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Optical metrology beyond Abbe and Rayleigh
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For many years, it was believed that optical microscopy and metrology was limited in resolution related to the light wavelength as suggested
by Ernst Abbe and Lord Rayleigh. In the recent past, several approaches have been developed to overcome these limitations such as the Nobel
prize honored STED or optical CD as widely used in the semiconductor metrology. Unfortunately, both techniques need special samples.
While STED relies on fluorescence, OCD requires grating samples. In our contribution, we present two model-based (mb) approaches to
overcome some of these restrictions. One is mb Laser Focus Scanning (mLFS). Here, we show how to improve the accuracy of edge detection
from several hundred nm to about 10-20 nm by exploiting rigorous modeling. The second one is Scanning Coherent Fourier Scatterometry
(SCFS) where the diffracted Fourier spectrum is detected, and the attempt is undertaken to retrieve the sample profile. It is shown that this
technique is very sensitive, particularly when the phase is recorded by means of a wave-front sensor. Measurements and simulations for
periodic, as well as for aperiodic sub-resolution features, show already good agreement. Moreover, we strongly believe that the observed
high sensitivity of the Fourier spectra opens the path to quantitatively measurements below the resolution limits of light.
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1. Introduction

For many years, optical microscopy and metrology was lim-
ited by resolution constraints related to the light wavelength
as suggested by Ernst Abbe and Lord Rayleigh. Recently,
several approaches have been developed to overcome these
limitations. On the one hand, Nobel laureate Hell proposed
to tailor the Airy disc by means of special beam profiles
of two consecutive laser pulses in order to achieve smaller
spot sizes resulting in super-resolution [1]. Unfortunately,
his method requires two stable energy states such as fluo-
rescence. A quite different method-called scatterometry or
optical CD (OCD) is applied in semiconductor metrology
[2,3]. Here, the spectral fingerprint of periodic test patterns
is recorded, and the causing profile is then reconstructed by
means of rigorous diffraction solvers in combination with in-
verse methods. Since only the specular reflected light (i.e.,
the zeroth diffraction order) is exploited, another way was
opened to circumvent the Abbe condition of having at least
two orders to interfere to form an image pattern. Therefore,
patterns with periods of as little as 20 nm can be measured
with Angstrom accuracy by using spectral ranges from UV
through VIS. The disadvantages of this approach are that it
requires grating structures and a-priori knowledge about the
measurement sample. In this paper, we present a model-
based approach that is shown to be able to overcome these
restrictions. In our approach, the diffraction that occurs when
an optical beam hits a topographic sample is modeled by
rigorous modal diffraction methods such as RCWA and C-
method. In addition, we are using ray tracing to model the
classical optical imaging. In order to demonstrate the poten-
tial of the method, we have applied the method to two chal-
lenges of today’s optical metrology-determining the position
of profile edges with accuracy well below the diffraction blur

and measuring aperiodic features below the classical diffrac-
tion limit.

2. Measurement hardware

The principal schemas of our measurement arrangements are
presented in Fig. 1. On the left hand side, the Laser Focus
Scanning (LFS) in a confocal arrangement is shown. Alterna-
tively, an astigmatic objective lens or a Foucault knife setup
can be utilized as defocusing sensor [4,5].

The right hand side shows the basic principle of
the Coherent Fourier Transform Scatterometry (CFS)
[6]. Both setups are almost identical. However, in
LFS the beam is refocused onto the detector to de-
rive a signal for the defocusing. More detailed de-
scriptions of this technique can be found in previ-
ous publications of our group [4,5,7]. In contrast, the CFS

FIGURE 1. Left hand side: Basic principle of Laser Focus Scan-
ning. Right hand side: Coherent Fourier Scatterometry.
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measures the angular diffraction spectrum, and thus can avoid
the refocus. Actually, there are two principal options to mea-
sure the angular distribution of the diffracted light in CFS.
On the one hand, the intensity can be recorded by just putting
a regular detector array such as a CCD or a CMOS camera
(only the chip). On the other hand, it is possible to measure
the phase of the diffracted wave-front by means of some kind
of wave-front sensor. To this end, we applied a Shack Hart-
mann sensor (SHS) from Optocraft [8]. However, other kind
of wave-front sensors such as interferometric setups have also
been reported for use in CFS [9]. A measuring unit was de-
veloped and built based on a commercial DVD pickup. It
was attached to the nano-positioning and measuring machine
(NPMM) of the Institute for Process Metrology of TU Ilme-
nau. This machine allows measurement volumes of200×200
square millimeters and beyond with nano-meter positioning
accuracy [10]. It has to be stressed that we are using a scan-
ning CFS (SCFS) as opposed to the CFS-setups suggested in
previous publications. In this way, we are not restricted to
grating samples.

3. Modeling

An accurate modeling is key to overcome limitations due to
diffraction. Therefore, the next section is devoted to this
topic. A detailed description of the LFS model is given
already in a previous paper [7]. Thus, only a short sum-
mary of our LFS modeling shall be given here. Basically,
the model is a combination of ray-tracing with sophisticated
modal diffraction theory. In our model, the rays carry both
phase and polarization. The ray tracing is applied everywhere
to follow the propagating light from the source all the way
to the sample. There, the interaction of the incident beam
with the sample is determined by diffraction. For this rea-
son, a sophisticated diffraction solver has to be applied here
to maintain the overall accuracy of the model. We employ
an algorithm that is based on the Rigorous Coupled Wave
Approach (RCWA) [11,12] also known as Fourier Modal
Method [13]. Alternatively, we have implemented another
approach that is based on Chandezon’s coordinate transfor-
mation method [14]. Both methods can be nicely combined
into the same S-matrix framework [15]. For our simulations,
we have used the commercial package UNIGIT [16]. Di-
rectly derived from Maxwell’s equations, the algorithm fully
incorporates the vectorial character of electromagnetic waves
including polarization. It is based on the idea, that an isolated
or single feature can be treated by means of a modal method
by embedding it into a sort of super-period [17,18]. Using
the periodic continuation, the pitch-to-wavelength ratio de-
termines the angular resolution of the scattering as well as
the angular sampling of the incident wave. It was shown in
[18] that the resulting diffraction distribution converges with
increasing pitch. The application of perfect matched layers
(PML) helps to accelerate the convergence.

In principle, a full 3D approach would be required to keep
up with real measurement. Consequently, a crossed gratings

RCWA should be employed [19]. However, the embedding
into a larger super-period results inevitably in large trunca-
tion numbersM of at least±30 for one spatial direction.
This quickly leads to non-acceptable computation times or
even exceeds the capabilities of available computation hard-
ware. Therefore, a so-called 2.5 dimensional approach was
developed for the modeling of two-dimensional (line-space)
profiles. The key idea behind the 2.5D model is to use full 3D
propagation of the rays while modeling the diffraction only
two-dimensionally. To this end, sections through the pupil
are taken, and a conical diffraction solver [20] is applied to
each section. The according pupil discretization schema is
shown in Fig. 2. The plane waves of the incident beam in
the pupil plane are described by two parameters: the polar
angle of incidence (AOI)θi after focusing, and the azimuthal
AOI ϕi. They can be directly connected to the ray-tracing
of the remaining optical model. The pupil is sampled em-
ploying equidistant lines parallel to the main tangential plane
indicated as solid (green) lines. The directions of the main
tangential plane and the sampling lines have to be parallel
to the scanning direction, which itself is orthogonal to the
lines, edges, and trenches of the surface profile (as indicated
by red dashed lines). Each sampling line is determined by
ϕi = 90◦, andθi = n · /p whereλ is the wavelength of
the incident light,p the period, andn is an integer between
±N (N = NA · p/λ). All diffraction orders (located at
the crossovers of the green lines with the red dashed lines)
of the respective line remain on this line. The period-to-
wavelength-ratio determines the ray sampling in the angular
(k) space.

Usually, the polarization components of the diffracted
(outgoing) fields in reflection are obtained from the incident
polarization components in Jones notation by:
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Here, ther ij represent fully populated sub-matrices. The
matrix size is determined by the truncation number. A full
diffraction matrixR according to (1) is computed for each
sampling line in Fig. 2. Then, the full diffraction matrix of the
3D system is assembled from all conical sections and multi-
plied with the matrix of the complex amplitude distribution of
the incident beam. This corresponds to a convolution in real
space. Details of how to assemble the full diffraction matrix
and how to sample the incident beam are given in [7]. Even-
tually, a full matrix comprising all outgoing modes (or plane
waves) results. Moreover, known aberrations of the optical
system whether intended or not (e.g., an astigmatic term),
pupil effects and intensity profiles (e.g. Gaussian beam) can
be applied by means of filter functions.

Finally, the intensity distribution on the detector diode
has to be calculated and a height signal has to be derived.
The detector area is discretized and the ray fixedE-field com-
ponents (p, s, r) have to be transformed into a detector fixed
system (x, y, z). This is achieved by means of a transforma-
tion matrixT:
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FIGURE 2. Pupil sampling for 2.5D model.
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Besides, the scanning motion is simulated by multiplying
the incident plane wave spectrum by additional phase terms
for the lateral positionsx andy, and the vertical positionz:

AI,mn(x, y) = AI,mn(0, 0) · exp
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Here, the lateral wave vector componentsβxn andβyn

are given by: β(x,m) = β(x, 0) + m(λ/p) and βy,n =
βy,0 + n(λ/p) while the vertical wave vector component of
the mode(m,n)αmn follows from the dispersion relation:

αmn =
√

1− β2
x,m − β2

y,n. (4)

Equation (3) also includes a vertical offsetz, which is of
course very useful to model the focusing of the sensor. Since
the diffraction computation and the illumination/detection
paths are completely decoupled, only one time-consuming
diffraction solving is required for a certain profile. The result-
ing diffraction matrix can be stored and reused for different
detection and scanning schemas. This greatly reliefs the com-
putation resource issues. The modeling of the different focal
sensor principles fits also very well into this schema (e.g.,
an astigmatic sensor can be modeled quite straightforward

by means of a phase filter in the collimated beam). Concur-
rently, known rest aberrations of the optics could be likewise
taken into consideration. In addition, the intensity distribu-
tion (see above) on the detector has to be evaluated by means
of a quadrant diode which is oriented either by 45◦ or 0◦ de-
grees relative to the grating lines. Similar approaches have
been implemented for the Foucault and the pin-hole sensor.

Due to the high degree of similarity of both methods,
the modeling of the CFS metrology proceeds along the same
lines as stated above for the LFS. The crucial difference is
that the diffracted wave-front is not refocused anymore but
directly propagated to the detector. In terms of modeling, it
means that we can abstain from the transformation and su-
perposition which is symbolized by Eq. (2). Instead, either
the intensity or the phase of all diffracted plane waves, which
are collected by the NA of the objective lens, has to be cal-
culated resulting inI(θ, ϕ) or ∆(θ, ϕ), respectively. Again,
the strongly focused beam is scanned across the sample and
one finally obtains an intensity or phase distribution for all
scanning positionsx or (x, y), respectively.

Both model-based metrology techniques have in common
that an inverse problem has to be solved in order to retrieve an
unknown profile from a measured signal. Although, the sig-
nal is by far more complex in CFS (one value per order and
scan position) as compared to LFS (usually just one value
per scan position). For the inversion, a variety of methods is
known in the metrology community. We have implemented
two search methods: one local approach, the Levenberg-
Marquardt Approach (LMA) [21], and one global approach,
the Particle Swarm Optimization (PSO) [22]. Usually, first
a PSO is run to provide a good start solution for a consecu-
tive LMA-run. Some first results on the profile reconstruction
from LFS measurements can be found in [23].

4. Experimental and results

In this section, we are going to present some first measure-
ments and discuss the profile reconstruction by means of the
inverse methods. The first part is treating the LFS method.

4.1. Laser focus scanning

The main goal was to improve the lateral accuracy of edge
detection by means of sophisticated modeling. Moreover, we
are aiming at a complete edge shape reconstruction,i.e., to
include additional edge features such as side wall angle and
corner rounding. The basic challenge of this metrology task
is depicted in Fig. 3. In “standard” metrology, the edge po-
sition is supposed to be located at 50% signal height. Obvi-
ously, an error of several hundred nanometer would result in
the worst case. Even worse, the observed delta also depends
on step height, material and polarization.

Some important results are published already in [7]. The
first one is the measurement of a step being approximately
80 nm in height etched in Al. The fit of the simulated signal
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FIGURE 3. LFS signal vs. edge location for a 300 nm step (various
materials).

FIGURE 4. LFS measurement signal vs. simulated signal for a 160
nm Al step.

to the measured signal was presented in Fig. 9 in [7]. The
match match is not ideal, however, it shows already a good
qualitative agreement. As pointed out in the previous pub-
lication, the main contribution might be the rotation of the
signal due to a slight tilt in the scan direction. A step height
of 84 nm (confirmed by an AFM measurement), and an edge
position delta of about 400 nm relative to the assumed loca-
tion resulted from the inversion. In the second example, a
nominal step height of 160 nm was chosen. As can be seen
in Fig. 4, the fit is quite good. Furthermore, the edges almost
coincide.

Therefore, we dare to claim that the edge position can be
determined within 10 to 20 nm accuracy through our model-
based LFS approach. The remaining misfit between the sig-
nals has to be very likely attributed to the fact that the mea-
sured profile is far from being ideal as assumed in the sim-
ulation. Quite the contrary, a scanning electron micrograph
(SEM) revealed granularity and some kind of waviness across
the profile slope (compare Fig. 5) which could also be

FIGURE 5. Scanning electron micrograph of the LFS sample.

confirmed by the AFM measurements. Besides, the Al coat-
ing did not cover the slope as intended (the material boundary
can be clearly identified in the SEM figure). Unfortunately,
our current code does not allow to model the subtleties in the
profile as revealed by the SEM picture. In order to address
the granularity and waviness adequately, a crossed grating
diffraction solver has to be used rather than the line-space
solver as discussed for the 2.5D model in section 3. There-
fore, we are planning first to repeat the measurement and in-
version procedure with a more ideal binary sample profile in
the next step.

LFS itself is in principal limited by the Rayleigh reso-
lution criterion or Abbe criterion, respectively for gratings.
This means that two features closely below this limit cannot
be resolved and thus not be measured by LFS. This could
be also confirmed by another numerical investigation related
to LFS [24]. However, the resolution issue could also be
overcome by recording the Fourier spectrum reflected and
diffracted from the sample by means of a detector array as
suggested in Fourier scatterometry [6] rather than deriving a
height signal such as in standard LFS. Some first experimen-
tal attempts in this direction shall be discussed in the next
subsection.

4.2. Scanning coherent Fourier transform scatterome-
try

As shown in Fig. 1, the experimental setup for SCFS requires
only a slight modification of the LFS setup. Actually, the de-
tector focusing lens has to be removed, and the (quadrant)
diode detector is replaced either by a detector array to mea-
sure the angular intensity spectrum or by some kind of wave-
front sensor such as a Shack-Hartmann sensor to measure the
phase of the diffracted wave-front.

In order to show that SCFS has the ability to overcome,
both the Abbe as well as the Rayleigh resolution criterion,
we investigated to kind of sample patterns-periodic gratings
with sub-resolution pitch as well as specially prepared aperi-
odic features. Periodic grating measurements have been per-
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FIGURE 6. CFS intensity spectra of Si-gratings recorded with aNA = 0.55 lens @650 nm (from left to right: a) pitch = 2µm measurement,
b) pitch = 2µm simulation, c) pitch = 0.8µm measurement, d) pitch = 0.8µm simulation).

FIGURE 7. CFS intensity spectra for a 0.4µm pitch Si L/S grating (recorded withNA = 0.55 lens @650 nm) 4 consecutive scan locations.

formed on a Simetric’s AFM resolution standard RS-N [25].
It comprises 9 gratings with pitches from 0.4 microns through
6 microns. All gratings possess equal line and space width.
The nominal etching depth is 190 nm. When recording the
Fourier image by means of a camera array, a movie clearly
reveals the high sensitivity of the signal on slightest position
and profile changes while scanning laterally across the grat-
ing samples. Furthermore, the comparisons of the simulated
Fourier distributions with measurements show qualitative and
quantitative agreements from good to very good. Two ex-
amples of CFS intensity measurements vs. simulations are
shown below. In both cases, the NA of the focusing lens was
0.55 and the measurement wavelength was 650 nm. The first
example in Fig. 6 shows the Fourier distribution patterns as
recorded from a line space grating etched in Si with pitch = 2
microns (a measurement, and b simulation). It can clearly
be seen that due to the smaller wavelength-pitch ratio the
two first diffraction orders overlap considerably. Moreover,
a good qualitative and quantitative agreement between sim-
ulation and measurement could be achieved with little effort
(aside from a slight rotation in the experiment). The second
example in Fig. 6 compares a measured Fourier spectrum
with a simulation for a 0.8µm pitch grating. Obviously, the
two first diffraction orders are not overlapping anymore but
move away from each other.

Apparently, the gratings considered in Fig. 6 possess a
pitch above or short below the Abbe limit (normal incidence)
of λ/NA = 0.65 nm/0.55 = 1.18 µm. This means that the
center of the first orders are within the receiving pupil cir-
cle for the 2µm grating while for the 0.8µm pitch grating
only a small region of the first order wave can be captured by
the pupil. Furthermore, the intensity spectra exhibit clear dif-
ferences while scanning across the grating (pictures are not
shown here).

Hence, we investigated an even more extreme case of a
grating with 0.4µm pitch. Figure 7 exhibits the measured in-
tensity distributions for four consecutive scan positions (cut
out of a movie). Evidently, there is only very little change in
the signal versus the scan positions. This change did not im-
prove very much when the measurement was repeated with a
Shack-Hartmann sensor to record the phase of the diffracted
wave, rather than the intensity.

The preliminary conclusion here is that SCFS, just like
the common CFS, shall be able to retrieve the average grat-
ing profile, such as from OCD, more or less without resolu-
tion limitations. However, the relative location of the probing
beam w.r.t. the grating edges will be only detectable for grat-
ings which are only slightly below the Abbe limit. Further
tests are planned with sub-resolution gratings that are inten-
tionally distorted to feature clear deviations between adjacent
lines. Here, we expect more sensitivity relative to the scan
position.

Due to the necessity of grating samples, the OCD litho-
graphic metrology is forced to measure on reference patterns
commonly placed on the scribe lane outside the chip area.
Moreover, only averaged signals over many periods can be
measured due to the large size of the spot. These limitations
become more and more severe with shrinking feature sizes.
Consequently, there has arisen a strong demand for indepen-
dent measurements, which in turn require to abandon regular
samples. This issue shall be addressed with our next exam-
ple.

For this purpose, a special sample (called SRS-1) was
prepared by means of ion-beam writing comprising a num-
ber of grating lines and spaces with different width (nominal
widths are 100, 200, and 300 nm) etched into Silicon (see
Fig. 8). The average etching depth is 50 nm. The real widths
have been measured by means of SEM and are also shown
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FIGURE 8. SEM micrographs of aperiodic test features etched in Si (nominal line and space widths are 100, 200, and 300 nm, respectively)
called SRS-1 sample. Left hand side: oblique view. Right hand side: top view (rotated by 90 degrees).

FIGURE 9. Measured CFS wave-front phase distributions for the SRS-1 sample at different scan positions indicated by arrow S1.

in the inlet of Fig. 8 (right hand side). The Rayleigh res-
olution limit for incoherent illumination is given by∆x =
0.61(λ/NA) resulting in∆x = 660 nm (@NA = 0.6 and
λ = 650 nm). Accordingly, all geometrical distances of our
sample between adjacent lines or spaces, respectively are be-
low this limit.

Firstly, CFS scans across the pattern have been done and
the wave-front was recorded by means of the SHS. A step size
of 100 nm for the lateral scan was chosen. Unfortunately, not
all spectra can be shown due to the available space in the pa-
per. The scan was started approximately 1µm outside of the
pattern. Accordingly, only little change can be seen there and
the observed wave-front distortion is mainly caused by rest-
aberrations of the optical system as well as some alignment
issues (e.g.during positioning and setting the aperture cutout
of the SHS).

On its further path, the beam interacts with the etched
trenches and the wave-front starts to be getting more distorted
(compare Fig. 10). At 2100 nm the wave-front warping be-
comes weaker again which is likely due to the reaching the
first plateau near the arrow tip of S2.

Proceeding with the scan, the beam “sees” a few 300 nm
trenches separated by plateaus of different width. The CFS
phase spectra reflect this quite well. Particularly, phase fronts
with strong warp (e.g. at 1500, 3700, and 4500 nm) alternate
with smoother ones (e.g. at 2100, 3300, and 4100 nm). These

observations correlate more or less with the geometry. De-
viations might be attributed to deviations from the nominal
widths as well to the different adjacent patterns on either side
of the four broad lines (being 300 nm in nominal width). In
addition, the nominal space width is reduced from trench to
trench. However, more detailed investigations are necessary
in order to be able to interpret the pupil figures correctly.

A modeling study may help to gain more insight. More-
over, accurate modeling is also required when the attempt
is ventured to reconstruct the scanned profile from the pupil
spectra. Our approach was as follows: First, we extracted the
rest-aberrations from the outermost scan position (0 nm in
Fig. 9) in terms of Zernike coefficients. Second, we plugged
these values into the pupil filter function and modeled the
diffracted wave-front occurring in the pupil when the profile
of Fig. 8 would be probed by a laser beam withNA = 0.6,
λ = 650 nm. Some first results are presented in Fig. 11.
There is already some qualitative agreement to the experi-
ment observable though an improved match is highly desir-
able in terms of quantitative metrology. It is suspected that
the assumed rest-aberrations are erroneous. Furthermore, the
measurements should be repeated at multiple lateral positions
in order to average sample geometry variations and exclude
artefacts. Besides, there are additional unknowns such as the
exact etch depths (which also might vary).

Rev. Mex. F́ıs. 1 (3) 9–16



OPTICAL METROLOGY BEYOND ABBE AND RAYLEIGH 15

FIGURE 10. Measured CFS wave front phase distributions for the SRS-1 sample at different scan positions indicated by arrow S2 (top row)
and arrow S3 (bottom row).

FIGURE 11. Simulated CFS wave front phase distributions for the sample shown in Fig. 8.

Profile reconstruction from the pupil images as shown
above requires big efforts during the inversion. Therefore,
data reduction would be desirable. A Zernike-decomposition
is a widely used tool in optics and it comes for free with the
SHS. In addition, an evaluation of the individual coefficients
vs. the scan position may provide additional valuable insight
into hidden relations. Figure 12 shows the third order and
a few higher order Zernike coefficients vs. the scan posi-
tion for a SCFS measurement of the SRS-1 sample. There
are three coefficients that clearly show a strong dependency
on the scanning position, namely the third order 0◦: astig-
matism term A22, the even third order coma term A31, and
the odd three-foil term B33. Moreover, some kind of corre-
lation with the profile is visible when comparing it with the
inlet schematic cross section. However, it will require more
research to discover the details.

5. Conclusions

A new modular optical metrology approach was presented
that has the potential to overcome the classical resolution lim-
its of Abbe and Rayleigh to some extent. It relies on model-
based laser focus scanning (LFS) in combination with scan-
ning Fourier transform scatterometry (SCFS). The feasibility
of the method was shown by means of experiments. It could
be proved that the new approach has the potential for super-
resolution quantitative metrology of technical samples. This
was demonstrated with three typical examples, the improve-
ment of edge detection accuracy in LFS, CFS measurements
on sub-resolution gratings, and SCFS measurements on ape-
riodic sub-resolution features. Particularly, we’d like to point
out that scanning CFS is, to our knowledge, a new innova-
tive approach that might be help to overcome the reference
vs. in-die deviation issue in semiconductor industry.
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Further work should be devoted to improve the correla-
tion between measurement and modeling. To this end, the
model has to be further developed to take more realistic sam-
ple properties such as roughness and more generic profile
shapes (other than binary) into account. Moreover, the optical
metrology hardware has to be analyzed more thoroughly and
regarded in the model. For instance, the rest-aberrations play

an important role especially in SCFS. It is planned to conduct
further analysis and measurement to obtain more reliable val-
ues. In addition, the measurements shall be extended to other
samples in order to gather better knowledge about the depen-
dencies of the diffracted light in the pupil on the geometry
illuminated by the micro-spot.
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