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Centro de Investigación en Ingenieŕıa y Ciencias Aplicadas, UAEM, Cuernavaca, Morelos 62209, Mexico.

R. Carrada-Legaria
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1. Introduction

Tensors are very important in Physics and Mathematics.
Originally, tensors appeared just as a logic structure and then
they were used naturally in advanced theoretical fields of
physics, such as Relativity, Electrodynamics and Field The-
ory, Nonlinear Optics, among others. In particular, Nonlinear
Optics is just the application of Electromagnetic theory to a
specific problem in which the nonlinear response of the mate-
rial is described by the interaction between the electric fields
and matter. The nonlinear response of a particular material
is given by the susceptibility tensor, which have all the in-
formation of the structure of the material and the symmetries
present in it. In the case, this material is a crystal, there are
tables listing the tensors for their group of symmetry [1,2].
Thus, the physical properties of matter can be described by a
tensor. Historically, Voigt was the first person to use the term
tensor in reference to mechanical stress [3]. A tensor is an
array of numbers representing a physical quantity for a spe-
cific set of coordinate axes [3], in our case, Cartesian axes.
When this array of numbers is just one number, we call it a
scalar or tensor of rank zero. Plain numbers or scalars have
no subindex (subscript or suffix or sometimes just index) and
just one component. First-rank tensors are commonly known
under the name of vectors, which inR3 have three compo-
nents with a short representationvi (i = 1, 2, 3 or x, y and
z directions), wherei is the subindex and there is only one.
A quantity with two subindices is a second-rank tensormij

(i, j = 1, 2, 3) and, as in general, people are is familiarized
with a matrix, it is a common mistake to consider that a ma-
trix and a second-rank tensor are the same thing; this is not
strange because the written representation is the same. How-

ever, a matrix is just an array of numbers relating two sets of
axes and a tensor is a physical quantity that, for one given set
of axes, is represented by nine numbers [3]. Still sometimes,
sloppily a tensor of rank two is called a matrix [2].

Of course, a third-rank tensor has three subindicesdijk

(i, j, k = 1, 2, 3) and in general has 27 components and could
be imagined as an array of numbers of3 × 3 with three lay-
ers, 3 cubes in length, 3 cubes of height and 3 cubes of width
(see Fig. 1). This is what usually people call a tensor and
superior ranks too. Then-rank tensor, always inR3, hasn
subindicesχx1x2x3...xn and3n components. Thus, the num-
ber of subindices is the rank of the tensor. A pictorial repre-
sentation for the tensors from rank zero to three is shown in
Fig. 1.

FIGURE 1. A pictorial representation of tensors from rank zero to
third.
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Up to this point, students start to have problems under-
standing the concepts. The second-rank tensor is easily un-
derstood by the students because they are familiarized with
matrices and the representation of both entities is basically
the same. But for third-rank tensors and beyond, they do not
have a mental image of these mathematical entities. Also, it
is common that the professors show the more compact and
elegant notation since the beginning, working only with the
more general properties and avoiding to show explicitly the
elements of the tensors. In some way this approach is harder
for the students who face this topic for the first time and dark-
ened the concept and the procedure of calculating through
tensors.

Finally, for closing this section, we resume the organi-
zation of this work. There is a section for each subsequent
tensor from rank one to four (Secs. 2 to 5) and the conclu-
sions are in Sec. 6 with a summary and comments. Also,
in Appendix A we explain the path followed to calculate the
isotropic tensor of rank four step by step and Appendix B
is devoted to mention some applications for isotropic tensors
and specific topics, where knowing the isotropic tensors of
rank up to four is essential.

2. Isotropic first-rank tensor

Mathematically, all the tensors are defined by following a
specific transformation rule. The components of a tensor de-
scribe some physical quantity associated with a particular set
of orthogonal axes, but if we choose another set of orthogo-
nal axes, the numerical value of the components change and
this physical quantity remains the same. It happens that for
a first-rank tensor the transformation rule is exactly the same
than the one for transforming the coordinates of a point

v′i =
3∑

j=1

Rijvj = Rijvj , (1)

where in the last equality the summation is implied, follow-
ing Einstein convention: when a letter subindex occurs twice
in the same term, summation with respect to that subindex is
to be automatically understood [3]. The subindexj in Eq. (1)

is called dummy index andi is a free subindex. The subindex
that has been summed (pictorially people called this “con-
tracted”) could be any letterv′i = Rijvj = Rirvr, provided
we do not use a letter that occurs elsewhere in the same term.
Here,Rij is a rotation matrix, relating two sets of Cartesian
axes. The second-rank tensor follows the rule of transforma-
tion

m′
ij = RilRjkmlk, (2)

where now the summation is over subindicesl andk, and this
transformation rule is similar to the one of the product of two
independent transformations of the coordinates of two points
(x′ix

′
j = RinxnRjmxm = RinRjmxnxm). In general, an

nth-rank tensor transforms by [3]

χ′x1x2x3...xn
=Rx1y1Rx2y2Rx3y3 ...Rxnyn

χy1y2y3...yn
, (3)

note that in general, each index is “transformed” and then,
we required to contractn-rotation matrices (this is in real-
ity the same rotation matrix) with thenth-rank tensor. Now,
something is isotropic when it does not change in function of
the direction. In this sense, a tensor is isotropic when it is
invariant under rotations. Therefore, all scalars are isotropic
tensors, a zeroth-rank tensor is identical to itself because it is
not associated to any system of coordinates, whereas there is
no isotropic first-rank tensor (vector) [4]. Next, we are going
to show this. An anticlockwise rotation around thez-axis by
an angleφz transforms the elements of the vector (first-rank
tensor)~v in a new one~v ′. Thus, the rotation matrix is

R (φz) =




cos φz sin φz 0
− sin φz cos φz 0

0 0 1


 , (4)

where the subscript in the angle of rotationφ means that the
axis of rotation is thez direction (it is true that the elements in
the matrixR tell us already that, but later on we will see the
necessity of labeling the angle of rotation when we change
to a more compact notation). This is illustrated in Fig. 2a).
Then, applying Eq. (1), there are three equations relating the
components of the vectors:

FIGURE 2. Graphical representation of a rotation around: a)z-axis by an angledφz, b) x-axis by an angledφx. c) Two successive rotations,
first by an angleα and then by an angleβ around the same axis, in this case thez-axis, have the additive resultγ = α + β.
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v′x = cos φzvx + sin φzvy, (5)

v′y = − sin φzvx + cos φzvy, (6)

v′z = vz. (7)

In the case of small angles,cosφz ≈ 1 andsin φz ≈ dφz,
therefore the last equations can be rewritten as

v′x = vx + dφzvy, (8)

v′y = −dφzvx + vy, (9)

v′z = vz. (10)

However, as the tensor should be isotropic~v = ~v, com-
ponent to component

vx = vx + dφzvy, (11)

vy = −dφzvx + vy, (12)

vz = vz, (13)

which reduces immediately tovx = vy = 0 andvz is still
undetermined. Now we can apply a second rotation around
thex-axis, see Fig. 2b) to the resulting vector with only the
vz component. Thus, using the rotation matrix

R (φx) =




1 0 0
0 cos φx sin φx

0 − sinφx cos φx


 , (14)

the resulting equation is



0
0
vz


 =




1 0 0
0 cos φx sin φx

0 − sin φx cos φx







0
0
vz


 , (15)

and for the first row, after doing the inner product, we get
identity0 = 0. The second and third rows yield respectively,
the equations

0 = dφxvz, (16)

vz = vz, (17)

where, as before, in the case of small anglescos φx ≈ 1 and
sin φx ≈ dφx. In general,dφx is different from zero (or
no rotation is applied) and thereforevz = 0 from Eq. (16),
whereas Eq. (17) is still consistent with this solution. We
want to remember to the lector that successive small rota-
tions around the same axis of rotation, just add and the result
is the same that if only one rotation is applied for the total
angle given by the combination of the small rotations, as can
be seen in Fig. 2c). So, the last result should be valid too for
no differential angles.

So, recapitulating, there is no isotropic first-rank tensor
other than vector zero. The procedure carried up before, can
be performed in any order, this means that it is possible to
start doing a rotation around they-axis and then rotate the
resulting vector around thex-axis or thez-axis, and in the
end the result should be the same. For high-rank tensors the
three rotations around each of the coordinate axis are needed
to establish the non-zero components of the isotropic tensor.

3. Isotropic second-rank tensor

As mentioned before, a second-rank tensor has nine compo-
nents and two subindicesmij(i, j = 1, 2, 3), that we can
represent in the same way that a3× 3 matrix:

←→m =




m11 m12 m13

m21 m22 m23

m31 m32 m33


 . (18)

A graphical representation of a second-rank tensor is given
in Fig. 3. The first subindice represents the surface normal to
that direction and the second subindice is associated with the

FIGURE 3. Graphical representation of a second-rank tensor. a) The different elements of the tensor. b) An stress vector deformed slightly
the cube.
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direction of that element of the tensor. For example,mzx is an element in a plane normal to thez-axis and in the directionx.
Also, it is possible to say that a second-rank tensor is formed for a basis of three sets of three orthogonal vectors, as can be seen
at the top part of Fig. 3. This representation comes from topics of Continuum Mechanics [5], where a small deformation can
be modeled using Cauchy Stress tensorσij and the stress vectorT (êi), the latter is shown in the bottom of the Fig. 3, where
the deformation is exaggerated for a better appreciation and it is calculated asT (ê3) = σ3j êj .

In order to look for the second-rank isotropic tensor, we need to apply the transformation expressed in Eq. (2), for doing
this we can multiply directly the matrix given in Eq. (4), this is, we are going to apply a rotation around thez-axis. Then
the resulting tensor is transposed and multiplied again for the same rotation matrix Eq. (4) and finally the resulting tensor is
transposed again. All this is necessary because the way in which the subindices appear in Eq. (2) implies a specific order in the
multiplication between the components of the matrices and the tensor. Then, mathematically

←→m =
[
R · (R · ←→m )T

]T

= (R · ←→m ) ·RT = R (φ) · ←→m ·R (−φ) , (19)

this is because(A ·B)T = BT ·AT and that[R (φ)]T = R (−φ) = [R (φ)]−1, for the particular case of the rotation matrices
around Cartesians axesx, y andz. Also, the superscriptT is the transposition operation whereas the superscript “−1” is the
inverse matrix. Combining Eq. (19) with Eqs. (4) and (18) for doing the transformation described by Eq. (2), yields




m11 m12 m13

m21 m22 m23

m31 m32 m33


 =




1 dφz 0
−dφz 1 0

0 0 1







m11 m12 m13

m21 m22 m23

m31 m32 m33







1 −dφz 0
dφz 1 0
0 0 1


 , (20)

whereas as before we assume small angles and after doing all the products and just keeping terms until first order indφz, we
arrive to




m11 m12 m13

m21 m22 m23

m31 m32 m33


 =




m11 + m12 + dφzm21 m12 − dφz (m11 −m22) m13 + dφzm23

m21 − dφz (m11 −m22) m22 − dφz (m12 + m21) m23 − dφzm13

m31 + dφzm32 m32 − dφzm31 m33


 . (21)

From the last equality, Eq. (21), we can establish nine independent relations, with very direct solutions. For example, it
is easy to see thatm33 = m33, whereasm23 = m13 = m32 = m31 = 0. After equaling to zero Eq. (21), in the resulting
tensor, the component(1, 2), givesm11 = m22; and the component(2, 2) yieldsm12 = −m21. Finally, combining this very
last equality with component(1, 1), we get

(dφz − 1) m21 = 0, (22)

which immediately leads tom12 = m21 = 0. Now that all the relations between the components (for the transformation
around thez-axis) were found, we need to do the same but rotate around a different axis. For the next transformation, we
choose thex-axis with the rotation matrix given by Eq. (14) and already substituting the relations found previously. Thus




m11 0 0
0 m11 0
0 0 m33


 =




1 0 0
0 1 dφx

0 −dφx 1







m11 0 0
0 m11 0
0 0 m33







1 0 0
0 1 −dφx

0 dφx 1


 , (23)

where, as before, after doing the products and dismissing second-order terms indφx, the result is



m11 0 0
0 m11 0
0 0 m33


 =




m11 0 0
0 m11 −dφx (m11 −m33)
0 −dφx (m11 −m33) m33


 . (24)

Therefore, the solution ism33 = m11 and the second-rank isotropic tensor is

←→
I 2 =




1 0 0
0 1 0
0 0 1


 , (25)

with m11 taken as one. This tensor coincides with the identity matrix in its elements and this coincidence generates some
confusion about the fact that the identity matrices for higher orders are also the isotropic tensors of that rank, but this is not
true as we will see in the next section,aiii = 1 is not the isotropic tensor of rank three. Moreover, higher-rank isotropic tensors
sometimes have zeros in the “diagonal terms”. To finish this section, it is worth mentioning that there is a compact form to
represent the second-rank isotropic tensor, the Kronecker’s deltaδij it takes the value one wheni = j and zero otherwise. In
the next section, we will carry on the same procedure to determine the isotropic tensor form for third-rank.

Rev. Mex. Fis. E21020214
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4. Isotropic third-rank tensor

The number of components in a tensor escalates faster, for
a third-rank tensor there are three subindicesdijk (i, j, k =
1, 2, 3) and in general 27 components. One representation of
this tensor is as follows

←→
d =







d111 d121 d131

d112 d122 d132

d113 d123 d133







d211 d221 d231

d212 d222 d232

d213 d223 d233







d311 d321 d331

d312 d322 d332

d313 d323 d333







, (26)

wheredijk can be understood in the following way. The first
index “i” is related to the external column vector and deter-
mines a row in it, the second index “j” and the third one “k”
are associated with the columns and rows in the internal3×3
arrays. Then, the transformation for rotating around an axis
is

d′ijk = RilRjmRkndlmn, (27)

where one matrix of rotation is applied to each index. A sim-
ilar procedure than the one described for the second-rank ten-
sor should be done, first applying a rotation around thez-axis,
then solving the equations and simplifying a second rotation
around thex-axis and again the resulting equations should be
solved. After that, a final rotation around they-axis should
be done, and one more time, it is needed to solve the set of
equations to arrive at the isotropic third-rank tensor

←→
I 3 = d123







0 0 0
0 0 −1
0 1 0







0 0 1
0 0 0
−1 0 0







0 −1 0
1 0 0
0 0 0







, (28)

which is nothing else than the Levi-Civita tensorεijk [4]
when we choosed123 = 1. This result can be verified us-
ing Mathematica with the procedure explained in Ref. [6] ap-
plied to the tensor given in Eq. (26), where for anticlockwise
rotations around all the Cartesian axesx, y andz the result is
d123εijk and in the case of clockwise rotation there is only a
minus one multiplying the last result.

As can be seen from Eq. (28) when two subindices in the
Levi-Civita tensorεijk are equal the component is zero and

when they are in the order 1-2-3 (et cyclic., even permuta-
tion) the component is one, otherwise it is minus one (1-3-2,
odd permutation).

Now that we have introduced the isotropic third- and
second-rank tensors, we are going to come back to the
isotropic first-rank tensor and show that it is zero in a more
elegant way. Also, this way of writing the transformation in
terms of the isotropic third- and second-rank tensors will be
useful to calculate higher order isotropic tensors.

The Eqs. (8)–(10) are writing explicitly for each Carte-
sian component but it is possible to combine all these expres-
sions in a vectorial one

~v ′ = ~v − d~φ× ~v, (29)

whered~φ = dφx ı̂ + dφy ̂ + dφz k̂ and the only angle dif-
ferent from zero is the one that corresponds with the axis of
rotation. Eq. (29) has a compact form for the components,
which is

v′i = vi − εijkdφjvk. (30)

On the other hand, the isotropic second-rank tensor can
be used to write

vi = δikvk, (31)

which, after being combined with the Eq. (30) results in

v′i = (δik − εijkdφj) vk. (32)

It is possible to interchange the index “j” with “ k” in all
the Eq. (32), but this is going to originate a change in the
sign of the Levi-Civita tensorεijk = −εikj , then

v′i = (δij + εikjdφk) vj . (33)

Finally, to arrive at a useful expression, we can inter-
change again the index “i” and “k” only in the Levi-Civita
tensorεikj = −εkij , with the result

v′i = (δij − dφkεkij) vj . (34)

Equation (34) is a compact and elegant relation that is
equivalent to Eqs. (8) to (10), but these three at the same time
come from the rotation defined in Eq. (1). Thus, by direct
comparison with this latter:

Rij = δij − dφkεkij . (35)

So, the last equation is another way to calculate a rotation
applied to a vector, just expressed in terms of the Kronecker’s
delta and the Levi-Civita tensor. Coming back to Eq. (34), if
an isotropic first-rank tensor exists it must satisfy

vi = (δij − dφkεkij) vj , (36)

that is rewritten as

δijvj = (δij − dφkεkij) vj , (37)

Rev. Mex. Fis. E21020214
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which immediately yields

0 = dφkεkijvj . (38)

The last equation for the particular case of a rotation
around thez-axis (d~φ = dφz k̂) takes us directly to the sim-
plified version of Eqs. (11) to (13),




dφzvy

−dφzvx

0


 = 0, (39)

which immediately impliesvx = vy = 0 andvz is still un-
determined as before. If, now, a second rotation around the
x-axis (d~φ = dφx ı̂) is applied, then we get




0
dφxvz

0


 = 0, (40)

which is the same result given by the simplified version of
Eqs. (16) and (17), with the final result that all the compo-
nents of the vector~v are zero and the only isotropic first-rank
tensor is the null vector.

Moreover, with this new powerful definition of the rota-
tion matrices Eq. (35), we can redo the procedure to find the
second-rank isotropic tensor as follows: According to Eq. (2)
and (35)

m′
ij = RilRjkmlk

= (δil − dφpεpil) (δjk − dφqεqjk) mlk. (41)

So after doing the products, we arrive to

mij = (δilδjk − δildφqεqjk − dφpεpilδjk

+ dφpεpildφqεqjk)mlk, (42)

wherem′
ij = mij , because the isotropic condition that we

are asking for, after the rotation, the original tensor and the
transformed one must be the same. The last term in the paren-
thesis in Eq. (42) is going to be dropped because it is second
order indφ. Thus, we can rewrite the last equation as

mij−δilδjkmlk=− (dφqδilεqjk+dφpδjkεpil) mlk, (43)

but the left side of the equality is zero and in a similar fash-
ion with Eq. (38), should not be dependence with the angleφ,
thereforedφp = dφq, this meansp = q, which can also can
be justified because we are only doing a rotation around one
axis; thus in one rotation, in particular, all the angles implied
are the same around a particular fixed axis,x, y or z but not
mixed. For this condition Eq. (43) changes to

0 = δilεqjkmlk + δjkεqilmlk. (44)

Finally, we can contract the Kronecker’s deltas with the←→m tensors and after some manipulation of the subindices it
is possible to write it as

mikεkqj = εiqlmlj . (45)

Now, something that we can do, is check directly in the
tensors which are these conditions between the tensor com-
ponents of←→m . This is







0 −m13 m12

m13 0 −m11

−m12 m11 0







0 −m23 m22

m23 0 −m21

−m22 m21 0







0 −m33 m32

m33 0 −m31

−m32 m31 0







=







0 m31 −m21

0 m32 −m22

0 m33 −m23






−m31 0 m11

−m32 0 m12

−m33 0 m13







m21 −m11 0
m22 −m12 0
m23 −m13 0







, (46)

and it is easy to establish directly thatm12 = m21 = m13 = m31 = m23 = m32 = 0 andm11 = m22 = m33. Therefore, as
we already know from Eq. (25), the second-rank isotropic tensor will be

←→
I 2 =




1 0 0
0 1 0
0 0 1


 , (47)

after takingm11 = 1; which is nothing else that the Kronecker’s deltaδij . This can be verified immediately from Eq. (45),
changingmik = δik andmlj = δlj . Thus

δikεkqj = εiqlδlj → εiqj = εiqj . (48)

Rev. Mex. Fis. E21020214
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There is a more elegant way of arriving at the second-rank
isotropic tensor, we can multiply Eq. (45) by εiqf and using
the identity

εabcεade = δbdδce − δbeδcd, (49)

then

mikεkqjεiqf = εiqfεiqlmlj , (50)

changes to

mik (δkiδjf − δkfδji) = (δqqδfl − δqlδfq)mlj . (51)

Please, note that before applying the identity Eq. (49),
the subindices have to be reorganizedεkqjεiqf = εqkjεqif .
After multiplying and taking account thatδqq = 3 and
δqlδfq = δfl, we arrive at

miiδjf −mjkδkf = 3mfj − δflmlj , (52)

where some delta contractions were already done. Contract-
ing the remaining deltas whatever it is possible

miiδjf −mjf = 3mfj −mfj , (53)

finally

miiδjf = 2mfj + mjf . (54)

In this expression it is possible to interchange indexj and
f , arriving at

miiδfj = 2mjf + mfj , (55)

and subtracting Eq. (55) from Eq. (54)

mii (δjf − δfj) = mjf −mfj . (56)

Therefore

mjf = mfj , (57)

becauseδjf = δfj . Now coming back to Eq. (54) or (55),
we get

mjf =
mii

3
δjf . (58)

The last equation implies that

mij = aδij , (59)

wherea is a constant (scalar). This proves that the second-
rank isotropic tensor is the Kronecker’s delta.

Now, we wish to come back to Eq. (45), and rewrite it in
a standard way that appears in the literature [7]:

mikεkqj − εiqlmlj = 0, (60)

or

εqjkmik + εqilmlj = 0, (61)

where in the first term we interchanged twice the order of
the indices, then the Levi-Civita tensor remains positive; and
in the second term we interchanged one time the Levi-Civita
tensor indices, which makes it negative. As a final step, the
indices that are going to be contractedk and l, are dummy
and can be renamed equal, this is

εqjkmik + εqikmkj = 0. (62)

This expression, Eq. (62), will be generalized for the
higher-order tensors discussed in the paper. Then we will
start with the next isotropic tensor, which is the third-rank
tensor.

The procedure, which we started in Eq. (41) can be ap-
plied to look for the third-rank isotropic tensor but in this
case making use of Eq. (27)

d′ijk = RilRjmRkndlmn = (δil − dφpεpil)

× (δjm − dφqεqjm) (δkn − dφoεokn) dlmn, (63)

for the first two factors we already knew that

dijk = RilRjmRkndlmn = (δilδjm − δildφqεqjm − dφpεpilδjm) (δkn − dφoεokn) dlmn, (64)

where, as before, we only keep terms to first order indφ and because we are asking for isotropy the tensor to the left must be
the same as the one to the right after the transformation. If the third factor is multiplied, yields

dijk = (δilδjmδkn − δilδjmdφoεokn − δildφqεqjmδkn − dφpεpilδjmδkn) dlmn, (65)

in the last expression second-order termsdφ were neglected. Reorganizing the terms

dijk − δilδjmδkndlmn = − (dφoδilδjmεokn + dφqδilδknεqjm + dφpδjmδknεpil) dlmn. (66)

In Eq. (66) the left term of the equality is identically zero and for the right side, the same argumentation holds that for
Eq. (43), this isdφq = dφp = dφo or equivalentlyq = p = o. Therefore

δilδjmεqkndlmn + δilδknεqjmdlmn + δjmδknεqildlmn = 0. (67)

Rev. Mex. Fis. E21020214
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Finally, it is possible to contract the Kronecker’s deltas

εqkndijn + εqjmdimk + εqildljk = 0, (68)

which is the generalization of the Eq. (62). In the same way, the indices that are going to be contractedn, m andl, are dummy
and can be renamed equal, this is

εqkndijn + εqjndink + εqindnjk = 0. (69)

Solving this equation is somehow cumbersome but possible. Now we are going to show how to do that.
We begin multiplying Eq. (69) by εqkm, yielding

εqkmεqkndijn + εqkmεqjndink + εqkmεqindnjk = 0, (70)

and using the identity given in Eq. (49), the Eq. (70) can be simplified to

(δkkδmn − δknδmk) dijn + (δkjδmn − δknδmj) dink + (δkiδmn − δknδmi) dnjk = 0, (71)

now we proceed to simplify the Kronecker’s deltas

3δmndijn − δnmdijn + δkjδmndink − δknδmjdink + δkiδmndnjk − δknδmidnjk = 0, (72)

or

2dijm + dimj − δmjdinn + dmji − δmidnjn = 0, (73)

thus

2dijm + dimj + dmji = δmjdinn + δmidnjn, (74)

and renaming the subscriptsm → k, we arrive at

2dijk + dikj + dkji = δkjdinn + δkidnjn. (75)

Coming back to Eq. (69) and doing a similar procedure,
but now multiplying byεqjm in one case and byεqim in the
second one, also changing at the endm → j in the first case
andm → i in the second, we get

2dijk + dikj + djik = δjidnnk + δjkdinn, (76)

and

2dijk + dkji + djik = δikdnjn + δijdnnk, (77)

respectively. For solving this system of equations, Eqs. (75)
to (77), first we multiply Eq. (75) by δij , therefore

2δijdijk + δijdikj + δijdkji

= δijδkjdinn + δijδkidnjn, (78)

and simplifying

2diik + diki + dkii = δikdinn + δjkdnjn, (79)

finally, this is

2diik + diki + dkii = dknn + dnkn, (80)

for the case whenn = i, immediately gives

diik = 0. (81)

In a similar way, if we start with the Eq. (76) and multiply it
by δik, after simplifying and doingn = i, we get

diji = 0. (82)

For the third equation, Eq. (77), the factor multiplying it,
should beδkj ; and after simplifying and takingn = j in this
case, yields

dijj = 0. (83)

Equations (81) to (83), imply that when two subindices
are equal, the element is zero. With this, the system of equa-
tions, Eqs. (75) to (77), reduce to:

2dijk + dikj + dkji = 0, (84)

2dijk + dikj + djik = 0, (85)

and

2dijk + dkji + djik = 0, (86)

which is a system of three equations with four variables. For
solving this system of equations, Eqs. (84) to (86), we can
subtract Eq. (84) from Eq. (85), and then

djik = dkji. (87)

With this result, Eq. (87), substituted in Eq. (86), gives

dijk = −djik, (88)

and by transitivity, from Eqs. (88) and (87):

dijk = −dkji. (89)

Rev. Mex. Fis. E21020214



CARTESIAN ISOTROPIC TENSORS FOR BEGINNERS 9

Also, the relation given in Eq. (88) can be substituted now
in Eq. (85), for obtaining

dijk = −dikj . (90)

Finally, relations from Eq. (88) to (90), mean

dijk = −djik = −dkji = −dikj , (91)

and together with the Eqs. (81) to (83), imply the definition of
the third-rank isotropic tensor, this is Levi-Civita tensorεijk,
multiplied by some scalar constantb:

dijk = bεijk. (92)

This procedure can be replicated for the immediate high
rank-tensor and we will show how to do that in the next sec-
tion. But before that, we want to mention that the advan-
tage to work directly with the elements of the tensors, at least
for the ranks with a manageable number of elements (one,
two and three) is that you fix the ideas of what are you doing

when multiply and add the different contributions from each
element of the tensor to the rotation around a particular axis.
Clearly, this has the problem that it is a very cumbersome
procedure, and it is needed to write big arrays of quantities.
In contrast, the compact notation of the elements in terms of
the subindices introduced in Sec. 4, is more elegant, quickly
to manipulate and short to write but, as mentioned in the in-
troduction, it is more abstract and for the students starting
to study this subject it is hard to understand what it is be-
ing calculated and how it works. However, as we saw, once
these concepts are dominated, the subindex notation is very
powerful and allows to calculate high-order isotropic tensors
without writing the 81 elements of, for example, the fourth-
rank tensor or the 243 elements if we want to calculate the
isotropic fifth-rank tensor.

5. Isotropic fourth-rank tensor

Like in previous sections, we start this one by giving a repre-
sentation of a general fourth-rank tensor:

χ
(3)
ijkl =







χ1111 χ1112 χ1113

χ1121 χ1122 χ1123

χ1131 χ1132 χ1133







χ1211 χ1212 χ1213

χ1221 χ1222 χ1223

χ1231 χ1232 χ1233







χ1311 χ1312 χ1313

χ1321 χ1322 χ1323

χ1331 χ1332 χ1333







χ2111 χ2112 χ2113

χ2121 χ2122 χ2123

χ2131 χ2132 χ2133







χ2211 χ2212 χ2213

χ2221 χ2222 χ2223

χ2231 χ2232 χ2233







χ2311 χ2312 χ2313

χ2321 χ2322 χ2323

χ2331 χ2332 χ2333







χ3111 χ3112 χ3113

χ3121 χ3122 χ3123

χ3131 χ3132 χ3133







χ3211 χ3212 χ3213

χ3221 χ3222 χ3223

χ3231 χ3232 χ3233







χ3311 χ3312 χ3313

χ3321 χ3322 χ3323

χ3331 χ3332 χ3333







. (93)

In a sloppy language, we could say that a general fourth-rank tensor, can be represented as a3× 3 matrix, which also has
a 3 × 3 matrices as elements [2]. This is, a second-rank tensor with elements that are also second-rank tensors. There are a
total of 81 elements in one fourth-rank tensor, which are labeled as follows: The first index “i” in χijkl corresponds to the rows
and the second index “j” to the columns in the main array (the external one). In the same way, the indices “k” and “l” will
correspond to the usual way of labeling a3× 3 matrix, namely, the rows and columns in the inner3× 3 array, respectively.

As the lector surely deduces in this section the calculation for determining the fourth-rank isotropic tensor will be just an
extension of Eq. (41) and (63), as stated by Eq. (3):

s′ijkl = RimRjnRkoRlpsmnop = (δim − dφqεqim) (δjn − dφrεrjn) (δko − dφsεsko) (δlp − dφtεtlp) smnop, (94)

again, we can avoid doing some of the previous algebra, using the fact that for rotation matrices, to first order,

RikRjk = (δik − dφqεqik) (δjk − dφrεrjk) = δikδjk − dφrδikεrjk − dφqδjkεqik = δij − dφrεrji − dφqεqij , (95)

and interchanging the subindices “i” and “j” in the second term of the last equality, this is the first Levi-Civita tensor and also
considering thatdφr = dφq . Then

RikRjk = δij , (96)

in the same wayRkiRkj = δij . Thus, going back to Eq. (94)

RjfRigsijkl = RjfRigRimRjnRkoRlpsmnop, (97)

wheres′ijkl = smnop, because as mentioned before, the isotropic condition that we are asking for, after the rotation, the original
tensor and the transformed one must be the same. Therefore

(δjf − dφrεrjf ) (δig − dφqεqig) sijkl = δfnδgm (δko − dφsεsko) (δlp − dφtεtlp) smnop. (98)
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We know from Eq. (43) that, in the first order approximation fordφ, yields

(δifδig − dφqδjfεqig − dφrδigεrjf ) sijkl = (δkoδlp − dφtδkoεtlp − dφsδlpεsko) sgfop, (99)

where after contracting the Kronecker’s deltas on the first term on the left side and in the first term in the right side, they cancel
each other. Also, as they should not be angular dependence and also because we are rotating around one axis at the time, this
means thatdφr = dφq = dφt = dφs or equivalentlyr = q = t = s. Finally, at the same time, dividing bydφr, because this
quantity is small but different from zero. Thus

δjfεrigsijkl + δigεrjfsijkl = δkoεrlpsgfop + δlpεrkosgfop, (100)

and contracting the remaining Kronecker’s deltas, the previous equation simplifies to

εrlpsgfkp + εrkosgfol−εrigsifkl − εrjfsgjkl = 0. (101)

The negative sign in the third and fourth terms can be absorbed in the Levi-Civita tensor interchanging one time the subindices:

εrlpsgfkp + εrkosgfol + εrgisifkl + εrfjsgjkl = 0. (102)

In the same way, that with the tensors of rank two and three, the indices that are going to be contractedi, j, p ando, are dummy
and can be renamed equal. This is, after doing the changes of indices and reorganizing the terms:

εrgisifkl + εrfisgikl + εrkisgfil + εrlisgfki = 0. (103)

The last relation is again, a generalization of Eqs. (62) and (69). Solving Eq. (103) is possible but requires a very large
algebraic procedure. Instead, first we are going to show that the product of two Kronecker’s deltas with different subindices is
an isotropic four-rank tensor. If we return to Eq. (94) and conjecture thatsmnop = δmnδop, then

sijkl = RimRjnRkoRlpδmnδop, (104)

and contracting the deltas with the rotation matrices

sijkl = RinRjnRkpRlp, (105)

but according to Eq. (96), this is

sijkl = δijδkl. (106)

Therefore, the product of two Kronecker’s deltas with different subindices is an isotropic four-rank tensor. However, there is
still the freedom of choosing the order of the subindices in the deltas, which is a permutation of the four indices, that is4! = 24,
but as the permutation of the subindices in a Kronecker’s delta is the same deltaδij = δji and the same is true for the second
oneδkl = δlk and also the product is counted twice becauseδijδkl = δklδij . Then there are only three possibilities(24/23).
All these three different combinations of the four subindices are an isotropic four-rank tensor and thus the more general one is
a linear combination of these possibilities:

Iijkl = αδijδkl + βδikδjl + γδilδjk, (107)

whereα, β andγ are arbitrary constants (scalars). An explicit representation with all the non-zero components is [4,7,8]

←→
I 4 =







α + β + γ 0 0
0 α 0
0 0 α







0 β 0
γ 0 0
0 0 0







0 0 β
0 0 0
γ 0 0







0 γ 0
β 0 0
0 0 0







α 0 0
0 α + β + γ 0
0 0 α







0 0 0
0 0 β
0 γ 0







0 0 γ
0 0 0
β 0 0







0 0 0
0 0 γ
0 β 0







α 0 0
0 α 0
0 0 α + β + γ







. (108)
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As mentioned before, there is another way to derive Eq. (108), this can be done departing from Eq. (103), we are going to
outline the principal steps here. In a similar way that for the third-rank isotropic tensor, we start multiplying Eq. (103) by εrgj ,
this is

εrgjεrgisifkl + εrgjεrfisgikl + εrgjεrkisgfil + εrgjεrlisgfki = 0, (109)

which can be reexpressed, because Eq. (49), as

(δggδji − δgiδjg) sifkl + (δgfδji − δgiδjf ) sgikl + (δgkδji − δgiδjk) sgfil + (δglδji − δgiδjl) sgfki = 0, (110)

after simplifying and rearranging terms

2sjfkl + sfjkl + skfjl + slfkj = δjfsiikl + δjksifil + δjlsifki, (111)

and finally, if we want to keep easy tracking of the changes in the equations, we can rename the subindices as followsj → i,
f → j andi → m. In this way, we get one of Hodge’s equations [7]:

2sijkl + sjikl + skjil + sljki = δijsmmkl + δiksmjml + δilsmjkm. (112)

In order to get the other three equations that appears in Hodge’s paper, we need to multiply again Eq. (103) but now byεrfj ,
εrkj andεrlj , after doing similar steps that with the previous equation, yield respectively,

2sijkl + sikjl + sjikl + silkj = δjismmkl + δjksimml + δjlsimkm, (113)

2sijkl + sijlk + skjil + sikjl = δklsijmm + δkismjml + δkjsimml, (114)

and

2sijkl + sljki + silkj + sijlk = δlismjkm + δljsimkm + δlksijmm. (115)

A detailed explanation can be consulted at the end of this paper in the Appendix A. Now, for going further, we are going
to conjecture the form of the terms with two subindices repeated. This is, in Eq. (112), smmkl is a fourth-rank tensor but
δijsmmkl should be also a fourth-rank tensor. So,smmkl should be something that can be reduced to a second-rank tensor.
Thus, a possible representation for this is

δijsmmkl = Aδijδlmδmk = Aδijδlk, (116)

whereA is a scalar constant and similar expressions apply for all the terms with two subindicesm. Therefore, the new system
of equations is:

2sijkl + sjikl + skjil + sljki = Aδijδkl + Bδikδjl + Cδilδjk, (117)

2sijkl + sikjl + sjikl + silkj = Aδjiδkl + Bδjkδil + Cδjlδik, (118)

2sijkl + sijlk + skjil + sikjl = Aδklδij + Bδkiδjl + Cδkjδil, (119)

2sijkl + sljki + silkj + sijlk = Aδliδjk + Bδljδik + Cδlkδij , (120)

where, as before,A, B andC are scalar constants. With these four equations, Eqs. (117) to (120), we can generate six more
adding by pairs of the latter ones and from these we can get relations between the elements of the isotropic tensor that we are
looking for. The explicit procedure is explained in Appendix A. Therefore, after solving the system of equations:

α =
4B −A− C

10
, (121)

β =
4C −A−B

10
, (122)

and

γ =
4A−B − C

10
. (123)
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Hence, as stated by Eq. (107),

sijkl = αδijδkl + βδikδjl + γδilδjk, (124)

is an isotropic tensor of rank four. A different approach can be consulted in Jeffreys’ book [8] and also a third way of showing
which are the components of the isotropic fourth-rank tensor dividing them in five classes is given by Chandrasekharaiah and
Debnath in their book [9]. These authors take explicit angles to apply the rotations (for example 90◦C or 45◦C). In the same
way, Jeffreys [10] also took some specific angles to show how to calculate the isotropic fourth-rank tensor, but as in others
mathematical classical papers [7,10,11] for experts in this subject, this is only outlined. Additionally, Hysa [12] calculates the
isotropic second-rank tensor in general, doing the main steps and then for the isotropic fourth-rank tensor evaluates the rotation
for 90◦C about thez-axis. He also fixed specific values for the subindices in order to simplify the system of equations to solve.
In contrast, in the procedure followed by us, we use a general rotation for an angleφ and somehow take a more general case,
when we considered thatn = i in Eq. (80) and resulting in Eq. (81), for finding the isotropic third-rank tensor or in Eq. (116)
when we conjecture the form ofsmmkl. Above this, we considered that our procedure is more general and detailed.

Before finishing this section, we want to mention that our conjecture of how to calculate the isotropic fourth-rank tensor,
applied in Eq. (104), could work too for the isotropic fifth-rank tensor. This is because, for each subindex there is a rotation
matrix transforming the tensor and contracting with one subindex. So, this is like “factorize” in a second-rank tensor multiplied
by a third-rank tensor, that is

tijklm = RinRjoRkpRlqRmrδnoεpqr = (RinRjoδno) (RkpRlqRmrεpqr) , (125)

and therefore

tijklm = δijεklm, (126)

tijklm should be an isotropic fifth-rank tensor. As before, there are other combinations of the five subindices that generate also
isotropic fifth-rank tensors and the linear combination of these different isotropic fifth-rank tensors should be the more general
isotropic fifth-rank tensor. It is known that the number of isotropic tensors of rank five is a total of six [11]. Then this idea
could be extended to look for isotropic tensors of higher rank, the fifth-rank tensor analysis will be published elsewhere.

6. Conclusions

In summary, we have shown how to calculate isotropic tensors from rank one to four. The zero-rank isotropic tensor is all the
scalars. The first-rank isotropic tensor is the vector zero, there is no other vector that fulfills the isotropic condition than that
one. The isotropic tensor of rank two is the Kronecker’s delta, whereas the third-rank tensor is the Levi-Civita third-rank tensor.
Finally, the isotropic fourth-rank tensor is a linear combination of the product of all the combinations of two Kronecker’s deltas
with four independent subindices. The formal procedure shown here can be extended to look for isotropic tensors of higher
rank.

Appendix A.

A detailed development of the procedure to solve the system of equations that generates the fourth-rank isotropic tensor is
given in this appendix. Continuing with the calculation started with Eq. (109), as mentioned before, Eq. (103) is multiplied by
εrfj , and after doing similar steps to the ones carried away to get Eq. (112), but only this time changingg → i andi → m,
Eq. (113) is obtained. The third equation to solve is the result of multiplying byεrkj the Eq. (103) and after simplifying and
doing g → i, f → j, j → k and i → m, we arrive at Eq. (114). Finally, the last equality for this system is obtained by
multiplying again Eq. (103) but on this occasion byεrlj . Thus, after interchangingg → i, f → j, j → l andi → m, leads to
Eq. (115). After this system of four equations is complete, the next step is to use the conjecture introduced in Eq. (116) , then
the Eqs. (117) to (120) are obtained. Now we can generate six more equations adding by pairs the latter ones. The addition of
Eq. (117) with the Eq. (118) gives

4sijkl + 2sjikl + skjil + sljki + sikjl + silkj = 2 (Aδijδkl + Bδikδjl + Cδilδjk) , (A.1)

in the same way, Eq. (117) plus Eq. (119) results on

4sijkl + 2skjil + sjikl + sljki + sijlk + sikjl = 2 (Aδijδkl + Bδikδjl + Cδilδjk) , (A.2)
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whereas the pair Eq. (117) plus Eq. (120) yields

4sijkl + 2sljki + sjikl + skjil + silkj + sijlk = 2 (Aδijδkl + Bδikδjl + Cδilδjk) . (A.3)

Two more combinations come from Eq. (118) with Eq. (119)

4sijkl + 2sikjl + sjikl + silkj + sijlk + skjil = 2 (Aδijδkl + Bδikδjl + Cδilδjk) , (A.4)

and Eq. (118) with Eq. (120)

4sijkl + 2silkj + sikjl + sjikl + sljki + sijlk = 2 (Aδijδkl + Bδikδjl + Cδilδjk) . (A.5)

The final equation comes from the last combination possible, which is Eq. (119) plus Eq. (120):

4sijkl + 2sijlk + skjil + sikjl + sljki + silkj = 2 (Aδijδkl + Bδikδjl + Cδilδjk) . (A.6)

From these six equations, we can get relations between the elements of the isotropic tensor that we are looking for. In particular,
subtracting Eq. (A.6) from Eq. (A.1), leads to

sjikl = sijlk, (A.7)

also taking Eq. (A.2) minus Eq. (A.5) gives

skjil = silkj , (A.8)

and the last relation can be obtained from Eq. (A.3) minus Eq. (A.4):

sljki = sikjl. (A.9)

Please, note that it is possible to generate additional relations, for example, interchanging or renaming the indices, ifl is
interchanged withk in Eq. (A.7), then

sjilk = sijkl, (A.10)

and so on. On the other hand, coming back to Eq. (118) and substituting Eq. (A.7), yields

2sijkl + sikjl + sijlk + silkj = Aδjiδkl + Bδjkδil + Cδjlδik, (A.11)

and proceeding as Hodge says [7], fixing subindexi but permutating in a cyclic wayj, k and l, this generates, two more
equations

2siljk + sijlk + silkj + sikjl = Aδliδjk + Bδljδik + Cδlkδij , (A.12)

and

2siklj + silkj + sikjl + sijlk = Aδkiδlj + Bδklδij + Cδkjδil. (A.13)

Thus, adding these three equations, Eq. (A.11) to (A.13), leads to

2 (sijkl + siljk + siklj) + 3 (sijlk + silkj + sikjl) = (A + B + C) (δjiδkl + δjkδil + δjlδik) . (A.14)

Moreover, interchanging justl with k, gives

2 (sijlk + sikjl + silkj) + 3 (sijkl + siklj + siljk) = (A + B + C) (δjiδlk + δjlδik + δjkδil) , (A.15)

and multiplying Eq. (A.14) by 3 and subtracting two times Eq. (A.15), this yields

5 (sijlk + silkj + sikjl) = (A + B + C) (δjiδkl + δjkδil + δjlδik) , (A.16)

or

sijlk + silkj + sikjl =
1
5

(A + B + C) (δjiδkl + δjkδil + δjlδik) . (A.17)

With this result, Eq. (A.17), we can go back to Eq. (A.11) and get

2sijkl +
1
5

(A + B + C) (δjiδkl + δjkδil + δjlδik) = Aδliδjk + Bδljδik + Cδlkδij , (A.18)

and finally, reorganizing the terms,

sijkl =
1
10

[(4B −A− C) δlkδij + (4C −A−B) δljδik + (4A−B − C) δliδjk] . (A1.19)

So, comparing with Eq. (107), it is direct to establish Eqs. (121) to (123).
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Appendix B

This section is devoted to mentioning some applications of
isotropic tensors in Continuum Mechanics and in Non-linear
Optics second harmonic generation topics; for the latter case,
it is essential to know the isotropic tensors for the ranks three
and four. Additionally, the third-rank isotropic tensor is used
to establish several relations in physics and mathematics in a
compact way, as for example, the Electromagnetic tensor.

Elasticity

In elasticity there are four-rank tensors relating linearly the
stressT and the infinitesimal strainE, in the following
way [5]

T = SE, (B.1)

or

E = CT, (B.2)

whereasS is the stiffness tensor andC is the compliance
tensor, and they are the inverses of one another. The gen-
eral elasticity tensor for an isotropic material is an isotropic
fourth-rank tensor and can be represented as [13]

Siso = 3κJ+ 2µK, (B.3)

where J and K are two linearly independent symmetric
fourth-rank tensors defined by

J =
1
3
←→
I 2 ⊗←→I 2, (B.4)

and

K = I− J, (B.5)

where I denotes the fourth-rank identity tensor, which
is defined in terms of its components asIijkl =
(δikδjl + δilδjk) /2 and

←→
I 2 is the second-rank isotropic ten-

sor. Also, the constantsκ andµ are positive and are named
the bulk modulus and the shear modulus, respectively. With
these quantities, it is possible to calculate the Young’s modu-
lus [14] for an isotropic material:

〈E (n)〉 =
9κµ

3κ + µ
. (B.6)

This is a very important measurable parameter for materials
science and engineering.

Non-linear optics: Harmonic generation

In our case, a medium is nonlinear if the polarizationP is
not linearly proportional to the electric fieldE. Then, the
nonlinear polarization can be expressed as a Taylor series in
E [1]:

Pi = χ
(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + ... (B.7)

The first term denotes the linear susceptibility with indicesi
andj, which corresponds to a second-rank tensor, resulting
in 3× 3 = 9 components. The next term is related to second-
order nonlinear processes such as second harmonic genera-
tion (SHG) [15] and is characterized by a second-order sus-
ceptibility (third-rank tensor) with indicesi, j andk, yielding
3×3×3 = 27 components. On the other hand, the next term
describes third-order nonlinear processes such as third har-
monic generation (THG) [16] and consists of a fourth-order
susceptibility tensor defined by indicesi, j, k andl, and con-
tains a total of3× 3× 3× 3 = 81 components.

On the other hand, a usual way of measuring the har-
monic generation signal from a sample, is to rotate the sample
around the normal to the surface, the direction of the normal
is typically labeled thez-axis. These samples generally are
crystals and the harmonic signal (intensity) changes with the
azimuthal angle of rotation as a linear combination of a si-
nusoidal function and its harmonics. In this case, the main
contribution to the signals comes from the anisotropic part
of the susceptibility tensor, whereas the isotropic part of the
susceptibility tensor contributes with a constant signal [17].
Therefore, the susceptibility tensor can be separated into two
tensors, the isotropic part and the anisotropic part:

←→χ = ←→χ iso +←→χ ani, (B.8)

respectively. In this way, the isotropic tensors are not useful
in this case but it is indispensable to know them for getting
the anisotropic part of the susceptibility tensors.

Electromagnetic tensor

As we already saw in Eqs. (29) and (30), that the cross prod-
uct can be written in terms of its components using the third-
rank isotropic tensor, also known as the Levi-Civita tensor.
In the same way exists a relation between the Electromag-
netic tensor (also known as the field-strength tensor, Faraday
tensor or Maxwell bivector) and the magnetic flux densityB,
this is

Bi = −1
2
εijkFjk, (B.9)

in Cartesian coordinates. HereFjk is the Electromagnetic
tensor and the subindicesi, j andk go from 1 to 4. This can
be represented as follows

←→
F =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 . (B.10)

Explaining further in this topic is beyond the scope of this
work, but the interested reader can consult Jackson’s classical
book in Electromagnetic Theory [18].
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