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Handling coherent states by undergraduates students may be a hard task, as they have to deal with Glauber’s seriese−(|α|2/2)
∞∑

n=0

(αn/
√

n!)

φn(x). We show here that the task can be greatly simplified by introduction of a novel compact formula for Glauber coherent states employed
in by Ferraryet al., This expression is obtained by solving the basic differential equation associated to coherent statesa|α〉 = α|α〉.
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1. Introduction

Coherent states (CS) constitute a well-developed and useful
thematic structure that is applied in many physics areas. The
literature is immense. An extremely short, illustrative but by
no means exhaustive, is that of Refs. [1–6] and references
therein. A coherent state is that quantum state that shows a
dynamic closely resembling that of a classical harmonic os-
cillator (HO). Coherent states emerge in the quantum theory
of a variegated range of systems [2].

However, the beginner usually faces difficulties in han-
dling CS as defined by Glauber’s seriesi. A somewhat
more pedagogical treatment should be welcome. This is our
present goal. We propose to start teaching by introducing the
creation and destruction operators for the harmonic oscilla-
tor, then just solve the defining equationa|α〉 = α|α〉, which
is easily accomplished.

In order to provide the reader with an alleviated learning
job, we will use a compact closed expression for CS, recently
used in [3], that can be easily handled by beginners and non-
experts in Glauber’s theory.

With this purpose we proceed as follows:

1) From the coherent states’ defining equationa|α〉 =
α|α〉 we obtain a compact form for the solution of the
associated differential equation.

2) This solution is the compact CS expression that consti-
tutes our main result.

3) We then show that this compact expression leads to the
Glauber’s series procedure.

4) Our formulation is used, as an example, to easily derive
uncertainty relations.

2. Compact Coherent states

Let us briefly remind the reader about the standard coherent
states of the harmonic oscillator (HO)|α〉 [4–6]. A coher-
ent state|α〉 is a specific kind of quantum state of minimum
uncertainty, the one that most resembles a classical state. It
is applicable to the quantum harmonic oscillator, the electro-
magnetic field, etc., and describes a maximal kind of coher-
ence and a classical kind of behavior.

It is very well known the annihilation operator for the
one-dimensional harmonic oscillator is given by [4–6]

â =
mwx̂ + ip̂√

2~mw
. (1)

In the x-representation of Quantum Mechanics, this operator
is expressed via

â(x) =
1√

2~mw

(
mwx + ~

d

dx

)
. (2)

Thus, a coherent state is defined as the eigenfunction

â(x)ψα(x) =
1√

2~mw

(
mwxψα(x) + ~

dψα(x)
dx

)

= αψα(x), (3)

or, equivalently,

dψα(x)
dx

=

(√
2mw

~
α− mwx

~

)
ψα(x). (4)

This is a simple differential equation that can be quite easily
solved right now. Proceeding to do it constitutes the novel
didactic tool of our paper. The solution of Eq. (4) reads

ψα(x) = Ce−(mwx2/2~)e
√

(2mw/~)αx. (5)
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The constantC can be evaluated using the normalization con-
dition

∞∫

−∞
|ψα(x)|2dx = |C|2

∞∫

−∞
e−(mw/~)x2

× e
√

2(α+α∗)xdx = 1. (6)

Now, we effect the change of variables
√

(mw/~)x = y.
Accordingly,

∞∫

−∞
|ψα(x)|2dx = |C|2

√
~

mw
e((α+α∗)2/2)

×
∞∫

−∞
e−(y−((α+α∗)/

√
2))2dy = 1. (7)

By recourse to the result given in the well known Table [8] in
Ref. we then obtain

∞∫

−∞
e−(y−((α+α∗)/

√
2))2dy =

√
π. (8)

As a consequence,

C =
(mw

π~

)(1/4)

e−((α+α∗)2/4). (9)

Thus, we have forψα(x) the expression

ψα(x) =
(mw

π~

)(1/4)

e−((α+α∗)2/4)

× e−(mwx2/2~)e
√

(2mw/~)αx, (10)

or, equivalently,

ψα(x) =
(mw

π~

)(1/4)

eiαRαI e−(α2/2)e−(|α|2/2)

× e−(mwx2/2~)e
√

(2mw/~)αx, (11)

whereα = αR + iαI . As eiαRαI is an imaginary phase, it
can be eliminated from (11) to finally obtain

ψα(x) =
(mw

π~

)(1/4)

e−(α2/2)e−(|α|2/2)

× e−(mwx2/2~)e
√

(2mw/~)αx. (12)

Thus,

|α〉 =
(mw

π~

)1/4

e−(α2/2)e−(|α|2/2)

×
∫

e−(mwx2/2~)e
√

(2mw/~)αx|x〉dx. (13)

We have here achieved our goal: having at our disposal a
compact, exact expression (12) for dealing with the coher-
ent state|α〉, that can be easily handled for any application
one may have in mind. The issue is to guarantee that the
above expression, that can be found in [3], is consistent with
the standard, text-book treatment of coherent states. This we
will tackle next.

3. Comparison with the standard Glauber
theory

Let us briefly remind the reader of the standard Glauber treat-
ment for the coherent states of the harmonic oscillator (HO)
|α〉 [4–6]. The states|α〉 are normalized,i.e., 〈α|α〉 = 1,
and they provide us with a resolution of the identity opera-
tor [4–6]

∫
d2α

π
|α〉〈α| = 1, (14)

which is a completeness relation for the coherent states [6].
The standard coherent states|α〉 for the harmonic oscillator
are eigenstates of the annihilation operatorâ, with complex
eigenvalues

α =
mwx + ip√

2~mw
, (15)

which satisfyâ|α〉 = α|α〉 [6]. These brief lines constitute
the hard-core of the Glauber-approach.

We prove below that the coherent states (13) coincide
with the above Glauber-ones.

Then−th HO eigenfunction is

φn(x) =
(mω

~

)(1/4)

Hn

(√
mω

~
x

)
, (16)

whereHn is Hermite’sn−th order generalized function

Hn(x) =
(
π1/22nn!

)−(1/2)

e−(x2/2)Hn(x), (17)

while Hn is the concomitant Hermite polynomial. The gist
of our demonstration is to start with Eq. (12), expand it in
a Hermite series and verify that one arrives to the celebrated
Glauber expansion for a coherent state.

In thex-representation, if we expand it in an appropriate
basis, the coherent state (12) reads

ψα(x) =
(mw

π~

)(1/4)

e−(α2/2)e−(|α|2/2)

× e−(mwx2/2~)e
√

(2mw/~)αx =
∞∑

n=0

anφn(x), (18)

so that

an =
∫

ψα(x)φn(x)dx, (19)
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or

an =
(mw

π~

)(1/4)

e−(α2/2)e−(|α|2/2)

×
∫

e−(mwx2/2~)e
√

(2mw/~)αxφn(x)dx. (20)

A Hermite formulation is thus the following

an =
(mw

~

)(1/2)

π−1/4e−(α2/2)e−(|α|2/2)

×
∞∫

−∞
e−(mwx2/2~)e

√
(2mw/~)αxHn

×
(√

mw

~
x

)
dx. (21)

We use now Eq. (17) with argument
√

(mw/~)x and have

an =
(mw

~

)1/2

π−1/4
(
π

1
2 2nn!

)−1/2

e−(α2/2)e−(|α|2/2)

×
∞∫

−∞
e−(mwx2/2~)e

√
(2mw/~)αxHn

×
(√(mw

~

)
x

)
dx. (22)

We effect here the change of variables
√

(mw/~)x = y and
find

an = π−1/4
(
π1/22nn!

)−1/2

e−(α2/2)e−(|α|2/2)

×
∞∫

−∞
e−(y2/2~)e

√
2αyHn (y) dy, (23)

or

an =
π−1/4e−(|α|2/2)

(
n!2nπ1/2

)1/2

∞∫

−∞
e−(y−(α/

√
2))2

Hn(y) dy. (24)

We appeal now to an Integral-Table result (see [7]) to obtain

an =
π−1/4e−(|α|2/2)

(
n!2nπ1/2

)1/2
π1/22n/2αn, (25)

and

an =
αn

√
n!

e−(|α|2/2). (26)

With the above expression, beginning with Eq. (12) for
ψα(x), we reach Glauber’s well-known and celebrated result.

ψα(x) = e−(|α|2/2)
∞∑

n=0

αn

√
n!

φn(x). (27)

Thus, the statesψα(x) given by Eq. (12) have been shown to
be Glauber’s coherent states.

4. Uncertainties

As an application-example we give here some well known
results that are needed to determine uncertainty relations. In-
stead of working with

ψα(x) = e−(|α|2/2)
∞∑

n=0

αn

√
n!

φn(x),

we just use the simple, and compact expression in Eq. (12).
For simplicity we takemw/~ = 1. For an ordinary co-

herent state|α > we have to compute four mean values.

• 〈x2〉

〈x2〉 = π−1/2

∞∫

−∞
e−1/2(x2−2

√
2α∗x+α∗2+|α|2)x2

× e−(1/2)(x2−2
√

2αx+α2+|α|2)dx (28)

With the use of the Integral-Table result [8] we then
find

〈x2〉 = (2i)−2H2

[
i(α∗ + α)√

2

]
(29)

and thus

〈x2〉 =
1
2

+
(α + α∗)2

2
(30)

• 〈x〉
For 〈x〉 the situation is quite similar.

〈x〉 = π−1/2

∞∫

−∞
e−(1/2)(x2−2

√
2α∗x+α∗2+|α|2)x

× e−
1
2 (x2−2

√
2αx+α2+|α|2)dx (31)

Using the Integral-Table result [8] again we obtain

〈x〉 = (2i)−1H1

[
i(α∗ + α)√

2

]
, (32)

and thus

〈x〉 =
α + α∗√

2
. (33)

• 〈p2〉
For 〈p2〉, the integral is somewhat more complicated.

〈p2〉 = −π−1/2

∞∫

−∞
e−(1/2)(x2−2

√
2α∗x+α∗2+|α|2)

× ∂2

∂x2
e−(1/2)(x2−2

√
2αx+α2+|α|2)dx, (34)
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or

〈p2〉 = π−1/2

∞∫

−∞
e−(1/2)(x2−2

√
2α∗x+α∗2+|α|2)

× [1− (x−
√

2α)2]

× e−(1/2)(x2−2
√

2αx+α2+|α|2)dx. (35)

Now, by recourse to the Integral-Table result [8] we
obtain

〈p2〉 = 1− 2α2 − i
√

2αH1

[
i(α∗ + α)√

2

]

+
1
4
H2

[
i(α∗ + α)√

2

]
, (36)

or

〈p2〉 =
1
2
− (α− α∗)2

2
. (37)

• 〈p〉
For dealing with〈p〉 one starts with

〈p〉 = −iπ−1/2

∞∫

−∞
e−(1/2)(x2−2

√
2α∗x+α∗2+|α|2)

× ∂

∂x
e−(1/2)(x2−2

√
2αx+α2+|α|2)dx, (38)

or

〈p〉 = iπ−1/2

∞∫

−∞
e−(1/2)(x2−2

√
2α∗x+α∗2+|α|2)

× (x−
√

2α)e−(1/2)(x2−2
√

2αx+α2+|α|2)dx, (39)

and, finally,

〈p〉 =
α− α∗

i
√

2
. (40)

4.1. Uncertainty relation

Accordingly, the well-known uncertainty relation for a co-
herent state that we were looking for becomes, in terms of
the two variances∆x and∆p

∆x∆p =
1
2
, (41)

i.e., minimal uncertainty, the main feature of coherent states.

5. Conclusions

In this brief discourse concerning coherent states (CS) we
have shown that a beginner’s task of mastering the subjected
can be greatly facilitated by the use of Eq. (12), a compact
closed expression for dealing with a given coherent state, in-
stead of dealing with the conventional expression

ψα(x) = e−(|α|2/2)
∞∑

n=0

αn

√
n!

φn(x).

All CS-manipulations become greatly simplified by appeal to
such Eq. (12).

i. Of the formψα(x) = e−(|α|2/2)
∞∑

n=0

(αn/
√

n!)φn(x), with

details explained below in this text.
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