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Modeling reflection and refraction of freeform surfaces
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In this work, we present a detailed procedure for computer implementation of the laws of refraction and reflection on an arbitrary surface
with rotational symmetry with respect to the propagation axis. The goal is to facilitate the understanding and application of these physical
principles in a computational context. This enables students and instructors alike to develop simulations and interactive applications that
faithfully replicate the behavior of light and sound propagating in a diversity of media separated by arbitrary surfaces. In particular, it can
help to explore freeform optics. Additionally, we include a practical example demonstrating these implementations using eitherMatlab or
open-sourceOctave programming language.
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1. Introduction

The rapid advances in LED technology have opened the ne-
cessity to investigate the focusing and reflecting properties
of a variety of surfaces other than those commonly obtained
from conics, giving birth to a new technology, freeform Op-
tics [1]. This technology is based on Snell’s law of refraction
and the law of reflection that are fundamental in optics and
acoustics, governing what happens to the propagation of light
or sound in a medium when they encounter an interface with
a different medium.

Refraction Snell’s law describes how light and sound
change direction when transitioning from one medium to an-
other with different refractive indices, based on their respec-
tive angles of incidence and refractive indices [2-4]. This
principle is essential for understanding image formation in
lenses and the propagation of sound in various acoustic envi-
ronments. Mathematically, this law can be expressed as:

ni sin θi = nt sin θt. (1)

Here, a ray, representing the propagation of light or sound,
initially propagates in a medium with a refractive indexni

and is incident on a medium with a refractive indexnt. The
incident ray forms an angleθi with respect to the normal of
the surface of the new medium, while the transmitted or re-
fracted ray changes its direction of propagation and travels at
an angleθt relative to the normal of the surface at the same
point, see Fig. 1.

On the other hand, when light or sound strikes a surface
the law of reflection states that the angle of incidence,θi,
equals the angle of reflection,θr, with respect to the normal
to the surface at the point of incidence, see Fig. 1. In mathe-
matical terms [2,3], this law is represented as:

θi = θt. (2)

This law is crucial for explaining how acoustic waves reflect
in enclosed spaces and how images form in optical mirrors.

Ray tracing is a widely used technique in both optics
and acoustics to model wave propagation. In this approach,
waves are approximated as rays that propagate in straight
lines through homogeneous media and refract or reflect when
they encounter interfaces between media with different opti-
cal or acoustic properties. In optics, ray tracing is essential
in the design of optical systems such as lenses, mirrors, and
imaging instruments, where accurately predicting ray paths
is crucial for optimizing image quality and reducing aber-
rations. In acoustics, this technique is useful for predicting
sound propagation in enclosed spaces or urban environments,
where reflections and refractions from surfaces are key to cor-
rectly modeling sound distribution. There are several ray
tracing methods, with the most common being: exact ray
tracing, paraxial ray tracing, matrix methods, and they-nu
method, which uses paraxial ray-trace equations to estimate

FIGURE 1. Geometric parameters of incident, reflected, and trans-
mitted rays on a surface.
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ray heights and slopes at each surface in an optical system
[2,5-9].

In this work, we aim to provide readers with the neces-
sary tools to implement Snell’s Law of refraction and the law
of reflection on an arbitrary surface with rotational symme-
try about the propagation axis, using any programming lan-
guage. In particular, we present a practical example provid-
ing Matlab code, compatible withOctave programming
language (open access software), to demonstrate how these
implementations can be executed [10-12]. The primary ob-
jective is to improve the understanding and extend the ap-
plication of these physical principles using a computational
tool. This will empower students and educators alike to ex-
plore and experiment with interactive simulations that accu-
rately depict the behavior of light and sound interacting with
diverse freeform structures.

The rest of the paper is organized as follows: Section 2
explains the generation of an arbitrary surface where the rays
are incident. Section 3 presents the generation of the incident
rays, followed by Sec. 4, which details the calculation of the
normals to the surface at each point where the rays are inci-
dent. Section 5 then covers the calculation of the refracted
and reflected rays by the surface. In Sec. 6, a series of classic
examples from specialized literature are presented. Section
7 explains the phenomenon of Total Internal Reflection. Fi-
nally, the conclusions are provided in Sec. 8.

2. Surface of the medium

In this work, the interface between the two media is described
by a curve, as ray tracing is conducted on an arbitrary surface
with rotational symmetry around the propagation axis. This
means that both the curve and the rays traced along it can
be rotated around the propagation axis, generating a three-
dimensional ray-tracing model. Therefore, we will explain
how such a curve can be generated.

It is well known that a curve in a plane can be represented
in three different forms, namely, using explicit functions, im-
plicit functions or parametric functions. Some texts also refer
to them indistinctly as equations instead of functions [13,14].

An explicit function involves a correspondence rule with
one independent variable and one dependent variable, as
shown in Eq. (3):

y = f(x), (3)

wherey is the dependent variable andx is the independent
variable. An example of an explicit function isy =

√
1− x2.

An implicit function, on the other hand, does not allow
for a clear distinction between the independent and depen-
dent variables; the dependent variable is not isolated. This is
illustrated in Eq. (4):

f(x, y) = a. (4)

The equation of the unit circle,x2 +y2 = 1, is an example of
an implicit function. Notice that one can be tempted to solve

for y but then one reaches the point wherey is not uniquely
determined for a given value ofx as it occurs for explicit
functions. Another more intricate example is the mathemati-
cian’s love equation,(x2 + y2 − 1)3 − x2y3 = 0, in which it
is not possible to solve for any of the variables.

In a parametric function, the variables are written in terms
of functions of a third independent variable called a parame-
ter, commonly represented byt, and are thus independent of
each other, namely,

x = f(t),

y = g(t). (5)

When the point coordinates(x, y) in the curve are described
as functions oft, as above, it is said that the curve is
parametrized in terms of the parametert.

Generally, to construct a curve, we use the explicit equa-
tion or the parametric equation of the desired curve. The im-
plicit equation is rarely used. Due to its simplicity, in this
work, we will focus only on explicit and parametric func-
tions.

The first step is to generate the curve computationally
once the parametric functions have been established and to-
gether with the range of the parametert. The latter consisting
of a vector withm elements. We will considerti andtf as
the limits of the desired parametert and they are such that
xi = f(ti), yi = g(ti) andxf = f(tf ), yf = g(tf ) are
the endpoints of the curve. It is clear that the value ofm de-
pends on the desired resolution to obtain smooth graphs, and
the larger value for a better resolution. Then we proceed to
evaluate the parametric functions.

To illustrate these steps, we will generate a curve using
theMATLAB(Octave ) programming language. The chosen
curve is given by the following parametric equations:

x(t) = a cos(t) sin(t)2,

y(t) = b sin(t). (6)

The code snippet to generate and plot this curve looks like
this:
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FIGURE 2. The curve was obtained from Eq. (6). For visualization
purposes, we present the surface generated by rotating the curve
around the propagation axis.

This code defines the parametert over the interval
[−π/2.3, π/2.3] with 100 points, calculates the correspond-
ing x andy values using the parametric functions (6), and
then plots the resulting curve. Figure 2 shows the plot of the
curve described by the given parametric equations. Having
generated the curve, we will proceed to create the incident
rays.

3. Incident rays on the curve

Let us considern rays originated from a point source lo-
cated atP0 = (x0, y0) arriving at the curve on a point
Pk = (xk, yk), with k = 1, 2, ...n. Considern < m to avoid
saturation of the plot. The parameterm refers to the number
of samples for the parametert, as defined in the code snip-
pet for the input parametric curve functions. Code snippet
defining incident pointsPk:

Since the pointsPk on the curve are given by the paramet-
ric functions (6), to plot each of the rays emanating from the
point sourceP0 we use the equation of the straight line in
two-point form, namely

y =
yk − y0

xk − x0
(x− x0)− y0. (7)

FIGURE 3. Incident rays on the surface.

Next is the code snippet to implement these equations:

The results are shown in Fig. 3.
Once having defined the points where the incident rays

intersect the surface, the next step involves calculating the
surface normal at each of these points.

4. Normal lines

A normal line to a curve at a specific pointPn is a line that
is perpendicular to the tangent of the curve at that point. The
normal line intersects the curve at the point of tangency and
has a slope that is the negative reciprocal of the slope of the
tangent at that point. The equation of the normal line can be
expressed as:

yN = − 1
Mk

(xN − xk) + yk, (8)

where(xk, yk) is the point of tangency,i.e., the pointsPk,
while Mk is the slope of the tangent to the curve at that point.

For a surface defined by a parametric function, the slope
of this tangent line is given by [13,14]

Mk =
dy

dx

∣∣∣∣
Pk

=
y′(tk)
x′(tk)

, (9)

wherey′(tk) = dy(t)/dt|Pk
, andx′(tk) = dx(t)/dt|Pk

.
This expression represents the derivative ofy with respect to
x evaluated at the pointPk in terms of the derivatives with
respect to the parametert.
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Notice that if we substitute Eq. (9) into Eq. (8), we obtain
the equation of the normal line at each of the pointsPk on the
surface.

For our example, the derivatives of the parametric equa-
tionsx(t) andy(t) are:

Forx(t) = a cos(t) sin2(t):

dx

dt

∣∣∣∣
Pk

= a
[
2 cos2(tk) sin(tk)− sin3(tk)

]
. (10)

Fory(t) = b sin(t):

dy

dt

∣∣∣∣
Pk

= b cos(tk). (11)

Then, the slope of the tangent line at the pointPk in the curve
is:

Mk =
b cos(tk)

a
[
2 cos2(tk) sin(tk)− sin3(tk)

] , (12)

with this equation, we can determine the equation of the nor-
mal line at each of the pointsPk on the curve, which is given
by:

yN =
a

[
sin3(tk)− 2 cos2(tk) sin(tk)

]

b cos(tk)

× (xN − xk) + yk. (13)

To implement this equation, we define a domain forxN

large enough to contain thexk of the curve; the code snippet
in MATLABis as follows:

Notice that the code finds the normal lines to the curve at
each pointPk as shown in Fig. 4.

Once the lines normal to the curve have been calculated,
we will proceed to calculate the reflected and transmitted
rays.

FIGURE 4. Normals to the surface (curve).

5. Reflected or transmitted rays by the surface

With all of the above, we have the necessary to obtain the re-
fracted and reflected trajectories of the incident light or sound
at the surface according to the Snell’s and reflection laws de-
scribed in the introduction. For this purpose, we endeavor to
determine the slopes of the reflected and transmitted rays. We
will make use of auxiliary anglesαk, βk, γk andϕk defined
with respect to the Cartesian reference frame and determined
by the pointPk at the curve as shown in Fig. 1.

A simple trigonometric calculation shows that the aux-
iliary reflected angle is given byγk = 2βk − αk with
βk = tan−1 (−1/Mk), αk = tan−1 (mk); mk andMk the
slopes of the incident ray and of the tangent to the curve at
point Pk, respectively. Then, the slope of the reflected ray at
any pointPk at the curve is given bymrk = tan(γk) and the
reflected rays are determined by the line equation given by

yrk = tan (γk) (xrk − xk) + yk. (14)

Below is the correspondingMatlab (Octave ) code snippet
to plot the reflected rays shown in Fig. 5.
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FIGURE 5. Rays reflected by the surface.

It is important to note that the reflected rays are plotted
from the pointsPk, where the rays strike the curve, to a cer-
tain plane located either in front of or behind the curve. The
latter case occurs for some curves or physical situations in
which the reflected rays propagate towards another point at
the curve, as can be observed in Fig. 5 near the endpoints of
the curve. At this point, for simplicity these secondary reflec-
tions will be neglected, but if required their trajectories can be
obtained following the procedure just described. The choice
of plane depends on the value of the slope: ifγk < 90◦, a
plane located before the curve is chosen; ifγk > 90◦, a plane
located after the curve is chosen.

For the transmitted rays, the slope is given by (see Fig. 1):

mtk = tan (ϕk) , (15)

where

ϕk = βk − θt. (16)

The value ofθt is easily found using Snell’s law, that is,

θt = sin−1

(
n1

n2
sin θi

)
. (17)

Then, the equation of the line with which we will plot the
refracted rays is given by:

ytk = tan (ϕk) (xtk − xk) + yk. (18)

The transmitted rays will be plotted from the curve to a plane
located after the curve, as shown in the following Matlab
code snippet and in Fig. 6.

Observe that in this example, the rays are incident from
a medium with a refractive index ofn1 = 1 into a medium
with a refractive index ofn2 = 1.2.

FIGURE 6. Transmitted rays through the surface.

FIGURE 7. Three-dimensional ray tracing through the surface.

Only for visualization purposes, in Fig. 7 we show the
ray tracing on the three-dimensional surface generated using
Eq. (6). This ray tracing was performed by applying a three-
dimensional rotational matrix to rotate the entire system from
Fig. 6.

6. Other examples

We have developed above a simple code capable of calculat-
ing the reflected and refracted rays from an arbitrary curve
given by the parametric functions Eq. (6). However, the code
is general and it can work for any other curve expressed in
its parametric form. The only required modification is defin-
ing the parametric functions for the coordinates of the curve
in question. For example, we can calculate the reflected rays
by a circular, elliptical, parabolic, or hyperbolic mirror, as
shown in Figs. 8-12, respectively.

We can also calculate the transmitted rays through a cir-
cular, elliptical, parabolic, or hyperbolic surface, as shown in
Figs. 13-17, respectively.
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FIGURE 8. Rays reflected by a circular mirror.

FIGURE 9. Rays reflected by an elliptical mirror witha < b (pro-
late surface).

FIGURE 10. Rays reflected by an elliptical mirror witha > b

(oblate surface).

FIGURE 11. Rays reflected by a parabolic mirror.F is the focus of
the parabola.

FIGURE 12. Rays reflected by a parabolic mirror.F is the focus of
the parabola.

FIGURE 13. Rays reflected by a hyperbolic mirror.
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FIGURE 14. Rays refracted by an elliptical surface witha < b

(prolate surface).

FIGURE 15. Rays refracted by an elliptical surface witha > b

(oblate surface).

FIGURE 16. Rays refracted by a parabolic surface.F is the focus
of the parabola.

FIGURE 17. Rays refracted by a hyperbolic surface.

7. Total Internal Reflection

So far, all the examples we have performed meet the condi-
tion ni > nt. This is because the transmitted angle,θt, given
by Eq. (17), always results in a real value under these condi-
tions. However, if we consider the case wherent > ni, there
will be an angle of incidence,θi, beyond whichθt becomes
imaginary [15]. This angle is known as the critical angle and
is calculated using the following formula:

θc = sin−1

(
nt

ni

)
. (19)

Physically, this equation tells us that when a ray passes
from a medium with a higher refractive index (denser
medium) to a medium with a lower refractive index (less
dense medium), the following phenomena occur:

1. If the angle of incidence is less than the critical angle,
the ray refracts out of the denser medium.

2. If the angle of incidence is equal to the critical angle,
the refracted ray travels along the boundary.

3. If the angle of incidence is greater than the critical an-
gle, the light ray is completely reflected back into the
denser medium. This phenomenon is known as total
internal reflection.

For example, the critical angle,θc, for the water-air inter-
face (wherenwater = 1.33 andnair = 1) can be calculated as
follows:

θc = sin−1

(
1

1.33

)
≈ 48.6◦. (20)

Thus, any ray hitting the water-air boundary at an angle
greater than 48.6◦ will undergo total internal reflection, as
shown in Fig. 18.
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FIGURE 18. Representation of total internal reflection through a
circular surface withni > nt.

8. Conclusions

In this paper, we have presented a general method for im-
plementing Snell’s law and the law of reflection on a cho-

sen curve, using only geometry and basic mathematics, such
as differential calculus. This approach allows for the analy-
sis and prediction of the behavior of light and sound as they
encounter curved surfaces, facilitating the understanding of
complex optical and acoustic phenomena.

Furthermore, we have shown a series of practical exam-
ples that illustrate how to apply these laws to different types
of curves. These examples demonstrate the versatility and
usefulness of our method in calculating Snell’s law and the
law of reflection and its applicability to Freeform Optics with
rotational symmetry.

We conclude that this approach is a powerful tool for ed-
ucation and research in both optics and acoustics. With the
basic ideas and tools used here an interesting challenge would
be to extend the problem to a three-dimensional surface using
vector calculus.
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