n€qildlmn =0. (67)

Rev. Mex. Fis. E21 020214
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Finally, it is possible to contract the Kronecker’s deltas
Eqk:ndijn + qumdimk + Eqildljk = 07 (68)

which is the generalization of the E®2). In the same way, the indices that are going to be contractedandi, are dummy
and can be renamed equal, this is

€qkndijn + 5andink + Eqindnjk' =0. (69)

Solving this equation is somehow cumbersome but possible. Now we are going to show how to do that.
We begin multiplying Eq.69) by €4k, yielding

Eqkmqundijn + lr3qk:7’n<€andink + Eqk:mgqindnjk = O> (70)
and using the identity given in E49), the Eq.70) can be simplified to
(5kk’5mn - 6kn5mk’) dijn + (6kj5mn - 5kn6mj) dznk + (5ki5mn - (Sknami) dnjk = 07 (71)

now we proceed to simplify the Kronecker’s deltas

35mndzjn - 5nmdzjn + 5kj5mndznk - 6kn5mjdink + 5ki5mndnjk - 5kn5midnjk = 07 (72)
or
IIn a similar way, if we start with the Eq76) and multiply it
2dijm + di77Lj - 5m,jdinn + dmji - 5midnjn =0, (73) by 0, after Slmp||fY|ng and dOingl =1, we get
thus

dij; = 0. (82)
2dij'm + dimj + d'rnji = 5mjdinn + 6mid’njn7 (74)
] ) . For the third equation, Eq7T), the factor multiplying it,
and renaming the subscripts — k, we arrive at should bejy,;; and after simplifying and taking = j in this

2d;i + dikj + diji = Ok dinn + Okidnjn. (75) °%% yields
Coming back to Eq/d9) and doing a similar procedure, dijj; = 0. (83)
but now multiplying bye,;., in one case and by,;,, in the ) . o
second one, also changing at the emd— j in the first case Equations81) to (83), imply that when two subindices
andm — i in the second, we get are equal, the element is zero. With this, the system of equa-

tions, Eqgs.75) to (77), reduce to:
2d;j1 + dikj + djik = 65idnnk + 0jkdinn, (76)

and 2d 5 + digj + dygi = 0, (84)
2d;jk + digg + dji = 0, (85)
2d;ji + dijs + djik = ikdnjn + 0ijdnnk, (77) ! T
respectively. For solving this system of equations, E@S) ( and
to (77), first we multiply Eq. 75) by d;;, therefore % ip + dpii + dig = 0 86)
(%] K Jitk — Yy

203dijk + 0ijdiks + 6ijdijs

= 0;0kjdinn + 0ij0kidnjn, (78)  solving this system of equations, Eq84) to (86), we can
and simplifying subtract Eq.84) from Eqg. 85), and then
2diik + diki + dgii = Sikdinn + Ojkdnjn, — (79) djik = diji- (87)
finally, this is With this result, Eq.[87), substituted in Eq/86), gives
2diix + diri + drii = dknn + dnkn, (80) dijk = —djik, (88)

for the case when = i, immediately gives and by transitivity, from Eqsi8@) and 87):

F— 81
F 1) diji = —dgji. (89)
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Also, the relation given in Eq8@) can be substituted now when multiply and add the different contributions from each

in Eq. (85), for obtaining element of the tensor to the rotation around a particular axis.
Clearly, this has the problem that it is a very cumbersome
dijk = —dik;- (90) procedure, and it is needed to write big arrays of quantities.

In contrast, the compact notation of the elements in terms of
the subindices introduced in Sec. 4, is more elegant, quickly
diji = —djix = —dyji = —dirj, (91) to manipulate and short to write but, as mentioned in the in-
troduction, it is more abstract and for the students starting
and together with the Eq81) to (83), imply the definition of  to study this subject it is hard to understand what it is be-
the third-rank isotropic tensor, this is Levi-Civita tensgfi;,  ing calculated and how it works. However, as we saw, once
multiplied by some scalar constant these concepts are dominated, the subindex notation is very
dor — b 92) p(_)werful a_n_d allows to calculate high-order isotropic tensors
ijh = O%ijk- without writing the 81 elements of, for example, the fourth-

This procedure can be replicated for the immediate higﬁank tensor or the 243 elements if we want to calculate the
rank-tensor and we will show how to do that in the next secisotropic fifth-rank tensor.
tion. But before that, we want to mention that the advan-
tage to work directly with the elements of the tensors, atleas§,  |sotropic fourth-rank tensor
for the ranks with a manageable number of elements (one,
two and three) is that you fix the ideas of what are you doingd.ike in previous sections, we start this one by giving a repre-
| sentation of a general fourth-rank tensor:

Finally, relations from Eq.88) to (90), mean

X1111 X1112  X1113 X1211  X1212  X1213 X1311  X1312  X1313
X1121  X1122  X1123 X1221  X1222  X1223 X1321  X1322 X1323
X1131  X1132 X1133 X1231  X1232 X1233 X1331  X1332 X1333
@) X2111  X2112  X2113 X2211  X2212 X2213 X2311  X2312 X2313
Xijkt = X2121  X2122 X2123 X2221  X2222  X2223 X2321  X2322 X2323 . (93)
X2131  X2132 X2133 X2231  X2232 X2233 X2331  X2332 X2333
X3111  X3112  X3113 X3211  X3212 X3213 X3311  X3312 X3313
X3121  X3122 X3123 X3221  X3222 X3223 X3321  X3322 X3323
X3131  X3132 X3133 X3231  X3232 X3233 X3331  X3332 X3333

In a sloppy language, we could say that a general fourth-rank tensor, can be represemtedamatrix, which also has
a3 x 3 matrices as elements [2]. This is, a second-rank tensor with elements that are also second-rank tensors. There are
total of 81 elements in one fourth-rank tensor, which are labeled as follows: The first iiidexy; ;; corresponds to the rows
and the second index™ to the columns in the main array (the external one). In the same way, the inditesd “I” will
correspond to the usual way of labeling & 3 matrix, namely, the rows and columns in the inBex 3 array, respectively.

As the lector surely deduces in this section the calculation for determining the fourth-rank isotropic tensor will be just an
extension of Eq.41) and 63), as stated by Eq3:

Séjkl = RiijanoRlpSmnop = (51m - d¢q5qim) (5]'71 - d¢r5rjn) (5160 - d¢555k0) (5lp - d¢t5tlp) smnopa (94)
again, we can avoid doing some of the previous algebra, using the fact that for rotation matrices, to first order,
RixRjr = (8ir. — ddgeqir) (05 — ddrerji) = 6indjk — dprdinerjx — ddgdjkeqik = 0ij — dprerji — ddgeqij, (95)

and interchanging the subindice’ &nd “;” in the second term of the last equality, this is the first Levi-Civita tensor and also
considering thatl, = d¢, . Then

RinRj = d45, (96)
in the same wayR; Ri; = 6;;. Thus, going back to Eq94)
RjsRigsijrr = RjfRigRipn Rjn Rio RipSmnop, (97)

wheres; ;= smnop, DECaUse as mentioned before, the isotropic condition that we are asking for, after the rotation, the original
tensor and the transformed one must be the same. Therefore

(6jf - d¢r€rjf) (61(] - d¢q5qig) Sijkl = 6fn6qm (5ko - d(bsgsko) (5lp - d¢t€tlp) Smnop- (98)
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We know from Eq.43) that, in the first order approximation fde, yields
(§if6ig - d¢q6jf5qig - d(br(siggrjf) Sijkl = (5190611) - d¢t6k05tlp - d¢561p55k0) Sgfops (99)

where after contracting the Kronecker’s deltas on the first term on the left side and in the first term in the right side, they cancel
each other. Also, as they should not be angular dependence and also because we are rotating around one axis at the time, this
means thatly, = d¢, = d¢: = dps or equivalentlyr = ¢ =t = s. Finally, at the same time, dividing b,., because this

guantity is small but different from zero. Thus

0jfErigSijkl + OigErjfSijkl = OkoEripSgfop + OlpErkoSgfops (100)
and contracting the remaining Kronecker's deltas, the previous equation simplifies to
ErpSgfkp t ErkoSgfol—ErigSifkl — ErjfSgikt = 0. (101)
The negative sign in the third and fourth terms can be absorbed in the Levi-Civita tensor interchanging one time the subindices:
ErlpSgfkp T ErkoSgfol + ErgiSifkl + ErfiSgikt = 0. (102)

In the same way, that with the tensors of rank two and three, the indices that are going to be contfagi@ado, are dummy
and can be renamed equal. This is, after doing the changes of indices and reorganizing the terms:

ErgiSifkl t ErfiSqgikl + ErkiSgfil + ErliSgfki = 0. (103)

The last relation is again, a generalization of E@&2) @nd 69). Solving Eq. [L03) is possible but requires a very large
algebraic procedure. Instead, first we are going to show that the product of two Kronecker’s deltas with different subindices is
an isotropic four-rank tensor. If we return to EG4) and conjecture that,,,,op = 0mndop, then

Sijkl = RimRjnRioRipOmndop, (104)
and contracting the deltas with the rotation matrices
Sijkl = RinRjn Rigp Rip, (105)
but according to Eq96), this is
Sijkl = 0;jOki- (106)

Therefore, the product of two Kronecker’s deltas with different subindices is an isotropic four-rank tensor. However, there is
still the freedom of choosing the order of the subindices in the deltas, which is a permutation of the four indice$! thatlis

but as the permutation of the subindices in a Kronecker’s delta is the samé,detta;; and the same is true for the second
onedy, = dy, and also the product is counted twice becasé,; = dx,9;;. Then there are only three possibiliti€st/23).

All these three different combinations of the four subindices are an isotropic four-rank tensor and thus the more general one is
a linear combination of these possibilities:

Lijr = ;5051 + BOir0j1 4+ 7030k, (107)

whereq, 3 and~ are arbitrary constants (scalars). An explicit representation with all the non-zero components is [4,7,8]

a+pB+y 0 0 0 8 O 0 0 B
0 a 0 v 0 0 0 0 0
0 0 « 0 0 0 v 0 0
- 0 v 0 a 0 0 0 0 0
I,= g 0 0 0 a+B8+v 0 00 3 (108)
0 00 0 0 a 0 v 0
0 0 ~ 0 0 0 a 0 0
0 0 0 0 0 ~ 0 « 0
B3 0 0 0 B8 0 0 0 a+f+~y
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As mentioned before, there is another way to derive [EQE)( this can be done departing from E&0G), we are going to
outline the principal steps here. In a similar way that for the third-rank isotropic tensor, we start multiplyid®&dpy(e, 4,
this is

ErgjErgiSifkl T ErgjErfiSqgikl + ErgjErkiSqfil T Ergj€rliSgfki = 0, (109)
which can be reexpressed, because Eg), @s
(0gg0ji — 0gi0jg) Sisrt + (8gs0ji — 0giljy) Sgikt + (Ogkji — OgiGjn) Sgrir + (0gi05i — 0gij1) Sgfri = 0, (110)
after simplifying and rearranging terms
25 i1 + Spjkl + Skpjt + Stk = 05 fSiikt + 0kSifir + 051Sifki (111)

and finally, if we want to keep easy tracking of the changes in the equations, we can rename the subindices gsfollpws
f — j andi — m. In this way, we get one of Hodge’s equations [7]:

283511 + Sjikt + Skjit + Sijki = 0ijSmmkl + OikSmimi + OitSmjkm.- (112)

In order to get the other three equations that appears in Hodge’s paper, we need to multiply a¢Eds)But ow bye, ¢; |,
erk; ande,; , after doing similar steps that with the previous equation, yield respectively,

23ijkl + Sikjl + Sjikl + Silkj = 5j’i3'm7nkl + 6jk8imml + 5jl5i'mk'rn7 (113)

28i5k1 + Sijik + Skjit + Sikjit = OkiSijmm + OkiSmjml + OkjSimmi, (114)
and

254511 + Stjki + Sitkj + Sijik = O1iSmjkm + 01 Simkm + OlkSijmm- (115)

A detailed explanation can be consulted at the end of this paper in the Appendix A. Now, for going further, we are going
to conjecture the form of the terms with two subindices repeated. This is, irllEE), (.. iS @ fourth-rank tensor but
di;5mmit Should be also a fourth-rank tensor. $@,,,; should be something that can be reduced to a second-rank tensor.
Thus, a possible representation for this is

0ijSmmkl = Abij01mOmr = Adijoi, (116)

whereA is a scalar constant and similar expressions apply for all the terms with two subindiddeerefore, the new system
of equations is:

253kt + Sjikt + Skjir + Sijki = Adij0p + Boibj + Cydjn, (117)
254kt + Sikji + Sjikl + Sitkj = Adji0p + Bojrés + Cdj1di, (118)
254kt + Sijik + Skjit + Sikjit = Adkidi; + Bogidj + Coxjdau, (119)
254kt + Sijki + Sitkj + Sijik = A0k + Boy0sk + Cirdij, (120)

where, as befored, B andC are scalar constants. With these four equations, Ad3) o (120), we can generate six more
adding by pairs of the latter ones and from these we can get relations between the elements of the isotropic tensor that we ar
looking for. The explicit procedure is explained in Appendix A. Therefore, after solving the system of equations:

_4B-A-C

121
a T (121)
4C - A—-B

- 122

8 T (122)
and

4A—-B-C

W_T. (123)
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Hence, as stated by EA.Q7),
Sijkt = 050k + B0 + Y016k, (124)

is an isotropic tensor of rank four. A different approach can be consulted in Jeffreys’ book [8] and also a third way of showing
which are the components of the isotropic fourth-rank tensor dividing them in five classes is given by Chandrasekharaiah and
Debnath in their book [9]. These authors take explicit angles to apply the rotations (for exar@lerd®s C). In the same

way, Jeffreys [10] also took some specific angles to show how to calculate the isotropic fourth-rank tensor, but as in others
mathematical classical papers [7,10,11] for experts in this subject, this is only outlined. Additionally, Hysa [12] calculates the
isotropic second-rank tensor in general, doing the main steps and then for the isotropic fourth-rank tensor evaluates the rotation
for 90°C about thez-axis. He also fixed specific values for the subindices in order to simplify the system of equations to solve.

In contrast, in the procedure followed by us, we use a general rotation for angaagttsomehow take a more general case,

when we considered that= 7 in Eq. 80) and resulting in Eq.81), for finding the isotropic third-rank tensor or in EQ.1€)

when we conjecture the form 6&f,,.,.x;. Above this, we considered that our procedure is more general and detailed.

Before finishing this section, we want to mention that our conjecture of how to calculate the isotropic fourth-rank tensor,
applied in Eq./104), could work too for the isotropic fifth-rank tensor. This is because, for each subindex there is a rotation
matrix transforming the tensor and contracting with one subindex. So, this is like “factorize” in a second-rank tensor multiplied
by a third-rank tensor, that is

tijk'lm = RinRjoRkpquRm'r‘5no<€pq7‘ = (RinRjo(Sno) (RkpquRm'r'gpqr) 3 (125)
and therefore
tijklm = 51’j5klm7 (126)

t;jkim Should be an isotropic fifth-rank tensor. As before, there are other combinations of the five subindices that generate also
isotropic fifth-rank tensors and the linear combination of these different isotropic fifth-rank tensors should be the more general
isotropic fifth-rank tensor. It is known that the number of isotropic tensors of rank five is a total of six [11]. Then this idea
could be extended to look for isotropic tensors of higher rank, the fifth-rank tensor analysis will be published elsewhere.

6. Conclusions

In summary, we have shown how to calculate isotropic tensors from rank one to four. The zero-rank isotropic tensor is all the
scalars. The first-rank isotropic tensor is the vector zero, there is no other vector that fulfills the isotropic condition than that
one. The isotropic tensor of rank two is the Kronecker’s delta, whereas the third-rank tensor is the Levi-Civita third-rank tensor.
Finally, the isotropic fourth-rank tensor is a linear combination of the product of all the combinations of two Kronecker’s deltas
with four independent subindices. The formal procedure shown here can be extended to look for isotropic tensors of higher
rank.

Appendix A.

A detailed development of the procedure to solve the system of equations that generates the fourth-rank isotropic tensor is
given in this appendix. Continuing with the calculation started with EQS), as mentioned before, EALA3) is multiplied by

ert;, and after doing similar steps to the ones carried away to getllé), (out only this time changing — i andi — m,

Eq. (113 is obtained. The third equation to solve is the result of multiplying by the Eq. 03 and after simplifying and

doingg — i, f — j,j — k andi — m, we arrive at Eq.114). Finally, the last equality for this system is obtained by
multiplying again Eq./103 but on this occasion by,;;. Thus, after interchanging — 4, f — j, 7 — l andi — m, leads to

Eq. (115). After this system of four equations is complete, the next step is to use the conjecture introduced kEEghen

the Egs.117) to (120) are obtained. Now we can generate six more equations adding by pairs the latter ones. The addition of
Eq. (117) with the Eq. L 1§) gives

4sij11 + 28jikt + Skjir + Sijki + Sikji + Sikj = 2 (4006 + Bdirdj + Cdyydjk) (A.1)
in the same way, Eq107) plus Eq. 119 results on

4s;ik1 + 2Skjit + Sjiki + Sijki + Sijik + Sikji = 2 (Ad;;0k + Birdji + Cydjk) , (A.2)
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whereas the pair E¢117) plus Eq. (20 yields

4s;561 + 2815k + Sjikt + Skjit + Sikg + Sijie = 2 (Adi;0k + Béirdji + Cdydj) - (A.3)
Two more combinations come from EQ.1E) with Eq. (119

461 + 2Sikj1 + Sjikt + Sitkj + Sijik + Skjit = 2 (Ad;;0k + Boirdj + Citdjx) , (A.4)
and Eq./L18) with Eq. (120

4sij1 + 28iks + Sikji + Sjikt + Sijki + Sijik = 2 (40301 + Birndji + Cdudjn) - (A.5)
The final equation comes from the last combination possible, which islEE) plus Eq. [120):

48561 + 2851k + Skjit + Sikjl + Stjki + Sitk; = 2 (Ai;0k1 + Boirdji + Ciyidj) - (A.6)

From these six equations, we can get relations between the elements of the isotropic tensor that we are looking for. In particular
subtracting Eq/A.6) from Eq. (A.1), leads to

Sjikl = Sijlks (A7)
also taking Eq.A.2) minus Eq./A.5) gives

Skjil = Silkjs (A.8)
and the last relation can be obtained from g3 minus Eq. A.4):

Sijki = Sikjl- (A.9)

Please, note that it is possible to generate additional relations, for example, interchanging or renaming the indgces, if
interchanged wittk in Eq. (A.7), then

Sjilk = Sijkis (A.10)
and so on. On the other hand, coming back to Edé€) and substituting Eq/A.7), yields
285511 + Sikji + Sijik + Sitkj = Adji0k + Bdjrbi + Cj10:k, (A.11)

and proceeding as Hodge says [7], fixing subindémt permutating in a cyclic way, k£ andl, this generates, two more
equations

2si15k + Sijik + Sitkj + Sikjit = A0k + Boy6s + Co116sj, (A.12)
and
28ik15 + Sitkj + Sikji + Sijik = Adkidij + Boridij + Cogjdi. (A.13)
Thus, adding these three equations, 2qlt) to (A.13), leads to
2 (sijkt + Sitjr + Siktj) + 3 (Sijik + Sitkj + Sikjt) = (A+ B+ C) (0i6k1 + 05104 + 0510:k) - (A.14)
Moreover, interchanging justwith &, gives
2 (sijik + Sikji + Sitkg) + 3 (Sijrr + Siki; + Sije) = (A+ B+ C) (05:01 + 0510k + d5161) (A.15)
and multiplying Eq./A.14) by 3 and subtracting two times E#.(5), this yields
5 (Sijik + Sitkj + Sikjt) = (A+ B+ C) (6;i0k1 + 6j10u + 0j10ix) (A.16)
or

1

Sijik + Sitkj + Sikji = = (A+ B+ C) (0;:0k1 + 010 + 8;u0ik) - (A.17)

With this result, Eq.A.17), we can go back to EqA?ll) and get

28ijk1 + % (A+ B+ C) (65i0k1 + 05104 + 0510ik) = A0 + Boyjoa, + Coindiy, (A.18)
and finally, reorganizing the terms,

Sijkl = 1—10 [(4B—A—C)dij + (4C — A — B) 610 + (4A — B — C) 01;0,c] - (A1.19)

So, comparing with Eql07), it is direct to establish Eqs12]) to (123).
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Appendix B The first term denotes the linear susceptibility with indices
andj, which corresponds to a second-rank tensor, resulting
This section is devoted to mentioning some applications ofy 3 x 3 — 9 components. The next term is related to second-
isotropic tensors in Continuum Mechanics and in Non-lineaigrger nonlinear processes such as second harmonic genera-
Optics second harmonic generation topics; for the latter cason (SHG) [15] and is characterized by a second-order sus-
itis essential to know the isotropic tensors for the ranks thregeptibility (third-rank tensor) with indiceis j and, yielding
and four. Additionally, the third-rank isotropic tensor is useds . 3 x 3 = 27 components. On the other hand, the next term
to establish several relations in physics and mathematics in @escribes third-order nonlinear processes such as third har-
compact way, as for example, the Electromagnetic tensor. monic generation (THG) [16] and consists of a fourth-order
susceptibility tensor defined by indicgg, k£ andi, and con-
tains a total o8 x 3 x 3 x 3 = 81 components.

In elasticity there are four-rank tensors relating linearly the ~©On the other hand, a usual way of measuring the har-
stressT and the infinitesimal straifE, in the following ~ Monic generation signal from a sample, is to rotate the sample
way [5] around the normal to the surface, the direction of the normal

is typically labeled the:-axis. These samples generally are
T = SE, (B.1)  crystals and the harmonic signal (intensity) changes with the

azimuthal angle of rotation as a linear combination of a si-

nusoidal function and its harmonics. In this case, the main
E =CT, (B.2) contribution to the signals comes from the anisotropic part

of the susceptibility tensor, whereas the isotropic part of the
whereasS is the stiffness tensor an@d is the compliance susceptibility tensor contributes with a constant signal [17].
tensor, and they are the inverses of one another. The gefFherefore, the susceptibility tensor can be separated into two
eral elasticity tensor for an isotropic material is an isotropictensors, the isotropic part and the anisotropic part:
fourth-rank tensor and can be represented as [13]

Elasticity

or

R rd

_ . s .
Siso — SHJ + 2MK’ (BS) X = Xiso + X anis (Bs)

where J and K are two linearly independent symmetric respectively. In this way, the isotropic tensors are not useful
fourth-rank tensors defined by in this case but it is indispensable to know them for getting
the anisotropic part of the susceptibility tensors.

11— —

3:512@) I, (B.4)

and Electromagnetic tensor

K=1-17, (B.5) Aswe already saw in Eqs29) and 30), that the cross prod-

, , . uct can be written in terms of its components using the third-
where I denotes the fourth-rank identity tensor, which on isotropic tensor, also known as the Levi-Civita tensor.
is defined in terms of its components &;. = |y the same way exists a relation between the Electromag-
(6irdj1 + 0ud;x) /2and I  is the second-rank isotropic ten- petic tensor (also known as the field-strength tensor, Faraday

sor. Also, the constants and . are positive and are named tensor or Maxwell bivector) and the magnetic flux dengty
the bulk modulus and the shear modulus, respectively. Withis is

these quantities, it is possible to calculate the Young's modu-

. . . 1
lus [14] for an isotropic material: B; = _ifiijjk (B.9)
9k
(Bm) =5 (B6) . . . |
K+ p in Cartesian coordinates. Hefg, is the Electromagnetic
This is a very important measurable parameter for materiallensor and the subindicésj andk go from 1 to 4. This can
science and engineering. be represented as follows
Non-linear optics: Harmonic generation 0 -k, -E, —E
F-o| & U =B B (B.10)
In our case, a medium is nonlinear if the polarizatiBris | E, B. 0 —B, ’
not linearly proportional to the electric field. Then, the E. -B, B, 0
nonlinear polarization can be expressed as a Taylor series in
E[1]: Explaining further in this topic is beyond the scope of this
3 work, but the interested reader can consult Jackson’s classical

_ D) (2) . ) . ) .
Pi = xij By + X Bi By + X EjEvEr + .. (B1) - pookiin Electromagnetic Theory [18].
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