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Evolution of rectangular and triangular initial
beam profiles in positive Kerr local medium
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Av. San Claudio y 18 Sur. Col San Manuel, C.P. 72570, Puebla, Puebla, México.
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The hyperbolic secant (Sech) shape, as the initial beam profile, is the well-know profile that compensates the diffraction and self-focusing
effect during propagation in Kerr medium, and evolves as the bright spatial soliton. The Sech beam can be confined in the Kerr medium and
induces its own waveguide. In this work, two initial beam profiles, rectangular and triangular functions, that are different than Sech profile,
are considered, and the propagation of these beam profiles in third-order nonlinear (Kerr) medium is investigated. As a result, the initial
beam-width played an important role in confining the beam profiles in direction of propagation. In addition, the intensity profiles change
to the Sech profile after some initial step of propagation. All the calculations and simulations have been done by the Split-Step numerical
method with MATLAB program.

Keywords: Spatial soliton; positive Kerr medium; local medium; nonlinear Schrödinger equation.

PACS: 42.65. Jx DOI: https://doi.org/10.31349/SuplRevMexFis.1.13

1. Introduction

The term soliton derived from solitary wave. Although the
solitary waves generate their own channel, remain localized
and conserving their shape as they travel, they can be sig-
nificantly changed by colliding with one another. However,
solitons are solitary waves that do not change their shape by
collision [1-3]. The soliton was first observed by Scott Rus-
sell [4]. The study and observation of solitons are not lim-
ited just for the optical area and it is included in many fields
from fluids to solid-state and chemical systems [5-7]. The
interest in optical solitons is growing due to their applica-
tion for fast transferring data through the beam-light, for ex-
ample, by compressing the temporal pulse duration in long-
distance communication via fiber optics [8,9]. However, in
other applications, the broadening of pulse duration or com-
pressing the spectral is done by researchers [10]. Bounded
self-guided beams in space, or more precisely spatial soli-
tons, evolve from a nonlinear change in the refractive index
of a material, induced by the distribution of light intensity.
For the special case where, the exact compensation occurs
between the refractive nonlinearity and the beam diffraction,
the beam profile can be self-trapped and propagates with-
out change in its shape. Likewise, the same phenomenon is
through for temporal solitons or localized pulses in time. Due
to the light-induced refractive index, once the compensation
between the refractive nonlinearity and the pulse dispersion is
obtained, the pulse propagates without change in shape, and
the pulse is self-trapped [11]. Obtaining the optical solitons
requires an intense beam or laser light in the appropriate pro-
file as solution of the Nonlinear Schrodinger (NLS) equation.
Spatial solitons are kinds of beam that create their own in-

duced waveguide Kerr medium due to intensity dependent of
induced refractive index [12,3,13]. In this case, the main non-
linear equation in the form of cubic Nonlinear Schrodinger
(NLS) equation governs the beam evolution. For the com-
plex amplitude of the electric field, the NLS equation has two
distinct types of localized solutions, bright and dark solitons,
depending on the sign of the group-velocity dispersion (for
temporal soliton) or Kerr coefficient (for spatial soliton). The
NLS equation for the positive Kerr medium, Eq. (1), allows a
fundamental bright soliton solution, holding the profile of hy-
perbolic secant (Sech) with appropriate amplitude and width
[14,15], however in negative Kerr medium, the NLS equation
permits the hyperbolic tangent beam profile as fundamental
dark soliton solution [16].

In this work, in positive Kerr medium the evolution of
rectangular and triangular beam profiles as the initial condi-
tions are used, where these initial profiles are different from
Sech. Also, the effect of the initial beam-width over the evo-
lution of intensity profile is investigated. Although the two
considered profiles are not the analytical solution of the NLS
equation in positive Kerr medium, numerically we are sim-
ulating and demonstrating that by considering the adequate
initial width, it is possible to propagate the beam in the di-
rection of propagation while spatially the intensity profile is
confined. By increasing the initial beam-width bigger than
the adequate one, the intensity profile suffers higher oscilla-
tion by propagation along the direction of propagation, how-
ever by decreasing the initial-width, the intensity profile de-
cays and is affected by diffraction effect, rather than nonlin-
ear (self-focusing) effect. Finally, it is showed that the in-
tensity profile of the considered initial conditions evolve to a
specific Sech profile. To validate this reality, we have com-
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pared the propagated profile at different propagation distance
Z with our proposed Sech function (Sech-Test). The Split-
Step method [14] is used for numerical study in MATLAB
program.

2. Numerical experiment

In the nonlinear medium with third-order of nonlinearity
(Kerr medium),∆n = n2I is the induced change of refrac-
tive index, wheren2 is the Kerr coefficient. The induced
refractive index has a dependency on the intensity of beam
n = n0 + n2I, wheren0 is the linear refractive index. The
Paraxial evolution of (1+1)-dimensional beam, with field am-
plitude of E = E(x, z) exp(ikZ) in Kerr medium is gov-
erned by the NLS as follows in Eq. (1).
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whereA(X, Z) is the amplitude of the beam field normalized
to (
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the diffraction length or the Rayleigh distance,x0 is a trans-
verse scaling parameter related to the input beam-width, and
X = x/x0 andZ = z/LD are the transversal and longi-
tudinal distance normalized to the initial beam-width, and
the Rayleigh distance respectively.LNL = 1/n2k0Im is
the self-focusing distance,k0 = 2π the wavenumber,λ the
wavelength. Positive and negative signs correspond to the
positive and negative materials that have a direct relation to
the sign of the Kerr coefficient,n2. The maximum initial in-
tensity,Im, has to be in the specific value in order the ratio be-
tweenLD andLNL becomes one (LD/LNL = 1), otherwise
when other relation is valid such as (LD/LNL = N ), there
is the possibility of the evolution as the higher-order solitons
[17]. For the positive materials (n2 > 0), and the relation of
LD/LNL = 1, the NLS equation, Eq. (1), allows the ana-
lytical and fundamental solution of bright soliton in the form
of the Sech beam profile (see Eq.(2)), where the beam propa-
gates as the solitary beam profile, and conserves its occupied
transversal space during the propagation. To obtain the per-
fect bright spatial soliton by Sech as the initial profile, the
width of bs = 0.7071 mush be considered. When smaller
values ofbs are chosen, the intensity profile propagates as
the diffracted beam, while for wider beam-width high oscil-
latory behavior is detected by propagation. The critical initial
power of the Sech isPs = 1.4142
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Since it is considered that the medium is not losing en-
ergy and there is not any amplification on energy (for exam-
ple, Erbium doped fibers can amplify the intensity of a beam

in fiber optics [18]), the Sech initial beam profile propagates
as spatial soliton and is continued forever. Here the evolution
of two profiles different from the Sech, rectangular Eq. (3)
and triangular Eq. (4), as the initial beam profiles are simu-
lated numerically by MATLAB program using the Split-Step
method. This method is reliable and commonly used to solve
the NLS equation in optical media [19,20]. We are moni-
toring the effect of considering different initial beam-widths
over the evolution of the beam profile. In Eq. (3) and Eq. (4),
the AR(X) andAT (X) are the amplitude profiles,bR and
bT are the initial beam-width for rectangular and triangular
initial beam profiles respectively.

AR(X) = 1 ∗Rectpuls
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AT (X) = 1 ∗ Triangularpulse

(
X

bT

)
. (4)

In Fig. 1, we plot the evolution of these two initial beam
distributions along 100 Z, together with its initial and final
intensity profile in linear and logarithmic scale. In this fig-
ure, the numerical simulation has been done by employing
the best initial widths mentioned in Table I. Figure 1 (left col-
umn) corresponds to the propagation of the rectangular ini-
tial beam profile withbT = 2.22, and (right column) relates
to the propagation of the triangular as initial beam profiles
with bR = 2.30. Figure 1 row (a) shows the beam intensity
propagation in two dimensions, while the beam is launched in
medium from the downside. TheX is the transversal axis and
Z is the longitudinal axis or direction of propagation. The
color shows the value of intensity referred on the color bar. A
three-dimensional view of propagation appears in Fig.1 row
(b), and the normalized intensity profile is plotted in the per-
pendicular axis. In Fig. 2, the on-axis intensity for triangular
(black solid line), and rectangular (red dashed line) are plot-
ted when the best initial beam-widths are considered. The
on-axis intensity graph corresponds to the evolution of per-
fect bright soliton, the Sech (green dot), is plotted in Fig. 2
for making the comparison with the other two line graphs.
Some criteria have been used to obtain the best initial beam-
widths for both beam profiles in order to confine the intensity
profile in the direction of propagation as much as possible,
and this can be understood with the help of Fig. 2. In this fig-
ure, the on-axis normalized intensity is plotted for both pro-
files. We have recorded the maximum,Imax, and minimum,
Imin, values of on-axis intensity along 100 Z, also the differ-
ence between them,∆I, ∆I = Imax− Imin for variety value
of initial beam-width. By considering different initial beam-
widths, different intensity oscillation∆I, are recorded. The
manner to find the best initial width for both types of beam
profiles are in the following: Since for some initial step of
propagation, too much oscillation occurs, we did not consider
the first 10 Z distance of propagation for obtaining the maxi-
mum,Imax, and minimum,Imin, values of on-axis intensity,
but for the rest of direction until 100 Z they are measured, as
well as the difference between them,∆I = Imax − Imin.

Supl. Rev. Mex. Fis.1 (1) 13-17



EVOLUTION OF RECTANGULAR AND TRIANGULAR INITIAL BEAM PROFILES IN POSITIVE KERR LOCAL MEDIUM 15

FIGURE 1. Beam intensity Propagation for (a) two and (b) three -dimensional view for 100 Z for: (left side) Rectangular, (right side)
Triangular initial field distributions. Intensity profiles in linear (c) and logarithmic (d) scale for: initial (blue-solid line) and final (red-dash
dot line) distributions. Sech-Test (Green marks).
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FIGURE 2. On-axis intensity along 100 Z for the following initial fields: Triangular (black, solid line), Rectangular (red, dash line), and Sech
as perfect soliton (green dot) with the best initial beam-width mentioned in Table I. As reference, vertical line (pink solid line) at 10 Z.

TABLE I. Best initial beam-width for triangular, rectangular, and
Sech profiles.

b Imax Imin AVI ∆I Pi

bT = 2.22 1.0728 1.0598 1.0663 0.0130 1.4814

bR = 2.30 1.8792 1.8439 1.8616 0.0352 2.2461

bs = 0.7071 1.00 1.00 1.00 0.0001 104142

Then, we changed the initial beam-widths (bT , andbR) until
the lowest oscillation∆I, for on-axis intensity is obtained,
and this specific value is called the best initial beam-width.
These values for initial beam-widths are making the best way
to confine the beam intensity in the direction of propaga-
tion by almost constant intensity profile with some inevitable
on-axis intensity oscillation around average intensity value
(AV I = Imax − Imin/2). In Table I, the following data is
dropped when the best initial beam-width for both profiles
have been chosen: the maximum and minimum on-axis in-
tensity values and the difference between them, the average
on-axis intensity and the initial power. By considering the
initial beam-width higher than the mentioned values in Ta-
ble I, the initial beam power increases higher than the neces-
sary value to confine the beam in direction of propagation. In
this case, the nonlinear effect (the third term in the NLS Eq.
(1)) becomes more powerful than the linear effect (the second
term in the NLS Eq. (1)). So that, due to the self-focusing
effect, the beam-width becomes narrower and the intensity
oscillation increases. However, by considering lower value
for initial beam-width, the beam profile suffers more diffrac-
tion (linear effect) rather than the nonlinear effect, and the
intensity profile decays while experiences high oscillations.
Though, by adjusting the appropriate initial beam-widths, the

intensity profile tends to make balance between the linear ef-
fect (diffraction) and the nonlinear effect (self-focusing), then
self-reshapes its intensity profiles to a stable one. Since the
initial beam profiles (rectangular and triangular) are different
than the Sech (the analytical solution of the NLS equation),
small oscillations over intensity profiles occur inevitably.

Once the appropriate beam-width is chosen, by evolution
of both initial beam profiles (rectangular and triangular), the
intensity profiles reshape to an specific shape as is displayed
in Fig. 1 row (b). So that here we are going to compare the
intensity profile during the propagation with a proposed Sech
profile (call it Sech-Test) in the form of Eq. (5):

Asech = A0(Z) sech
(

X

bX

)
. (5)

In this equation, theA0(Z) is considered as the amplitude of
the propagated beam at positionZ. Since on-axis intensity
during propagation atZ is known,I0(Z), the amplitude of
Sech-Test function isA0(Z) =

√
I0(Z). Thebx is the beam-

width of the Sech-Test function which its value is unknown
and is obtained in the following.Pi is the initial power of the
beam. To obtain the beam-width of the proposed Sech,bx, the
Pi is compared with the power of the proposed Sech-Test. Al-
though the initial power for comparison with the propagated
beam is used, it doesn’t mean that whole the energy of the
beam is confined in the final propagated beam profile.

pi =

+∞∫

−∞

∣∣∣∣A0(Z) sech
(

X

bX

) ∣∣∣∣
2

dX

= 2bX |A0(Z)|2 → bX =
Pi

2|A0(Z)|2 . (6)
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Once thebx is obtained, the intensity profile of the beam
during the propagation is compared with our proposed inten-
sity functionIsec h, Eq. (7).

Isech =
∣∣A0(Z)

∣∣2 sech2

(
2|A0(Z)|2

Pi
X

)
, (7)

Figure 1 row (C), compares the initial intensity profile
(blue solid line), with the final intensity profile (red dashed
line), and the intensity of the Sech-Test (green marks). Where
the left and right column are for the initial rectangular and
triangular beam profile respectively. There is a very good fit
between the propagated intensity profile and the Sech-Test in-
tensity function. For having a better view over the similarity
between the Sech-Test and the propagated intensity profile,
in Fig. 1 row (d), the logarithm of the two profiles appear. In
this figure, the intensity profile in logarithmic for the Sech-
test (green solid line) and the propagated profile (red dashed
dot) are plotted respectively. Very good coincidence and sim-
ilarity are observed especially at the center.

3. Conclusion

In this paper, a numerical study concerning the propaga-
tion of rectangular and triangular initial beam profiles, dif-
ferent from Sech, in positive third-order nonlinearity (Kerr

medium) has been done, where the medium is described by
the (1+1)-Dimensional Nonlinear Schrodinger Equation. The
Sech profile is the well-known fundamental solution of the
NLS equation, which evolves as the spatial bright soliton. At
first, we have investigated the evolution of two profiles, rect-
angular and triangular, in a positive Kerr medium. Then, the
effect of initial beam-width has been studied. Since the two
considered profiles, rectangular and triangular, are not the an-
alytical solution of the NLS equation, they are not confined
in the direction of propagation as they propagate. Therefore,
high oscillation or decay of intensity profile by the propaga-
tion occurs until the appropriate initial beam-width is chosen.
It is demonstrated that, by adjusting the suitable beam-width,
the beam can be confined in the direction of propagation with
small inevitable oscillation. The results showed that the con-
fined beam is in the form of a Sech profile, and the results
compared with our proposed Sech-Test. A good fit between
the propagated intensity profile and the Sech-Test intensity
profile has been obtained. In other words, when the adequate
initial beam-width is considered, after some initial step of
propagation, the beam intensity profile reshapes to the form
of the Sech profile. When there is not appropriate facility to
produce Sech as the initial beam profile to produce the bright
solitons, it is possible to use other profiles such as rectangu-
lar and triangular profiles and evolve them as bright spatial
solitons.
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