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Towards a quantum Monte Carlo for lattice systems
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In this work we build the foundations of a quantum Monte Carlo as a stochastic numerical method to solve lattice many-body quantum
systems with nearest-neighbor interactions at most. As motivation, we briefly describe the bilinear-biquadratic Heisenberg model with an
external field, for spin-1 particles, as an effective Hamiltonian of the Bose-Hubbard model with an external quadratic Zeeman field in the
Mott insulator phase at unit filling. Then, we discuss how to implement the world line Monte Carlo with local updates to circumvent the
difficulties that arise on these type of systems by mapping the quantum partition function into the one of an effective classical model, in one
additional dimension, given by the imaginary time evolution of the system. Such a mapping is performed by means of the Suzuki-Trotter
decomposition, which transforms the original partition function into a summation of weights given by the classical configurations. Later, we
present a set of observables that can be measured through this method and show how to use a Metropolis update scheme to accomplish t
measurements. At last, we present the maximization of the configuration weights for three parameter sets as the first and relevant step t
perform future measurements.

Keywords: Quantum Monte Carlo; spin-1 system; Heisenberg model; optical lattices.

En este trabajo se contruyen los fundamentos de un Monte Cérhtico como ratodo nunérico estoéstico para resolver sistemasaticos
reticulares de muchos cuerpos con interacc primeros vecinos a lo sumo. Como motigacidescribimos brevemente el modelo de
Heisenberg bilineal-bicuadtico con un campo externo, para peutas de esip 1, como el hamiltoniano efectivo del modelo de Bose-
Hubbard con un campo de Zeeman c@éido externo en la fase de aislante de Mott con undquéat por sitio de red. Posteriormente,
discutimos como implementar elorld line Monte Carlo con actualizaciones locales para evitar las dificultades que surgen en este tipo de
sistemas al mapear la fudci de partiabn clantica en la de un modeloadico efectivo en una dimeasi adicional dada por la evolusi
imaginaria del sistema. Dicho mapeo es realizado &trde la descomposiei de Suzuki-Trotter, la cual transforma la fumrtide partiodbn
original en la suma de pesos dados por las configuracioasiga. A continuadn, presentamos un conjunto de observables que pueden
ser medidas utilizando esteatodo y mostramos como usar el esquema de actualizaciones locales dehalglerMetdpolis para obterner

las medidas. Finalmente, mostramos la maximizacie los pesos de las configuracionésitlas para tres conjuntos degaetros como
primer y relevante paso para desarrollar futuras mediciones.

Descriptores: Monte Carlo cantico; sistemas de espl; modelo de Heisenberg; redgsticas.

PACS: 02.70.Ss; 05.30.Jp; 03.75.Mn; 67.85-d

1. Introduction ticles present a very high degree of control in the set of pa-
rameters and constitute extraordinary tools as quantum sim-

Ultracold gases in optical lattices are an important tool toulators [1.12,13].

study strongly correlated systems under very controlled con- On the other hand, adding spin to the particles is of great
ditions [1, 2], as it was highlighted in the theoretical predic-interest, because the inclusion of internal degrees of freedom
tion [3] and later in the experimental realization of the phasdeads to very rich ground-state physics, such as new quantum
transition from superfluid to Mott insulator in bosonic sys- phases [14-17,26] and quantum magnetism [19, 20]. Spin-1
tems at ultralow temperatures [4]. The achievement of suchosons in optical lattices are particularly fascinating, because
low temperatures is very remarkable, as it has boosted difthey are the simplest spinor system beyond the usual spin-1/2
ferent experimental, theoretical and numerical progress, sudie exhibit spin changing collisions, hence they are ideal to
that multiple Nobel prizes have been awarded in the last twstudy quantum magnetism [19, 20] and multiple novel quan-
decades [5-11]. tum phase transitions [21-24]. Likewise, the quadratic Zee-

Due to the experimental progress, today it is possible td"2n effect (QZE) plays a significant role in reticular spinor
build a perfect periodic potential using counter-propagating;"“3_'5ter'1_'S [25_27]_’ but its role in the phases of such systems
lasers [1,2]. These light potentials constitute the optical latVith SPin-1 remains largely unexplored.
tices, which take the role of a perfect crystal lattice and thus The study of many-body quantum phenomena becomes
can be loaded with different types of particles such as ultranon-trivial and the number of problems with an exact so-
cold bosons. As a result, optical lattices with ultracold par-lution is very limited; particularly, reticular bosonic sys-
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tems only have exact analytical solution at certain specific

points where high symmetry is exhibited [28]. Also, due

to the exponential growth of the Hilbert space with respect

to the number of particles, the internal degrees of freedom a)

and the lattice sites, the use of special numerical methods is

mandatory. Some of the most commonly used are Quantum

Monte Carlo (QMC) [29-31], Density Matrix Renormaliza-

tion Group (DMRG) [32, 33], Bethansatz[34], Gutzwiller

ansat435], among others. FIGURE 1. a) Spin preserving collisions. b) Spin changing colli-
The paper is organized in the following way: In Sec. 2, sions.

we present a brief review of the physical system under con-

sideration, which is the spin-1 bilinear-biquadratic Heisen-with Uy = (47h%ag/m) andUs = 4mh%as/m the interaction

berg model with an external quadratic Zeeman field. Instrengths of the two possible completely symmetric allowed

Sec. 3, a description of the world line Monte Carlo with lo- collision channels with total spid” = {0,2}, whereap

cal updates for one-dimensional lattice systems is made. lare the s-wave scattering lengths of each channeharioe

Sec. 4, the measurement of observables and the local updateass of the particles. The last termiof is the parametrized

scheme based on the Metropolis algorithm are explained. Iquadratic Zeeman field.

Sec. 5, we present the maximization of the configurations The Heisenberg model in Eql)(presents rich ground-

weights as a relevant and primary accomplishment towardstate physics and quantum magnetism [25]. This model ex-

the Monte Carlo measurement of allowed physical observhibits two different types of collisions, one that preserves the

ables. Finally, the conclusions of this work are presented irspin projection and one that does not. Fig. 1 shows a scheme

Sec. 6. of these processes: a) the two incoming particles (top) in-

teract (lines crossing), resulting on two final particles (bot-

tom) with the same spin projectioas b) in the second case,

the black dot represents a spin changing collision: the inter-

The Bose-Hubbard model is the simplest non-trivial modection between the initial particles yields two particles that
that describes strongly correlated spin-1 bosons in a periodi¢gave changed spin projections. Albeit, the total spin pro-
potential, which here is taken as an optical lattice [1, 2]. Thig€ction before and after the interaction must be conserved
model presents two quantum phases, the Mott insulator anf@t + 02 = 03 + 04.

the superfluid phases [1,2]. We consider repulsively inter- On the other hand, the external quadratic field favors the
acting ultracold spin-1 bosons in a d-dimensional hypercu€nergy minimization for different states, depending on its
bic lattice prepared in a balanced mixtuie, keeping the Sign and strength. Fab = 0, states with projection -1, 0,
magnetization to zero. At unit filling, the system is in the @d 1 minimize the energy equally; on the contrary, projec-
Mott insulator regime when the on-site interactions dominatdions -1 and 1 are favored when > 0, and projection 0 is
(U, Us) over the hopping amplitudet)( between nearest- favored whenD < 0.

neighboring sites. In second-order perturbation theory in the ~ Finally, to study this Heisenberg model, we use the basis
hopping, the low-energy physics is given by superexchang@f the local spin magnetic projection operatsfs(with = the
processes, being described by an effective spin Hamiltoniafluantization axis) for spin-1 bosons:

[25], which in the presence of an external quadratic Zeeman

01%02201+02 01+02=03+04

2. Heisenberg model

field is the bilinear-biquadratic Heisenberg model given by {157 = o)} = {I-1),10), 1)} @)
" an . AN A more extensive review of the Heisenberg model is found
H= Z |:COS€ (Si . Sj) + sin 6 (SZ- . Sj) } in [1,36].
(i,5)
A\ 2 .
-DY (Sf) : (1) 3. World line Monte Carlo

The study of interacting many-body quantum problems is a
where the(i, j) notation refers to the summation over nearestcha|lenging task, principally due to the exponential growth
neighbors only:S; are the single-particle spin-1 vector oper- of their basis with respect to the number of particles and de-
ators of the-th lattice siteS; =: (57, SY, §7),withh =1;  grees of freedom. For example, since the basis of the spin-1
¢ is a parameter that in our considerations comes from th&10del grows ag”, the size grows up ter 10% for only 168
Bose-Hubbard on-site interactions and determines the spirarticles, which is approximately the number of atoms in the

Spin strengths: visible universe.
However, there are different methods to study this type of
tanf — Uo +2Us ) systems. In particular, the world line Monte Carlo [17,26,27]
3Up ' is a stochastic numerical method (of the quantum Monte
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Carlo type) that circumvents the difficulties that arise by first,extensively later in the paper. On the other hand, it is clear
mapping the quantum partition function of the original d- that one can not numerically take the Trotter number to infin-
dimensional system into the one of an effective d+1 classicaty, but what can be done is to run simulations with increasing
model and then, implementing a statistical sampling on th&rotter numbers and perform a finite-size scaling.

new partition function. To see the effect of the decomposition to the partition

Let us start with the mapping of the partition function. function, we express Eq.8) as a product oRM exponen-

For this purpose, we perform the Suzuki-Trotter decompositials:
tion [37], by first introducing the Trotter approximation [38].

1 > P : —ATH —ATH
Let A and B be two bounded operators such that B] # 0 Z= lim > (o S S
and letx be an arbitrary parameter. The Trotter approxima- of 1 2
tion is then given by « p—ATHA ,—ATHp 10°). )
A > A > 2
e:z:AeacB _ 69:(A+B)+(9(w )7 (4) 2M—1 2M

, 9 The super-index i is annexed as a label, because several
with O(z*) an error of second order. ! o .
completeness relations must be added; in this way, the trace is

Hargi(l)t\:)vhiawnefo;escail:- ;heartﬁ)gllgs(’e?:t;qlﬁdrgﬂncceHV(:ésirrIl?erg always going to be identified by the 0-th super-index. Then,
P b 9k Y. we add2M — 1 completeness relationls, .. [0*)(c®|, lo-

consider nearest neighbor interactions, the Hamiltonian Cacr:]ating them between the product of exponentials and each
be separated as follows

one labeled accordingly. In addition, a short notation for the

= Z i - (5) multiple summations is used. Then, the partition function be-
— comes
with H; ;. the bond Hamiltonians between siteandi + Z = Mhinooz (0%e=27Ha|gt) (ot |em2THE |62 ..
1. Due to the short range interactions, we distinguish two {o} 1 5

classes of bonds Hamiltonians, even and odd, such that y <0,2M72|67A7-HA JEIEN <O,21V[71|€7A'rf13 00

H= Z Hii1+ Z Hiiyv=Ha+ Hg. (6) oM -1 oM
i even i odd (10)

_ This leads to two useful properties: The first is that
[HsaHp] # 0 as a result of the nearest neighbor interac-

tions; the second, is that the bond Hamiltonians commutey, s of two sites, these elements are separated in simple

: AB) frA(B), By
with each othefH; ;. 11 j. ;1] = O foriandj both even (Or 0 ,cts regarding only exponentials of two sites Hamiltoni-
odd), because the two Hamiltonians act on different H|IbertanS:

i,94+1""5,7+1

spaces. As a result, we separate the Hamiltonian into two
non-commuting parts, each of them made of a summation <0‘a‘e_ATﬁA(B) ‘Ua+1> - <aa‘ He—Afﬁi,mu,Hn ’ga+1>
of commuting terms (which can be done to any Hamiltonian i)
with nearest neighbor interactions at most). .

Straightaway, we use the Trotter approximation to trans- = | [ (021 1(;j51)|e" 271G+ ‘Uff;fl(j,j+1)>: (11)
form the partition function, such thdf 4, and Hz take the i(4)
place of the non commuting unbounded operators:

Because the Hamiltonians defining the exponentials of each
matrix element in Eq. 10) are a summation of commuting

with i () the even (odd) sites wherein the matrix elements
Z:Tre—ﬁH:Tre—ﬂ(ﬁA—&-le)%Tre—[}HAe—ﬁf{B @) are defined. From this point on, we refer to the two sites
’ matrix elements defined in Eqll) as plaquettes, which are
whereTr is the trace operatoff = (1/kpT), kp the Boltz-  depicted in Fig. 1 by the shaded squares. Finally, the partition
mann constant an@ the temperature of the system. E@) ( function is explicitly transformed into
is known as the Suzuki-Trotter decomposition. )
To get rid of the second order error given by the TrotterZ = Mhinoo Z
approximation, we introduce an integkf (the Trotter num- {o}
ber) in the above expression and take the limit whémgoes

0 7ATI:IL2 1 0 7ATI:IN71_N 1
e .. . X {0 e o O N e ’ On_
to infinity, thus the partition function becomes (o1l [71.2){on 1] lox-1.5)

1

. NM
: —ATHs —ATH N "
Z = Mhm tr (e THAeTAT B) , (8) % <G§%4—1 67A7'H2,3|O.(2)73>...<a,]2\%—1|67ATHN,1|0-]OV’1>7

whereAr = 8/M ande~27Ha (e=A7Hz) can be seen as 2M

imaginary time evolution operators through a Wick transfor-
mation [39]. The effect of these operators are discussed moia in a simplified form:

(12)
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Space

2M—-1 N

z= lm 3 ] [[totle > o). (13)

M—o0 -
{o‘} a=0 =1

In both Eq. [2) and Eq. L3), periodic boundary condi-
tions in the super-indexes and the sub-indexes are impose!
by the trace and the choice of spatial periodic boundary con-
ditions, respectively. From these expressions, it is clear that
Z becomes a summation of real numbers given by the prod-
uct of the plaquettes, rather than a summation of operators.
Hence, the partition function of the original quantum system
has been mapped into one of an effective classical model. Ad-
ditionally, every adding i is an statistical weight given by
one configuration of the effective model, which is determined
by the product of plaquettes. Thereby, the partition function
is determined as the summation of the weights defined by all
the effective classical configurations:

z=>"T[acip)=>"©), (14)
c P C

whereQ(C|P) is the weight of a single plaquett®)froma  FIGURE 2.  Classical configuration of the spin-1 bilinear-
given classical configuratiorC() with Q(C) its total weight. ~ biquadratic Heisenberg chain with 6 Iattif:e sites afd= 3. .Blue, .
However, evaluating directly this partition function is still im- red and green dots represent particles with 0, 1 and -1 spin magnetic
possible, because the number of possible classical configurro/ection. respectively. The continues lines represent the world
tions is even bigger than the original Hilbert space. Nonethe!nes of each projection, and the shaded squares represent the pla-
less, one can think of using importance sampling to obtain guettes. The vertical axis is the imaginary time, and the horizontal

. 2 ?s the spatial axis.
good enough approximation in order to be able to measure

estimators. This is discussed with more detail in Sec. particle, these are the so-called world lines. The half-shaded

We now focus on the classical mapping. Letus go back tqqares at the edges account for the spatial boundary condi-
the plaquette defined by EdL1) and recall that the exponen- (ions in the horizontal axis. The Trotter number defias

tial operator works as an imaginary-time evolution operatofmaginary time slices, half for the plaquettes of odd bonds
that propagates the two bonded particles in sit¢s) i’}d and the other half for the plaquettes of even bonds.

. . . H « 1 1 «

i +1(j + 1) from configurationo® to configurationo®™". By means of this graphic representation, the effect of the

A classwal' configuration is .determmed.by the imaginary~g, 7 ki-Trotter decomposition on the partition function is il-
time evolution of all the particles, i@} time steps, start- | irated

ing from an initial configuration, throughout multiple ones

ol — o?M=1 and back to the initial one®, which means that

the original d-dimensional quantum problem is mapped int04_ Observables
d+1-dimensional classical one, with the imaginary time as

the additional dimension settled by the Trotter number. Th&y, thjs section, we describe the set of observables that we can
configurations are defined by the magnetic spin projectiongyeasure through the new representation of the partition func-
of the particles and the evolution is done alternating odd an¢{,y defined by Eq.[X4). First, since we use a statistical ap-
even sites. However, not all possible configurations are alprgach, we can only measure expected values of quasi-local
lowed. On the one hand, for a finite size classical configuragpservables and we can not calculate their individual eigen-
tion (finite 1), the boundary conditions imposed by the traceyajyes, ruling out observables such as the von Newmann en-
forbid certain configurations; on the other hand, only plaquetropy with this approach. By construction, the observables

ttes given by the 19 non-zero matrix elements of the two-Sitegeed to be separable in the same sense as the Hamiltonian in
Hamiltonian are permitted, because the other ones would n@tq (6) meaning that

give any statistical weight.

Keeping in mind thg previous consldgratl_ons, we draw, as - Z Oi,i+1 n Z Oi,i+1 —04+0p, (15)
an example, one classical configuration in Fig. 2 for the spin-
1 bilinear-biquadratic Heisenberg chain with 6 lattice sites
and M = 3. Blue, red and green dots represent particleshence the accessible observables are those that can be written
with 0, 1 and -1 spin magnetic projection, respectively, thatas sums of operators acting on two nearest neighbors at most.
evolve in the vertical direction, from top to bottom in imagi- Additionally, the observables must locally conserve the two-
nary time. The continues lines represent the evolution of eachites basis. This condition is mandatory, otherwise the world

Imaginary time

i even i odd
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lines may break, yielding no statistical weights. Ruling out  With this expression, it is clear that the measurement of
observables such as correlations of the Tﬁp‘eﬁ‘j_. expected values with this method is a weighted sum over the
With all the necessary conditions to perform measure-observables calculated in all the different possible effective
ments, we calculate expected values in the usual statisticalassical configurations. Finally, expected values are simply

manner using the trace operator and the density matrix of thevaluated as
system: . 1
. e (0) = 377 2_2(C)0(C), (22)

c

(O) =tr (;3 O) with p= e? (16)

Using the same decomposition as in E8). 4nd separat- Where the expression in parenthesis in E2{) (s settled as

ing the observable as stated in EA5 the expression for O(C)- Atlast, as an example, we present expected values of
the expected value becomes three observables. The first one is the internal energy, which

] A Y is given by
(O} = lim — Tr (e_ATHAe_ATHB)

—oo - Q E
M ) Z ) <H> _ ZC (g) (C)’ (23)
x (04 +0s), (17
hereE(C) is the classical defined b
where Z is defined by Eq. 13). Taking advantage of the where(C) is the classical mean energy defined by
cyclic properties of the trac8r(AB) = Tr(BA), we reor- 1 9InQ(C)
ganize the above terms as E(C) = M oAr (24)
<O> — lim %Tr (e—ATﬁAe—ATﬁB>M_1 Another important observable is the magnetization,
M—o0

whose form becomes

% (e—ATHAOAe—ATHB n e—ATHAe—ATHBOB )

(18) (V) = —Ml Yoo (Sur]. @
C 7,0

Manipulating the last expression, we can transform it in terms

of the classical configuration weights: where M® are the classical matrix elements. Finally, other

. 1 <g0|efArﬁA Oalo?) type of interesting measurements are the ones given by the
(0) = lim — > () ( (00— Ara g1y occupation per site, determined as
C
0|, —ATHEg A 1 ~ 1 a
L {o2lem P Oplo”) , (19) (fi o) = ]\TZZQ(C) (Zn“;) : (26)
(o0|e=ATHE|g1) o] =

in such a way that the observable is measured in one imagwheren; ,, is the spin magnetic projection number operator
nary time slice, betweefw’| and|o!). Using again the cyclic in the i-th site.
properties of the trace, we can measure the observables at
any arbitrary time slicdo®| — |c®*1) of the configuration. 4.1, Weighted sampling
Hence, we average the observable through all the time slices:
Although we have a general expression and some particular

(0) = lim_ ﬁ Z Q(0) ones to calculate different observables, we recall that it is im-
possible to sample all the classical configurations, hence we

( (oa|e—ATﬁA<B>OA(B)|aa+1>) can not calculate the comple‘Fe partition function. A solution
X Z - , (20) is to use Monte Carlo sampling to obtain the most relevant

o (oolemATHA® [gatl) configurationsj.e. the ones with the larger weight, to mea-

where imaginary-time and spatial periodic boundary condi-sure the observables statistically. For this weighted sampling,
tions are implicit and the operatafs, 3y andO 4 () depend ~ We use the Metropolis algorithm [40]. Here, we only give a
on whethers is even or odd. Next, doing algebraic manipu- brief description of it, for a more detailed review see [41].
lations on the last expression, we arrive to a general form for The Monte Carlo procedure allows for stochastic evalua-

the expected value of a given observable tion of expectation values in the form of expressiag)with
. 1 respect to the partition function in Ecl4), by generating a
(0) = Mlim U7 Z Q) Markov chain of configurations distributed lik§C'). There-
% C fore, we can compute the observables with an estimator
(ot lem 8 1044|085 44) 1 o
X e S ’ . (21) Oy~ =) 0(Cy), (27)
z}za <0i,z‘++11|67AT1T{7"’1‘+1 |08 41) " JZl ’
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wheren is the number of configurations generated through 10500
the Markov chain. In practice, the firstconfigurations are i
discarded, where is the thermalization threshold that may
vary depending on the physical model, we take the la%t 30 9500
to perform measurements. There are two sufficient condi- S 9000
tions to achieve the desired distribution [42]: % a500 a) B=—0.85, D=0.2
1. Ergodicity: Every possible configuration can be BOOD
reached from any given configuration through a finite
Markov chain. A priori, our system does not satisfy G
this due to the periodic boundary conditions imposed 7000
by the trace, but those vanish in the thermodynamic 50000 1;{2};0 150000 200000
limit.
8000
2. Detailed balance: The transition probabilities of the
Markov chain must satisfy: 7500
7000
?::: = ]]j:, (28) % 6500 b) 8=-0.85, D=—0.2
. . . 6000
where P,,_,,, is the probability of evolving from statg to
statev and P, (P,) is the probability of being in state (v). 5500
One solution for the detailed balance condition is the
Metropolis proba_bility [40], which allowg us to do local 5000 e N T Ty
updates (respecting the boundary conditions) to generate a MES
Markov chain of configurations and maximize their weight
with the following transition rate e
4000
QW) 3000
PM—»Z/ _ {Q(Wu) Q, < Q#’ (29) Sooh {'
1 Q> Q,. S
[
When the locally updated configuration has a more favor- 55"_’; 0 G 0==048, B9
able weight (a larger weight) than the initial one, the update =1
. DR . -2000
is accepted. However, if this is not the case, the update is not
directly rejected, it still has a random acceptance probability. 'ﬁg
~5000
5. Results and Discussion 9 G s

We present the evolution of the weights of three different congyre 3. Weight as a function of Monte Carlo steps for three
figurations, for a 1D chain with sizé = 10 and the Trotter  configurations in different phases: a) Ising ferromagnetic, b) XY
numberM = 100, as a function of Monte Carlo steps (MCS); ferromagnetic and ¢) Large-D.
each MCS is given by a local update using the Metropolis
scheeme to maximize the weight of an initial classical con-of observables using an estimator. It is observed that
figuration. The interaction strength is sette= —0.857 for ~ 30% is a good threshold, because all the presented weights
all the configurations, and the magnetic fidktakes values have thermalized, meaning that the weight fluctuates around
0.2, -0.2 and -0.9 and their weight evolutions are shown ira mean value. For this thermalization to occur, the temper-
Fig. 3 panels a), b) and c), respectively. As it can be seen, thature of the system had to be taken at least'as 1072 in
evolutions present different behaviors and scales, this arisesits of 1/kg. Larger values would induce thermal fluctua-
from the fact that the parameters have been chosen to yield tions preventing the maximization of the weights.
the Ising ferromagnetic phase for the panel a), the XY ferro-
magnetic phase for b) and finally the large-D phase in c). For
a review of these quantum magnetic phases see [25]. 6. Conclusions

The weight of any initial configuration given in all three
of the previously described phases is maximized, thus allowWe described the implementation of the world line Monte
ing us to do a weighted sampling on the classical configura€arlo with local updates as a tool to solve lattice many-
tions to compute statistically the expected value of the sebody quantum systems. We showed how with this method,
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a d-dimensional quantum system is mapped into a d+1ment of observables such as the three described in this work,
dimensional effective classical system which can be sampleith order to characterize the magnetic phases of the system, is
using the Metropolis algorithm to statistically measure a setlesirable.
of observables. The implementation was done particularly
for the bilinear-biquadratic Heisenberg model with an exter—A
nal quadratic Zeeman field for spin-1 particles at ultralow
temperatures. We present the maximization of the weightshis work has been supported by Universidad del Valle under
taken from the set of configurations for the three differentihe internal project 71161, with the 2082millero de inves-
ferromagnetic phases the model exhilits, Ising ferromag-  tigacion convocatory attached to it. K. R. acknowledges sup-
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