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e-mail: 1130051c@umich.mx
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In this paper, we explain how to use the Fast Fourier Transform (FFT) to solve partial differential equations (PDEs). We start by defining
appropriate discrete domains in coordinate and frequency domains. Then describe the main limitation of the method arising from the
Sampling Theorem, which defines the critical Nyquist frequency and the aliasing effect. We then define the Fourier Transform (FT) and the
FFT in a way that can be implemented in one and more dimensions. Finally, we show how to apply the FFT in the solution of PDEs related
to problems involving two spatial dimensions, specifically the Poisson equation, the diffusion equation and the wave equation for elliptic,
parabolic and hyperbolic cases, respectively.
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1. Introduction

The behavior of physical systems is mostly described with
Partial Differential Equations (PDEs). In some simple cases,
when symmetries are assumed, closed solutions to such PDEs
can be found; however in most cases, where no symmetries
can be assumed, it is necessary to calculate numerical solu-
tions. This is why the numerical solution of PDEs can be a
discipline in itself, helpful at solving Physics problem of cur-
rent interest. Inherent to the numerical solution of PDEs is
a variety of numerical methods used, among which there are
spectral methods, methods based on finite differences, meth-
ods specific for elliptic problems or methods designed for ini-
tial value problems involving evolution (seee.g. [1]).

In this journal various numerical methods to solve PDEs
have been explained, for example for the Schrödinger equa-
tion [2] and wave equation [3] using Finite Differences meth-
ods along with different evolution schemes, General Rela-
tivity Equations using Spectral Methods [4], Relativistic Hy-
drodynamics Equations using Finite Volume based methods
[5,6], including the evolution of the accretion of a fluid into a
black hole [7].

The aim of this paper is to explain the use of the Discrete
Fourier Transform (DFT) and its use in the solution of PDEs,
which would cover another useful numerical method. In the
continuum, the method is easy to describe, and consists in
transforming a PDE from the space-time domain into the fre-
quency domain using the FT, which simplifies the problem
by converting derivatives into algebraic terms, which are eas-
ier to handle and allowing an easy-to-obtain solution to the
PDF in the frequency domain. The solution to the problem in

the space-time domain would simply be the inverse Fourier
Transform of the solution found in the frequency domain.

However, in practice, for rather general and complex to
solve PDEs, a numerical solution is searched on a discrete
domain, both, in the space and frequency domains and there-
fore the discrete version of the FT has to be defined, as well as
its inverse. The discretization implies limitations on the spec-
trum of functions in the frequency domain due to sampling
errors that have to be taken into account. In this paper we
explain how to calculate the DFT, its inverse, as well as their
limitations, followed by the description of the most popular
method to calculate the FT, the Fast Fourier Transform (FFT)
method [8] that speeds up the calculation. We then proceed
to explain, with examples of PDEs defined on domains with
two spatial dimensions, the use of the FFT to solve elliptic,
parabolic and hyperbolic equations, that we illustrate with the
Poisson, Dissipation and Wave equations, respectively.

The paper is organized as follows, in Sec. 2 we describe
the DFT and its inverse, later in Sec. 3 we show how to solve
PDEs and finally in Sec. 4 we draw some final comments.

2. The Method

In this section, we describe the approximation of the Fourier
Transform, starting with the one-dimensional case and ex-
tending the method to higher dimensions. These approxima-
tions rely on defining functions over a discrete domain and
finding arithmetic representations of the Fourier operators on
that domain. Before delving into this, however, it is crucial to
introduce a key theorem in signal theory: the sampling theo-
rem.
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2.1. Sampling Theorem and Its Implications

Consider a continuous functionp(t) sampled at regular inter-
vals of length∆t. If its FT [9,10]

F {p(t)} := p̂(f) =
∫ ∞

−∞
p(t)e2πift dt, (1)

has a finite bandwidth, meaning thatp̂(f) = 0 for frequen-
cies higher than a critical one|f | ≥ fc, wherefc = 1/2∆t
is the Nyquist frequency, then the functionp(t) is completely
determined by its sampled valuespn = p(tn) with tn = n∆t,
for n = −∞, . . . ,−1, 0, 1, . . . ,∞. In this case,p(t) can be
reconstructed exactly from its samples using the following
interpolation formula:

p(t) = ∆t

∞∑
n=−∞

pn
sin [2πfc(t− n∆t)]

π(t− n∆t)
. (2)

The proof of this result involves the FT of both the Dirac
comb and the rectangle function [CITA]. While we do not
focus on the detailed proof here, we will discuss the key im-
plications of this theorem for sampled signals.

First, any function that is constructed from discrete sam-
ples taken at regular intervals∆t will have a Fourier spectrum
limited to the bandwidth|f | < fc. Second, if the sampling
interval∆t is too large, a phenomenon known as aliasing will
occur. Aliasing causes frequencies higher than the Nyquist
frequency to be misrepresented, or “folded”, into the interval
|f | < fc, leading to the distortion of the sampled signal.

With this in mind, any numerical or observational method
that relies on a finite sample of a function can only capture a
limited spectrum of frequencies. As a consequence, some
frequencies of interest outside this spectrum may not be de-
tected. One strategy to mitigate aliasing is to use multiple
sets of samples with smaller intervals, ensuring that the sig-
nals are sampled consistently and that higher frequencies are
accurately represented.

With this understood, we are now prepared to apply a dis-
crete version of the FT (1).

2.2. Discrete Fourier transform

To construct the discrete version of the FT, we first define a
discrete, finite time domain:

tn = n∆t, n = 0, 1, 2, ..., N − 1, (3)

whereN is the number of points in the domain, and a func-
tion p(t) evaluated at these points is denoted aspn. With
this, the integral in Eq. (1) can be approximated by a Rie-
mann sum:

p̂(f) =
N−1∑

j=0

pje
2πifj∆t∆t +O(∆t2). (4)

Next, to establish a correspondence between the time and fre-
quency domains, we define a discrete frequency domain in-
stead of treating the frequencyf as continuous:

fk =
k

N∆t
, k = 0, 1, 2, ..., N − 1, (5)

where the FT is defined only at the points of this discrete fre-
quency domain and denoted asp̂k = p̂(fk). Consequently,
the FT takes the form

p̂k =
N−1∑

j=0

pje
2πijk/N∆t +O(∆t2). (6)

In this way, the DFT of the discrete function~p =
(p0, p1, p2, ..., pN−1)T is defined as

Pk =
N−1∑

j=0

pjω
jk
N , (7)

whereωN := e2πi/N . Equivalently, we can express this for-
mula in matrix form:

DFT (~p) := ~P = W~p, (8)

where the matrixW is given by

W =




ω0·0
N ω0·1

N · · · ω
0·(N−1)
N

ω1·0
N ω1·1

N · · · ω
1·(N−1)
N

...
...

. . .
...

ω
(N−1)·0
N ω

(N−1)·1
N · · · ω

(N−1)·(N−1)
N




. (9)

where the dot in the exponents is a product. From these two
expressions of the DFT, two important properties of the DFT
arise:

1. The DFT is periodic,i.e., Pk+N = Pk.

2. The inverse of the matrixW is given byW−1 =
(1/N)W†, whereW† is the conjugate transpose of
W.

The second property allows us to recover the original func-
tion from its Fourier components via the inverse DFT given
by:

pj =
1
N

N−1∑

k=0

Pkω−jk
N , (10)

or equivalently, in matrix form:

iDFT (~P ) := ~p =
1
N

DFT (~P ∗)∗ =
1
N

W∗ ~P , (11)

where∗ denotes the complex conjugate. As an example of
the approximated FT using the DFT, consider the function

p(t) = e−t2 , (12)

whose exact FT according to (1) is

p̂(f) =
√

πe−(πf)2 . (13)
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FIGURE 1. a) Approximation of the FT in the original frequency
domain. b) The same signal after frequency shifting, aligned with
the Nyquist frequency.

We compute the DFT approximation in the discrete domain
[0, 20), with a time step∆t = 20/N , whereN = 32 points.

An important aspect of spectral analysis is frequency
shifting. The frequencies defined by the DFT in Eq. (7) do
not correspond directly to the Nyquist frequency for indices
k > N/2. However, taking advantage of the signal’s period-
icity, we can shift these frequencies to align with the Nyquist
frequency. This procedure is illustrated in Fig. 1, where the
left panel presents the Fourier transform in the frequency do-
main as obtained from formula (7), and the right panel shows
the same signal shifted to account for periodicity, this time
correctly aligned with the Nyquist frequency.

It is important to note that calculating the DFT requires
O(N2) operations, making it computationally expensive. In
order to optimize computer resources, Cooley and Tukey de-
veloped a more efficient algorithm, nowadays known as the
Fast Fourier Transform (FFT) [8], which significantly re-
duces the computational cost and that we describe now.

2.3. Fast Fourier transform

The essential idea behind the Fast Fourier Transform (FFT)
is that the Discrete Fourier Transform (DFT) for a dataset
with N points can be efficiently decomposed into two smaller
DFTs, each withN/2 points. One of these smaller DFTs in-
volves the even-indexed points, while the other involves the
odd-indexed points.

Given a discrete sequencepj , wherej = 0, 1, 2, ..., N−1
and assumingN is even, the Fourier transformPk can be ex-
pressed as the sum of two transforms, each of lengthN/2:

Pk =
N/2−1∑

j=0

p2jω
(2j)k
N +

N/2−1∑

j=0

p2j+1ω
(2j+1)k
N

=
N/2−1∑

j=0

p2jω
jk
N/2 +

N/2−1∑

j=0

p2j+1ω
jk
N/2ω

k
N .

Here,ωk
N is independent ofj, so it can be factored out of the

second summation. Therefore, we can rewrite the equation
as:

Pk = PE
k + ωk

NPO
k , k = 0, 1, 2, . . . , N/2− 1, (14)

wherePE
k andPO

k represent the Fourier transforms of the
even and odd-indexed components of the sequence, respec-
tively. In this decomposition,k runs overN/2 values for
both the even and odd transforms, effectively reducing the
original problem into two smaller DFTs.

For these smaller DFTs, the following periodicity condi-
tions apply:

PE
k+N/2 = PE

k ,

PO
k+N/2 = PO

k .

Additionally, the factorωk
N satisfies the important identity:

ω
k+N/2
N = −ωk

N . (15)

The remainingN/2 terms can be computed using:

Pk+N/2 = PE
k − ωk

NPO
k , k = 0, 1, 2, . . . , N/2− 1.

(16)

This process effectively reduces the computational complex-
ity from O(N2) in the case of a direct DFT toO(N log N),
making the FFT much more efficient for largeN .

To illustrate this efficiency gain, we compare the per-
formance of the DFT and the FFT for the previous exam-
ple, using a time step∆t = 20/N , whereN = 2m and
m = 3, 4, 5, . . . , 15. Figure 2 shows the normalized CPU
time as a function ofN , relative to the maximum value cal-
culated forN = 215. As expected, the DFT scales as∼ N2,
while the FFT scales as∼ N log N . For instance, when
N = 215, the FFT is approximately 2000 times faster than
the DFT.

The number of operations is the main reason why the FFT
is used in practice, and the fact thatN has to be of the form
2m is a good price to pay. In the examples developed below,
we use the FFT approach.

FIGURE 2. Normalized CPU time as a function ofN for the cal-
culation of the Discrete Fourier Transform using the DFT and FFT
methods. Fits are also shown for the∼ N2 and∼ N log N scaling.
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2.4. Discrete Fourier transform in two and more dimen-
sions

Consider the discrete two-dimensional domainDd =
{(xj , yk)} such thatxj = j∆x and yk = k∆y for j =
0, 1, . . . , Nx − 1 y k = 0, 1, . . . , Ny − 1. There we define
the complex functionpjk = p(xj , yk) at each point ofDd,
which in general can be complex. The two-dimensional Dis-
crete Fourier Transform (DFT) ofpjk, denoted asPab, can be
expressed as:

Pab =
Nx−1∑

j=0

Ny−1∑

k=0

pjke2πiaj/Nxe2πibk/Ny . (17)

The corresponding discrete frequency domains are defined as
follows:

kx
a =

a

Nx∆x
, a = 0, 1, 2, . . . , Nx − 1,

ky
b =

b

Ny∆y
, b = 0, 1, 2, . . . , Ny − 1. (18)

along each direction in the two-dimensional frequency do-
main. In order to compute the DFT we can reorganize
Eq. (17) in the following form:

Pab =
Ny−1∑

k=0




Nx−1∑

j=0

pjke−2πiaj/Nx


 e−2πibk/Ny . (19)

We can view the expression inside the brackets asP x
ak =∑Nx−1

j=0 pjke−2πiaj/Nx , as the DFT along thex-axis for a
fixed indexk. Once we compute theNy DFTs along the
x-axis, we can write:

Pab =
Ny−1∑

k=0

P x
ake−2πikb/Ny . (20)

Notice that this yields another expression representingNx

DFTs in one dimension, this time along they-axis for index
a. Consequently, we can obtain the DFT of a function de-
fined on a two-dimensional domain by calculating the DFT
in one dimension sequentially. If bothNx andNy are powers
of two, we can efficiently compute them using the FFT.

Finally, notice that this procedure can be extended analo-
gously to functions defined on ann-dimensional domain.

3. Applications

In this work, we consider applications involving equations
whose unknowns depend on two spatial coordinates, under
this restriction we show how to solve elliptic, parabolic and
hyperbolic equations.

3.1. Example: elliptic PDE

The Poisson equation inn dimensions is expressed as:

∇2u(~x) = s(~x), ~x ∈ D ⊂ Rn, (21)

whereu is the potential function ands is a source term. This
equation can be solved given appropriate boundary condi-
tions on∂D. To analyze the Poisson equation in Fourier
space, we apply the Fourier transform, denoted byF , to ob-
tain:

−ω2F{u} = F{s}, (22)

this relation is derived from the differentiation property of the
Fourier transform, which states that:

F
{

∂ku(~x)
∂xk

i

}
= (−iωi)kF{u(~x)}.

wherexi andωi are thei − th coordinates of~x and~ω in the
coordinate and frequency spaces, respectively. For the calcu-
lation of the FT ofu, specific conditions are to be filfilled.
One critical condition is the regularity of the source func-
tion s. For the numerical methods employed to approximate
the solution, it is necessaryF{u}(ω = 0) to be finite. This
requirement implies that the left-hand side of Eq. (22) must
vanish, leading us to conclude that the right-hand side must
also be zero.

To ensure this, we define a new function:

g = s− s̄,

wheres̄ represents the average value of the source terms over
the volumeV :

s̄ =
1
V

∫
s(~x)dnx, (23)

with V =
∫

D
dnx being the volume occupied by the domain

D. Thus, we can rewrite the Poisson equation as:

∇2u = g = s− s̄. (24)

The solution to the Eq. (24) can therefore be expressed as:

u(~x) = F−1

{
−F{g}

ω2

}
, (25)

However, this expression can only be solved exactly in spe-
cific cases. In practical applications, we replace the Fourier
operatorF with the Fast Fourier Transform (FFT) in the dis-
crete domainDd, sampled with resolutions∆xi.

As an example of the use of the FFT in this type of prob-
lem, consider the two-dimensional casen = 2. More specifi-
cally let us consider the Poisson equation sourced by a Gaus-
sian:

s(x, y) = Ae−(x2+y2)/σ2
, (26)

and the problem defined in the domainD = [−2, 2]2, sam-
pled with resolutions∆x = ∆y = 4

N , whereN = 64 and
N = 128. Moreover, consider the parametersA = 1 and
σ = 0.1.

The numerical solution to this problem is shown in Fig. 3.
The Fig. 3a) presents the solution withN = 64, while the
Fig. 3b) shows the solution withN = 128, illustrating the
consistency of the numerical solutions.

Rev. Mex. Fis. E22020221
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FIGURE 3. Numerical solutions of the two-dimensional Poisson
equation with a Gaussian source. The a) panel shows the solution
for a grid resolution ofN = 64, while the b) panel displays the
solution forN = 128. The results demonstrate how increasing the
grid resolution leads to a more refined and accurate representation
of the solution.

3.2. Example: Parabolic equation

The paradigm of a parabolic equation is the Diffusion Equa-
tion:

∂u

∂t
= ∇2u + s, ~x ∈ D ⊂ Rn, (27)

which defines an initial value problem (IVP) provided the ini-
tial conditions foru:

u(0, ~x) = f(~x). (28)

Here,s is a source term, typically interpreted as a reaction
term. In Fourier space, this IVP becomes:

dû

dt
= −ω2û + ŝ, û(0) = f̂(~ω), (29)

whereû = F(u) and ŝ = F(s) are the FT ofu ands, re-
spectively. Notice that this expression is a set of Ordinary
Differential Equations (ODEs) for̂u and for each value of
ω. This set of ODEs for different values ofω can be solved
numerically in general with simply an ODE integrator. For-
tunately, for the special case wheres = 0, which we also
consider here, there is a closed-form solution:

û =

{
f̂ e−ω2t if ω > 0,

f̂ if ω = 0,
(30)

and therefore the solution to the original problem isu =
F−1(û). In most cases, this cannot be solved exactly, but
we can observe the asymptotic behavior: ast → ∞, the
unique value that does not vanish isf̂(0), leading to the con-
clusion that the asymptotic solution of the Diffusion Equa-
tion is u → f̄ . For example, in the context whereu repre-
sents temperature, it redistributes throughout the entire do-
main, eventually reaching thermodynamic equilibrium; con-
sequently, the quantitȳu must be considered using the FFT
method.

As a particular example in two dimensions, we solve
the Diffusion Equation in the spatial domainD = [−1, 1]2,
discretized with∆x = ∆y = 2/N , whereN = 128 points

FIGURE 4. Snapshots of the numerical solution of the two-
dimensional Diffusion Equation with a Gaussian initial condition
without source, shown at different times. The diffusion process
leads to a progressive dissipation of the initial profile.

FIGURE 5. Normalized average value of the functionu over time,
relative to the initial averagēf . The plot highlights the conserva-
tion of ū throughout the diffusion process. Notice that the scale in
the vertical axis is10−12 + 1, thus the plot indicates that the ratio
is nearly a perfect̄u/f̄ ∼ 1.

along each direction. The time domain is set ast ∈ [0, 10].
We solve this IVP, without sources = 0, using the following
initial Gaussian profile:

f(x, y) = Ae−(x2+y2)/σ2
, (31)

whereA = 1 andσ = 0.1. Figure 4 shows snapshots of
the solution at various time steps. As expected, the initial

Rev. Mex. Fis. E22020221
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Gaussian profile dissipates over time, gradually approaching
a uniform value, consistent with the asymptotic behavior of
the diffusion process.

In Fig. 5, we present the time evolution of the average
valueū, normalized with respect tōf , the average of the ini-
tial condition. The result demonstrates that the FFT method
conserves this quantity throughout the evolution.

3.3. Example: hyperpolic PDE

The study of the wave equation is a classic in Physics and
Mathematics, because it describes a wide variety of phenom-
ena, from the propagation of light and sound until Einstein’s
equations for the evolution of the spacetime geometry [3].
The non-homogeneous wave equation is a hyperbolic partial
differential equation, and inn dimensions, it is written as

∂2u

∂t2
− c2∇2u = s, ~x ∈ D ⊂ Rn, (32)

whereD is the domain of the wave functionu, s is a source
which in general can depend on position and time andc is
the velocity of propagation. In what follows, we usec = 1,
knowing that the solutions for another arbitrary velocity can
be found by rescaling time ast → ct.

Equation (32) can be viewed as an Initial Value Problem
(IVP) provided initial conditions foru and∂tu at initial time
t = 0 and boundary conditions at∂D:

u(0, ~x) = f(~x),

∂u

∂t
(0, ~x) = g(~x). (33)

As mentioned above, the FT method can be easily applied in
periodic domains; thus, boundary conditions for the problem
(32)-(33) will be assumed to be periodic. These ingredients
define a well-posed IVP.

For the construction of the solution, we remind that
û = F(u). Then, Eq. (32) and initial conditions (33) in the
Fourier space read:

d2û

dt2
+ ω2û = ŝ, I.C.





û(0) = f̂(~ω)

dû

dt
(0) = ĝ(~ω).

(34)

Notice that the wave equation in Fourier space is a family of
ODEs for forced harmonic oscillators driven by an external
force ŝ, for each value of the frequencyω. In order to use
standard ODE integrators, we write the oscillator equations
as first-order systems of equations:

dû

dt
= v,

dv

dt
= −ω2û + ŝ, (35)

In general, these equations can be integrated numerically us-
ing, for example, any flavor of Runge-Kutta methods. In the
case whens is time independent, the system reduces to that
of a forced oscillator and exact solutions are found:

(i) Forω = 0

û(t) =
1
2
ŝt2 + ĝt + f̂ , (36)

(ii) Forω 6= 0

û(t) = (f̂ − ŝ

ω2
) cos (ωt) +

ĝ

ω
sin(ωt). (37)

Then, the only step remaining to construct the solution to the
original wave equation is to calculateu = F−1(û).

In summary, the wave equation in a periodic domain is
solved using the FFT with the following recipe:

- Define the equation and initial conditions.

- Write the equation and initial conditions in Fourier
space.

- Write the resulting equation as a set of first-order
ODEs in time.

- Solve the system using numerical integration. Ifs is
time-independent, use expressions (36) and (37) to find
the solutionû.

- Recover the solution to the original equation using the
IFFT.

Now, we exemplify the method for the case of two spatial
dimensions with two cases: the first one involves a source
term s = 0, and the second one includes a time-dependent
source.

3.3.1. Example withs = 0

The problem is to solve the wave equation for an initial time-
symmetric spherically symmetric Gaussian pulse in the do-
mainD = [−1, 1]2. The set-up of the problem is then with
s = 0 and initial conditions

f(x, y) = Ae−(x2+y2)/σ2
,

g(x, y) = 0.

in the discrete domain that usesN = 128, to be integrated
in the time domaint ∈ [0, 2]. In Fig. 6, we illustrate the
numerical solution at various times using the Eqs. (36) and
(37). Notice that the initial Gaussian spherical pulse evolves
as a spherical wave whose amplitude decreases as1/r prior
to reaching the boundary, when the wave-front arrives at the
boundary of the domain, it reenters through the opposite side
of the domain and starts to produce the expected interference
patterns.

In Fig. 7, we present the time evolution of the average
valueū, normalized with respect tōf , the average of the ini-
tial condition. The results demonstrate that the FFT method
conserves this quantity throughout the simulation.

Rev. Mex. Fis. E22020221



NUMERICAL SOLUTION PARTIAL DIFFERENTIAL EQUATIONS USING THE DISCRETE FOURIER TRANSFORM 7

FIGURE 6. Snapshots of the solution for the cases = 0, using
N = 128 at timest = 0, 0.5, 1, 1.5, 2.0 and 2.5.

FIGURE 7. Normalized average value of the functionu over time,
relative to the initial averagēf . The plot highlights the conserva-
tion of ū throughout the evolution. Notice again that the scale in
the vertical axis is10−12 + 1, thus the plot indicates that the ratio
is nearly a perfect̄u/f̄ ∼ 1.

3.3.2. Example with source

Another typical solution of the wave equation involves a
source that orbits the origin on thexy-plane, leaving behind
a strip. The source is given by:

s(t, x, y) = Ae−[(x−x0)
2+(y−y0)

2]/σ2
s cos(γt), (38)

where the center of the source(x0, y0) orbits in a circle of ra-
diusrs, described byx0 = rs cos(Ωt) andy0 = rs sin(Ωt).

FIGURE 8. Snapshots of the solution to the wave equation with
an orbiting source, computed usingN = 128 at times t =
0, 0.5, 1, 1.5, 2.0, and2.5. The solution displays the expected
evolution over time.

In this example, we use the parametersA = 1, σs = 0.1,
angular frequencyΩ = 5, andγ = 10, within the domain
D = [−2, 2]2 discretized with spatial resolutionh = ∆x =
∆y = 4/N , whereN = 64, 128, and 256. The temporal
resolution is set to∆t = 0.25h. Various snapshots of the
solution, obtained using the Runge-Kutta 4 (RK4) scheme to
integrate Eq. (35), are shown in Fig. 8.

Next, we perform a self-convergence test using three nu-
merical solutions. Letu1, u2, andu3 represent the solutions
obtained with resolutionsh, h/2, andh/4, respectively; no-
tice that since the spatial and temporal resolutions are pro-
portional toh, time resolution is also doubled. The exact
solutionu0 can be approximated as:

u0 = ul + ε

(
h

2l−1

)4

,

with l = 1, 2, 3, where the exponent 4 corresponds to the
fourth-order error of the RK4 method. Thus, if the numer-
ical solutions self-converge, the following relation between
the numerical solutions should hold:

u2 − u1

u3 − u2
∼ 24. (39)

Although this is a local condition, we can verify it by examin-
ing global quantities, such as the average valuesūl. Figure 9
confirms that the relation above holds beautifully. This in-
dicates that the solutions are self-convergent, in one word,
numerically correct.

Rev. Mex. Fis. E22020221
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FIGURE 9. Self-convergence test for the numerical solutions of the
wave equation with an orbiting source, calculated usingN = 64,
128, and256 points. The results show a convergence factor of ap-
proximately16 = 24, as expected for the RK4 method.

4. Final comments

We have presented the basic elements needed for the calcu-
lation of the DFT and the FFT in one and more dimensions,
along with the restrictions on the calculations of the trans-
form. We show explicitly with an example the scaling of
the complexity of the two algorithms, illustrating the typi-
calO(N log N) number of operations of the FFT, which is
smaller than theO(N2) complexity of the DFT when the

number of points of the discrete domainN is large.
We then applied the calculation of the FFT to the solu-

tion of Partial Differential Equations, in examples involving
two spatial dimensions. Specifically, the Poisson equation
to illustrate the solution of an elliptic equation, the diffusion
equation as an example of a parabolic equation and the wave
equation as the paradigm of hyperbolic equations. We have
shown step by step how to construct reliable numerical solu-
tions of these examples and expect this paper sets a starting
point for students to tackle state of the art problems with this
method.

As motivation to learn this method, we can mention that
the method of this paper serves to solve systems of cou-
pled equations, for example the simultaneous Schrödinger-
Poisson system that helps to model bosonic dark matter
[11,12], and is also the workhorse method to simulate station-
ary and dynamic scenarios of laboratory Bose-Einstein Con-
densates [13]. Going even further, the quantum version of the
FT is currently being implemented to solve PDEs in quantum
computers [14], including an interesting variety of physical
scenarios like plasma physics and fluid dynamics [15-17], as
well as financial applications [18].
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7. F. S. Guzḿan Murillo et al., Spherical accretion of a perfect
fluid onto a black hole,Rev. Mex. Fis. E18 (2021) 020206 1-
24, https://doi.org/10.31349/RevMexFisE.18.
020206 .

8. J. W. Cooley and J. W. Tukey, An Algorithm for the Ma-
chine Calculation of Complex Fourier Series,Math. Comput.
19 (1965) 297,https://doi.org/10.2307/2003354

9. M.R. Spiegel, Schaum’s Outline of Fourier Analysis with Ap-
plications to Boundary Value Problems, Schaum’s Outline Se-
ries (McGraw Hill LLC, 1974).

10. W. H. press, S. A. Teukolsky, W. T. Vetterling and B. P. Flan-
nery, Numerical Recipes: The Art of Scientific Computing
(Cambridge University Press, 1986).

11. P. Moczet al., Galaxy formation with BECDM I. Turbulence
and relaxation of idealized haloes,Mon. Not. Roy. Astron. Soc.
471(2017) 4559,https://doi.org/10.1093/mnras/
stx1887
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