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Teaching of tension force: a massive rope in equilibrium
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A massive rope in equilibrium, with fixed extremes, takes a particular shape as a consequence of both, the weight and tension on each small
rope segment. An analysis of forces acting on each rope infinitesimal section under static equilibrium conditions, results in a differential
equation with a solution that provides the general shape of the rope and from which, the tension at each point of the rope is obtained. From
this theoretical treatment, a set of three rules is proposed. They allow creating and to solve a variety of theoretical and experimental problems
dealing with tension force applied to massive ropes under static equilibrium conditions. The teaching experience with first-year engineering
students shows that they deduced the rules and solved different problems. Also, it provides to the teacher possibilities to teach tension force in
massive rope at the basic physics level. The first approach to test the didactic-proposal was developed into a collaborative learning framework
rooted from a constructivist perspective, supported by Ausubel’s (1983) theory of meaningful learning. However, it can be configured to suit
pedagogical needs.
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1. Introduction

Tension force plays a fundamental role, and is discussed with
some detail on several physical systems [1-7]. For example,
in the Atwood’s machine the ropes are considered as neces-
sary objects to establish forces among different bodies, which
is the main purpose of this application. In the simple pendu-
lum, the force exerted by the rope to a point mass in addition
to the weight and the force of the air results in a damped
harmonic movement of the system. In variable mass prob-
lems, examples of falling ropes or chains are shown. Con-
sidering standing mechanical waves, their propagation speed,
refraction and reflection phenomena and so on, again tension
forces are still present. Due to that the tension force action
is somehow frequent, and it plays its key role in many phys-
ical systems, it should be mandatory to pay attention to the
way it is taught in basic physics courses. Nevertheless, the
strong efforts of several authors [1-7], there are relatively
few works devoted to tension force teaching. In some gen-
eral physics texts, traditionally used in basic physics courses
[8-10], the tension force is treated in massive vertical ropes,
and in some of the proposed problems are involved hanging
massive ropes in equilibrium, from which it can be said that,
comparatively with other topics, it is paid little attention to
the tension force analysis. Feynmann [5], French and Klep-
ner [11] and Kolenkow [12] discuss about the fundamental
origin of tension force. Indeed, they explain the forces act-
ing along a rope considering its mass and frictional forces,

and propose some problems, which cannot be solved with-
out a deep understanding of the tension force. In special-
ized texts of engineering [4,13,14], or mathematical physics
[15], implying a strong background of differential and in-
tegral calculus and differential equations for their reading,
rigorous and accurate treatments of tension force in massive
ropes in equilibrium are done. In advanced physics courses
for architecture, direct applications of tension force in ropes
with mass are observed. They need again deep knowledge
of mathematics and sometimes, the use of mathematical soft-
ware. However, in order to deal with the topic of forces in
basic physics courses for first year students of physics and
engineering, teaching of tension force on massive ropes is a
challenge, due to the exigent background in mathematics the
authors propose [14,15]. The teacher can verify by its own
experience that usually students have many questions with a
high conceptual component related to tension force. In par-
ticular, it is natural that students ask if the tension value is
the same at both ends of the rope. On the other hand, in the
daily environment it can be appreciated several situations that
imply tension forces on ropes: energy line, hanging bridges,
cableway, etc., that demand from an engineer a deep knowl-
edge of tension force. This work demonstrates the potential
of utilizing tension force to teach and develop skills related
to physics, mathematics, numerical methods, and laboratory
experiments. This approach facilitates a deeper understand-
ing of knowledge through meaningful learning [16], allowing
students to leverage their prior knowledge to devise practical
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strategies for problem-solving. In the following, it is shown a
theoretical review of tension force on massive hanging ropes
and on a rope with beads in equilibrium, that allow to point
out equations suggesting to students a simple but rigorous
presentation of tension force. Then, topics involving deduc-
tion of formulas and experiments, with the goal of simplify-
ing the comprehension of tension forces acting on massive
ropes, are illustrated. Finally, a comment about the results of
the teaching experience of this topic with first year engineer-
ing students is done.

2. Tension force review

Tension force in a rope in equilibrium varies from one point
to another. The way it changes depends on how high its ends
are located and on the linear mass density. To calculate the
tension value it is required to solve a differential equation re-
sulting from the static equilibrium condition of a differential
segment of the rope, which implies challenging mathemati-
cal work. This differential equation is obtained in an identical
way for a rope with beads in equilibrium, when the mass of
each bead is higher than the rope mass (Fig. 2).

2.1. Massive rope

Consider a massive rope in static equilibrium fixed by its ex-
tremes (Fig. 1). The rope shape is parametrized by means of
its Cartesian coordinates(x, y(x)) that indicate the position
of each rope segment. The horizontal and vertical compo-
nents of the equilibrium forces equation yield to:

T (x)√
1 +

(
dy
dx

)2
= T0x, (1)

and

T0x

(
d2y

dx2

)
= gλ(x)

√
1 +

(
dy

dx

)2

, (2)

whereλ(x) is the linear mass density,T (x) the tension mag-
nitude,g the gravity acceleration andT0x is the horizontal
tension component, which is constant along the rope. Ad-
ditionally, for Eq. (1), the tension vertical componentTy(x)
can be deduced and is given by:

FIGURE 1. Massive rope.

Ty(x) = T0x
dy

dx
= T0x tan θ, (3)

whereθ is the angle between the tangent line to the rope in the
(x, y(x)) point and the horizontal. With the last expression
Eq. (3) and considering that the horizontal tension compo-
nent is constant, it is possible to create and solve problems in
a very simple way. In addition, it offers many possibilities of
performing experiments for laboratory lectures. For instance,
the constant value of the horizontal tension componentT0x,
in the case of a uniform linear mass densityλ(x) = λ, can be
verified by

|T0x|= λg
sab

|dy(xa)
dx − dy(xb)

dx |
, (4)

where sab is the rope length betweenPa and Pb, and
tan βa = dy(xa)/dx andtan βb = dy(xb)/dx being the tan-
gent of the angles between the tangent lines in the positions
Pa, Pb and the horizontal (Fig. 1).

2.2. Ropes and beads

Consider a set ofN massive beads in static equilibrium, fixed
by ropes with negligible mass compared to the bead mass.
The magnitude of Cartesian tension componentsTix andTiy

corresponds to thei − th segment as a function of the ten-
sion magnitudeT0 of the first segment. Here, the angleθ0

between the segment and the horizontal, and the angleθi be-
tween thei−th segment and the horizontal (Fig. 1), are given
by:

Tix = T0 cos θ0 = T0x, (5)

and
Tiy = T0x tan θi, (6)

the expressions (5) and (6), yield:

|~Ti|= T0x

cos θi
. (7)

It is pointed out that the horizontal tension component
T0x is constant. Moreover, the vertical tension component
Tiy and the tension magnitude of eachi− th segment, can be
calculated with two parameters:T0x andθi.

3. Didactic-proposal

This work was successfully developed with first-year en-
gineering students from three universities (UGC,PUJ, and
UPTC) in two cities (Bogot́a and Tunja).

The first challenge to overcome is the literature on
tension force. There is a robust theory related with
[11,12,14,15,17,18]. However, to first-year engineering stu-
dents this kind of bibliography could be too difficult to under-
stand. Furthermore, it is missing in standard general physics
textbooks [8-10]. An option could be to wait for students to
acquire skills and knowledge to address this topic. We prefer
a different approach.

Besides, the process to develop skills and knowledge
about tension force in massive ropes, proposed here, offers an
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excellent way to go from discrete system to continuum one,
the application of the derivative concept and tangent line to
a rope. In addition, to face a new set of problems with basic
tools.

It is presented a teaching-proposal by a set of class mo-
ments, which could be adapted to the pedagogical model that
the professor is following. The way it is asking a team of
students is the key to get an excellent learning strategy. Next,
the class moments are described.

3.1. Fundamental origin of tension force

It is required to spend some time allowing students to un-
derstand of the matter structure, the way it interacts and its
range of dominance, because the tension force is the result of
distance-dependent-intermolecular-force average, which can
be modeled mathematically as illustrated in several books
[5,12].

3.2. Class exercise: rope and beads

It is considered a rope, with a set ofN beads, hanging from
two fixed points in static-equilibrium (Fig. 2). Each angleθi

(i = 0, 1, 2, ..., N ), and the tension forceT0 at the first rope
segment were measured. Bead masses,mj (j = 1, 2, ..., N ),
are different from each other, and their values are not known.
The idea here is to determine Cartesian components of each
tension force,Tix, Tiy, and the corresponding magnitudeTi.

At first glance, it seems like a complex and tedious ex-
ercise. However, it is possible to confront it with a novel
strategy, which finally reveals a hidden symmetry.

So, in that way it could be followed these steps. First of
all, to perform a free-body diagram of forces corresponding
to massm1, then to write a vectorial equation of equilibrium
force, next obtain a system of scalar equations (one for each
component), and finally to findT1x, T1y, andT1 in terms of
T0, θ0 andθ1. The last step becomes hard due tom1 is not
known. The key here is remembering tension is a force, so

FIGURE 2. Beads and ropes.

it is a vector quantity, then, it is possible to find an additional
relationship betweenT1x, T1y, andT1 (rectangle triangle for
instance). Even though there areN masses, this first solution
was made with one free-body diagram.

Subsequently, it is asking forT2x, T2y, andT2. To solve
it, it could be followed the same procedure withm2, and to
take results obtained before, and so on. Along with this pro-
cedure is performing it could be completing a table to sum-
marize outcomes.

Fromm3 procedure, even fromm2, it is figured out that
the three rules are described by expressions (5), (6) and (7).
Therefore, it is possible to write out an expression corre-
sponding to any massmi.

3.3. Extrapolation from discrete to continuous and rules
to tension force in massive ropes

It is observed that expressions (5) and (6) are the same than
(1) and (3), respectively. This is expected because the static
equilibrium equations for a bead are identical to those of an
infinitesimal element of a massive rope. Due to this, it is nat-
ural to extend the result of the beads case under equilibrium
conditions to the case of a continuous rope, taking into ac-
count a new interpretation that should be done to the terms of
the Eqs. (1) and (3): theθi angle between thei− th segment
and the horizontal corresponds to the angleθ formed by the
tangent line to the rope at a particular pointP and the hori-
zontal (Fig. 1). In addition,tan θ gives the slope of this line
or the derivative ofy(x) at pointP .

As a conclusion, it can be considered three valid equa-
tions for the general case of massive ropes (uniform or no
uniform linear density mass), hanging of the ends, under
equilibrium conditions, with their corresponding interpreta-
tion forming the following three rules:

1. Tx = T0x: the horizontal tension component is con-
stant along the rope.

2. Ty = T0x tan θ: the vertical tension component in ev-
ery point of the rope is equal to the horizontal tension
component multiplied by the tangent of the angle (the
slope), formed by the tangent line to the rope at that
point with the horizontal.

3. T = T0x/ cos θ: the magnitude tension at every point
of the rope is equal to the horizontal tension compo-
nent, which divides the cosine of the angle formed by
the tangent line to the rope at that point with the hori-
zontal.

In this way, additional conceptual elements for solving
problems, involving massive ropes in equilibrium, are avail-
able.
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FIGURE 3. Massive rope in static-equilibrium.

FIGURE 4. Comparison of three tension-force values.

3.4. Problems suggested

Below is shown a set of generic problems, which test under-
standing related to massive ropes in static equilibrium. The
three rules could be very useful to deal with them. Professors
could fit this set into various contexts.

3.4.1. Massive rope

A rope hangs under equilibrium conditions (Fig. 3). The
force magnitude on the left end isF and the angles that each
extreme forms with respect to the horizontal areθ andφ, re-
spectively. Find the force valueFd on the right end, the rope
mass and the tension magnitude on the lowest point of the
rope (the minimum).

3.4.2. Comparison of tension-force values

In Fig. 4, let us considerTA, TB andTC as magnitudes of
tension-force at pointsA, B andC respectively. It is asked
what the higher and lower tension values are.

3.4.3. Is the tension-force value constant?

In Fig. 5 it is shown the same rope in three situations (I, II and
III). In what situation (or situations) should the tension-force
value along the rope be considered constant?

FIGURE 5. The same rope in three situations.

FIGURE 6. Two blocks holding a massive rope in equilibrium.

FIGURE 7. Massive rope in equilibrium hanging from a dy-
namometer and a block.

3.4.4. Two blocks and massive rope

Each block illustrated in the figure has massM and supports
one end of a massive rope. The whole system is in equi-
librium. Are the values of friction forcesfl andfr such as
fl < fr, fl > fr, fl = fr or are they both zero?

3.4.5. Example of context problem

The lecture of the balance is equal to the normal valueN over
its surface divided by gravityg, it meansN/g. Dynamometer
lectureF , mass of the blockM , gravity of the placeg, and
anglesα andβ are known. To determine the lecture of the
balance.
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3.5. Teachnig experience

From work developed on ten groups of first-year engineer-
ing students from three universities (UGC,PUJ, and UPTC)
in two cities (Bogot́a and Tunja). Each group consists of an
average of 25 students. They attend three classes per week,
each lasting two hours: two theoretical classes and one lab
session. This report focuses on the experiences gained dur-
ing the three theoretical classes.

As a preamble to the teaching experience, it includes un-
derstanding what weigh, contact and intermolecular forces
are, how a force diagram should be done, and how to get a
scalar system of equations from an equilibrium force situa-
tion. After, these requirements are achieved, the students are
ready to face the first challenge illustrated in Sec. 3.2. After
that, it is necessary to spend six hours of class per group.

In this experience, the professor begins by presenting the
first challenge (3.2.) to the students. They should from a team
of three or four members based on their own criteria. Each
team that achieves some advance should show it to the other
teams. This methodology encourages each other to work to-
wards a common goal. It is a cooperative way of approaching
the task, it is not a competition. First of all, they should make
a first force diagram to the first mass on the left (Fig. 2).

The students quickly find a way to getT1x. Unlike the
vertical component of the tensionT1y demands additional
thinking. At this point, the student asks for masses of the
beads, hoping for some symmetric property in search of sim-
plicity. However, the masses are unknown and are not neces-
sarily equal. After a while, usually at least one student, out
of thirty, reflects that a force is a vector, two-dimensional in
this case, so thatT1y can be obtained by triangle geometry.
Throughout this activity, the professor acts as a moderator,
but at the end summarizes the achievements using Table I.

Now the second mass (i = 2) now is considered. The
students draw the corresponding diagram of force and write
the system of equations from it. At this point, this proce-
dure seems a bit boring; however, it turns out easy to solve
using the results obtained previously, and the students can
complete the next row of the table. The feeling about proce-
dure described by the adjective “boring” could be considered
negative, but it turns out to be a tool. Then, Table II becomes.

At this point, it is asking the students for the next tension
force and so on. Of course, the procedure is really tedious so
they look for a shortcut, which highlights from the table of
results. Then they realize about the three rules for obtaining
the tension force and their Cartesian components.

Next, at a new class, the professor ask the students how
look the same system of beads, Fig. 2, is the number of
masses is increasing. They comment that the bead system

TABLE I. Results of calculations.

i−mass Tix T1y Ti

1 T0 cos θ0 T0 cos θ0 tan θ1 T0 cos θ0/ cos θ1

TABLE II. Results of calculations.

i−mass Tix T1y Ti

1 T0 cos θ0 T0 cos θ0 tan θ1 T0 cos θ0/ cos θ1

2 T0 cos θ0 T0 cos θ0 tan θ2 T0 cos θ0/ cos θ2

look like a heavy rope if the number of beads is increased.
Then, the three rules need for an interpretation of the contin-
uum of mass (the rope). In that way, the line between two
neighboring masses becomes a tangent line to the rope and
the correspondingtan θ turns out the slope, namely, the first
derivative of the function describes the shape of the string.
This now, they are ready to move to the exercise illustrated
in 3.4.1. There, the student questioned how to understand
the angle at the minimum of the string. Finally, through col-
laborative methodology they find the complete solution after
thirty to forty minutes (on average). Students understand how
they can use these three rules analytically to analyze and con-
clude, this is one of the objectives achieved here.

To exercises written on Secs.3.4.2.and3.4.3.frequently
necessary that insist to the students support their answers
from the three rules. These exercises lead students to deal
with preconceived ideas about tension force (same rope same
tension, for instance), here the students discover when the
tension force can considered constant and when it cannot.

The exercise illustrated in Sec.3.4.4. is done as home-
work. When students return to class, some (30%) comment
that there is no data to address it, and others (20%) do not
find a way to solve it. The key here is to remember the angle
strategy from exercise3.4.2.and encourage them to start the
analysis from a force diagram. At lest 10% of the students get
the correct answer. Later, this exercise is discussed in class
and the professor highlights diagram force, the scalar system
of equilibrium equations and the three rules.

The last exercise3.4.5. leads to a context. The students
put the learned strategies into action. In the first experience,
difficulty is not longer the tension in a massive rope, but
rather it is related to knowing what a scale is measuring?. A
discussion should be held on this matter to establish that nor-
mal on the scale divided by gravity value is the value reported
by it. Due to, the main goal is to understand how to address
problems with massive rope,it becomes necessary to add to
the text the statement “The lecture of the balance is equal to
the normal value (N) over its surface divided by gravity (g)”.
Then, some problems arise related to how to solve the system
of equations. In the end, at least 70% of the students find the
answer, working in teams.

Finally, comparison between the evaluation of several
topics and subject massive rope showed that the level of the
difficulty of this topic is similar to that of the parabolic move-
ment.

This work focuses on an analytic vision. However, a sen-
sitive and experimental experience is recommended and it
will be an opportunity for future work.
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4. Pedagogical opportunities

It is not common in the teaching of the so-called “hard sci-
ences” to have a didactic approach outside the framework of a
lecture, where the oratory skills of the teacher determine the
apprehension of content that is very complex to bring into
experience. In this sense, an active pedagogy that focuses
its efforts on the construction of knowledge through cooper-
ative work can become an invaluable tool in highly theoreti-
cal contexts. According to Johnson, Johnson, and Holubec
[19], “collaborative learning is the use of small groups in
which students work together to maximize their own learning
and that of others”, making it possible for the learning curve
to strengthen, as the heterogeneous interaction of individu-
als promotes thinking and, especially, social behavior that
benefits academic activities in the classroom. Some research
in the area corroborates that the use of these methodologies
increases students’ perception when facing problem-solving,
enhancing their decision-making ability and communication
skills [20]. It is important to mention that these types of pro-
posals promote meaningful learning, whose essence ’lies in
the fact that symbolically expressed ideas are related in a
non-arbitrary and substantial way (not literally) to what the
student already knows [16].

In our experience working with collaborative groups, the
role of the teacher is fundamental when proposing each of the
activities that allow students to establish procedural strategies
to answer the questions posed by the program, while being
able to transfer this knowledge to real-life application con-
texts. In this environment, the teacher designs the work ma-
terials in advance, posing meaningful questions that promote
analytical reflection, leading students to inquire about their
prior knowledge [21], as well as possible ways to solve the
problems posed. Here, the teacher is a facilitator of the ex-
perience, guiding students through the paths they themselves
propose; organizing, suggesting, questioning, and providing
tools that enable the mobilization of thinking where each stu-
dent “promotes the learning of others by verbally explaining
how to solve problems, analyzing the nature of the concepts
being learned, teaching what one knows to peers, and con-
necting present learning with past learning” [19]. Clearly,
the learning outcomes observed at the end of the course ex-

ponentially elevate the learning curve, allowing the teacher
to go beyond suggesting that students review bibliographies
that, for students at this level, are difficult to understand.

Undoubtedly, the application of cooperative learning in
the classroom promotes a paradigm shift that favors indi-
vidual achievement, very common in the sciences, towards
a “model based on teamwork and high performance” [19],
providing students with a vision of collective achievement,
which is needed in educational and research spaces. The
purpose of this methodology is for more and more students
to successfully face the resolution of complex problems and
for the knowledge they acquire to not only be permanent but
also become part of their engrained responses to the chal-
lenges of their existence. Additionally, an important finding
is that cooperative learning balances the cognitive differences
among students, which originate from the educational and so-
cial gaps they come from [22], providing an added value that
promotes equity and social justice.

Furthermore, the teacher can configure this didactic-
proposal according to various pedagogical needs. For in-
stance, experience refers to the experiences lived by the sub-
ject, mediated through the senses, which transform into ac-
tions or sensory-motor patterns that become incorporated into
the soma and determine their behavior [23], could lead to an
experimental perspective in the laboratory (next work).

5. Conclusions

A didactic-proposal to teach massive-rope in equilibrium
developed from well-established theoretical foundations is
shown. In this, a set of three rules valid for uniform and non-
uniform massive-rope under static equilibrium conditions are
addressed with basic physics.

The teaching experience with first-year engineering stu-
dents shows that they deduced the rules and solved different
problems from them. Also, this shows that the students’ ef-
fort to understand the tension in massive-rope is similar with
parabolic motion.

The first approaching to test the didactic-proposal was de-
veloped into collaborative learning framework. However, it
can be configured to suit pedagogical needs. For example,
from experimental and sensorial view.
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