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Numerical implementation of a Mach-Zehnder
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We numerically implement a Mach-Zehnder interferometer, where the coherence and oscillatory properties of Bose-Einstein condensates are
explored and the system is modeled by the Gross-Pitaevskii equation. Several time-dependent external trapping potentials were engineered
seeking the adiabatic regime which is quantified using fidelity measurements with respect to the actual ground-state of the trap. The dynamics
of both conjugate variables, namely density and phase of the matter-wave function, are shown. Moreover, the density and fidelity profiles
of the system are presented when the phase-shifter is switching-on and -off, being found in the presented profiles that the system exhibits
three different regimes during the recombination stage among them even an orthogonal BEC to the original one is obtained. We achieve
the numerical solution through an adequate implementation of the finite-difference method for the spatial discretization and a Runge-Kutta
method for the time evolution.
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Se implementa nuḿericamente un interferómetro Mach-Zehnder, donde se exploran la coherencia y las propiedades oscilatorias de los con-
densados de Bose-Einstein, el sistema se modela mediante la ecuación de Gross-Pitaevskii. Se diseñaron varios potenciales de atrapamiento
externo dependientes del tiempo con el objetivo de encontrar el régimen adiab́atico que se cuantifica utilizando mediciones de fidelidad con
respecto al estado base actual del potencial. Se muestra la dinámica de ambas variables conjugadas, esto es, la densidad y la fase de la
función de onda de materia. Además, se muestran los perfiles de densidad y fidelidad del sistema cuando el modificador de fase se activa,
encontŕandose en los perfiles presentados que el sistema exhibe tres regı́menes diferentes durante la etapa de recombinación, entre ellos
se obtiene incluso un BEC ortogonal al original. La solución nuḿerica se logra a través de una implementación adecuada del ḿetodo de
diferencias finitas para la discretización espacial y el ḿetodo de Runge-Kutta para la evolución temporal.

Descriptores: Condensados de Bose-Einstein; interferometrı́a at́omica; f́ısica at́omica y molecular; efectośopticos coherentes.

PACS: 03.75.-b; 03.75.Dg; 67.85.-d; 02.70.-c

1. Introduction

Ultracold atoms in external optical traps constitute an ex-
traordinary tool for the analysis of coherent matter under
extremely well-controlled conditions as highlighted by the
achievement of the Bose-Einstein condensation [1] and the
“superatom”-properties it exhibits [2]. The field is growing
very fast due to the novel possibilities for studies of funda-
mental quantum-mechanical processes. High research activ-
ity has been reported in the last decade including experimen-
tal, theoretical and numerical developments [3,4].

One of the particular interest focuses on the precise
manipulation of the quantum-mechanical macroscopic wave
function of the Bose-Einstein condensates (BEC) [5]: It has
millions of identical atoms in the same quantum state, and
it is large enough to be optically imaged [6]. On the other
hand, quantum interference constitutes a major challenge for
testing quantum-mechanical foundations [7] besides the real-
ization of ultra-precise measurements [8].

The particle-wave duality allows us to analyze the appli-
cation of matter-wave interferometers from the experimental,
theoretical and numerical points of view [9,10]. Furthermore,
the development of atom-optics counterparts to beam split-
ters, phase-shifters and recombiners makes this field a com-
plement to the optical interferometers [11,12].

FIGURE 1. Scheme of the implemented Mach-Zehnder interferom-
eter by means of a time-dependent trapping potential described by
Eq. (2), see the text.

In this work, we present a numerical implementation of
a Mach-Zehnder interferometer (MZI) [13], where the coher-
ence and oscillatory properties of ultracold bosonic matter-
waves [14] are explored. The system is modeled by the
Gross-Pitaevskii equation (GPE) [15, 16], which is a non-
linear Scḧodinger equation and is introduced in Sec. 2.
The proposed scheme is shown in Fig. 1, and consists of a
time-dependent trapping potential which is discussed and de-
scribed in Sec. 3. The incoming wave is divided into two
beams by a50 : 50 beam splitter, one beam travels through
a controlled phase-shifter acquiring a phase. Afterwards, the
two beams are recombined registering characteristic density
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and phase patterns. As presented in Sec. 4, we develop sev-
eral time-dependent external trapping potentials, and for each
case, the fidelity is monitored to analyze the adiabaticity of
the dynamical process. Section 5 is devoted to the conclu-
sions and final remarks.

2. Model

We are interested in studying a bosonic cloud in which tem-
perature is very close to the absolute zero,i.e. of the order
of few micro-Kelvin (µK). Under this circumstance, the sys-
tem undergoes Bose-Einstein condensation and is described
by a macroscopic wave function,ψ = ψ(~x, t), where the time
evolution is determined by the GP equation. After a normal-
ization, introducing a change of variables and providing the
effective confinement to be only in one-dimension, the di-
mensionless Gross-Pitaevskii equation gets as follows [17],

i
∂ψ(x, t)

∂t
=

[
− ε

2
∇2+V (x, t)+g|ψ(x, t)|2

]
ψ(x, t). (1)

Here the kinetic energy is measured byε = ~/(ωxmx2
s) =

(a0/xs)
2 wherea0 =

√
~/ωxm is the harmonic-oscillator

ground-state length in thex−direction,xs is the characteris-
tic BEC length, andm the atomic mass. We consider the con-
finement frequencies asωy,z ¿ ωx. The interaction strength
among the particles isg = U0ε

3/2 which is governed by a s-
wave contact potential determined byU0 = (4πaSN)/(a0),
beingaS the s-wave scattering length, andN the number of
particles.

The numerical solutions are achieved through an ade-
quate implementation of the finite-differences method for the
spatial discretization [18] and the Runge-Kutta method for
the time evolution [19]. Hence, the dynamics of both con-
jugate variables, namely density and phase as well as the fi-
delity, of the matter-wave function are simulated in this way.

3. BEC time-dependent trapping potential

The BEC is initially trapped in a harmonic potential and an
optical lattice is ramped up on time. The resulting time-
dependent potential is obtained by a suitable superposition
of the form,

V (x, t) = αx2 + β(t) cos2(ωx) + δ(x, t), (2)

beingα = 0.85 half of the constant force.
The ramping up of the optical lattice is a crucial point

under the experimental point of view since this process can
lead non-adiabiticities that could be end up in an undesired
heating of the system [20]. In order to select an adequate
beam-splitter, three different ways to rise the lattice are ana-
lyzed which are defined as:

β1(t) = bt, β2(t) = b
√

1− t22,

and β3(t) = b exp
(−t23

)
, (3)

FIGURE 2. As discussed in the text, three different ways to ramp up
the optical lattice on time to build the double-well potential out of
the initial harmonic confinement are engineered: linear (a), square-
root (b) and Gaussian (c).

whereb = 15 is the strength of the ramping,t2 = (t −
tf/2)/b in β2, t3 = (t − tf/2)/(b/3) in β3, andtf = 40 is
the final simulation time. The schemes of the potentials gen-
erated from theβ-functions are presented in Fig. 2, where
panel (a) corresponds to the potential generated byβ1(t) and
panels (b) and (c) to the potentials obtained byβ2(t) and
β3(t), respectively.

The phase shift in the MZI is carried out by entering the
parameterδ(x, t) in the trapping potential. This parame-
ter is defined in Eq. (4) and allows us to generate a depth
difference between the minima of the double-well potential,
which translates into a phase difference among the two matter
beams,

δ(x, t) = −δ0 exp
[
− (x− x0)2

σx
− (t− t0)2

σt

]
, (4)

wherex0 = 2.530, t0 = tf/2 = 20, σx = 1, σt = 25 andδ0

scales the depth of the phase-shifter. The reason for choosing
these parameters is because once we set our harmonic con-
finement, the numerical box is settled as well, therefore, all
the potential changes must be performed in such a way that
the dimensions of this numerical box are preserved. In par-
ticular, theδ-function should be written such that all changes
in the trapping potential are clearly separated in the spatial
and temporal axes.

The dynamical processes are intended to be in the most
adiabatic possible manner. Hence, the particles are prepared
in the ground-state of the initial harmonic trap, and then we
let the BEC evolves following the potential. To analyze the
adiabaticity, we monitored the fidelity (F(t)) by projecting
the time-evolved wave-function to the ground state of the ex-
ternal potential at the corresponding time [21],

F(t) = |〈ψGS(t)|ψ(t)〉|2. (5)

Once we have defined the construction of the confinement
potential, we expose in Sec. 4 the dynamics of the imple-
mented Mach-Zehnder interferometer.

4. Interferometer dynamics

We present the density and phase of the matter-wave as a
function of time, as well as the fidelity using the designed
trapping potentials. In Sec. 4.1, we present the dynamics for
the three different activation functions of the optical lattice in
order to rise the double-well potential. Furthermore, using
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FIGURE 3. Matter-wave interferometer in absence of the phase-
shifter, usingβ1(t), the evolution of the density (a), fidelity (b) and
phase (c).

FIGURE 4. Matter-wave interferometer in absence of the phase-
shifter, usingβ2(t), the evolution of the density (a), fidelity (b) and
phase (c).

the ramping-time functionβ3(t) (see Fig. 2(c)), we present
in Sec. 4.2, three different regimes resulting in the evolution
as a function of the phase-shifter depth.

4.1. Splitting matter-waves

We activate the splitting of matter-waves through the term
β(t) introduced in Eq. (2). The Figs. 3, 4 and 5 present the
obtained dynamics by using the three introduced ramped-up

FIGURE 5. Matter-wave interferometer in absence of the phase-
shifter, usingβ3(t), the evolution of the density (a), fidelity (b) and
phase (c).

β-functions (see Eq. (3)). Since our purpose is to determine
which of the splitters works more properly for our interest
the dynamics are initially presented without introducing any
phase shifting in the system.

At first, let us start with the dynamics display by using
theβ1(t) function shown in Fig. 3. In panel 3(a) we observe
that the splitted-beams stage lasts longer than the recombi-
nation process, being not a good sign for our purposes. The
fidelity behavior is presented in panel 3(b), it clearly fits our
expectations of having adiabatic evolutions. Indeed, we can
see tiny deviations from the unity when the beam-splitter is
switching-on and -off. On the other hand, in the phase profile
presented in panel 3(c), symmetrical behavior is observed as
a function of the position, as expected. Although manifesting
edge effects the phase propagates properly.

In the second place, we analyze the matter-wave evolu-
tion when theβ2(t) function is used as the splitter, see Fig. 4.
The density profile presented in panel 4(a) exhibits strong
fluctuations, which is evidenced by the strong fall from the
unity of the fidelity profile (panel 4(b)), during the splitting
and even stronger during the recombination process. Hence,
since the evolution of the system moves significantly away
from the ground state, even when a phase is not printed in
the system, we discard this kind of beam-splitters. The phase
profile (panel 4(c)) shows symmetric behavior as a function
of the position, however, it presents even stronger undesirable
edge effects.

On the other hand, Fig. 5 manifests adequate behavior by
usingβ3(t), that is, the recombination process in the density
profile lasts longer as it is observed in panel 5(a); besides,
the dynamics of the system is adiabatic enough to fulfill our
requirements, which is evidenced in the fidelity profile (see
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panel 5(a)). Here, the evolved state presents a small devia-
tion from the ground state only at the times when a change
in the confinement potential is introduced but the fidelity re-
turns to one rapidly in the recombination stage. Contrary to
the phase profiles illustrated in Figs. 3 and 4, no edge effects
are observed at all, as it is shown in panel 5(c). Therefore, in
order to study the dynamics developed by the inclusion of the
phase-shifter, Eq. (4), in the interferometer, we conclude that
the best analyzed beam-splitter is generated byβ3(t), hence,
all the subsequent results are obtained using it.

4.2. Phase-shifter

Once the initial beam is splitted in two, a phase difference is
introduced by the phase-shifter described in Eq. (4).

The termδ0 in the parameterδ(x, t), take values between
δ0 = 0 andδ0 = 12.0, establishing a maximum relative depth
between the minima of the double-well potential ofh ≈ 5.51,
while the horizontal distance between the wells isx ≈ 3.31.
Figures 6, 7 and 8 show the density and fidelity profiles for
different relative depths, and three distinct behaviors can be
seen.

Panels (a), (c) and (e) of Fig. 6 present the density pro-
files for the relative depths generated byδ0 = 2.0, δ0 = 6.0
andδ0 = 9.4 respectively. In these panels, a minimum pop-
ulation in the central position during the recombination stage
is evidenced. On the other hand, panels (b), (d) and (f) show
the obtained fidelity profiles. Here, a sudden decay in two
steps is observed, one in the beam splitting stage and then in
the recombination. Clearly showing that the recombined state
is orthogonal to the ground-state of the single-well potential,
and an identical behavior for these three relative depths is ob-
served.

Figure 7 displays the density profiles (panels (a), (c) and
(e)) and the fidelity curves (panels (b), (d) and (f)) introduc-
ing potential depths ofδ0 = 3.0, δ0 = 6.8 andδ0 = 10.2,
respectively. The density profiles show that during the recom-

FIGURE 6. Matter-wave interferometer in presence of the phase-
shifter, usingβ3(t), the evolution of the density ((a), (c), (e)) and
fidelity ((b), (d), (f)). Regime 1.

FIGURE 7. Matter-wave interferometer in presence of the phase-
shifter, usingβ3(t), the evolution of the density ((a), (c), (e)) and
fidelity ((b), (d), (f)). Regime 2.

FIGURE 8. Matter-wave interferometer in presence of the phase-
shifter, usingβ3(t), the evolution of the density ((a), (c), (e)) and
fidelity ((b), (d), (f)). Regime 3.

bination process the maximum distribution of the particles
tends to stay in the classical returning points in an alternative
manner. Panels (b), (d) and (f) show that the fidelity moves
away notoriously from the unit once the potential is modi-
fied, although reaching a stable value higher than the one dis-
cussed in the previous case. It suggests that the recombined
state has at least a tiny probability to be in the ground-state
among its superposition.

Figure 8 exhibits the density profiles for depths ofδ0 =
4.3, δ0 = 8.0 and δ0 = 11.2 (panels (a), (c) and (e), re-
spectively), it is observed that the density in the recombina-
tion stage oscillates around the central position. On the other
hand, panels (b), (d) and (f) show the corresponding fidelity
profiles and it can be seen deviations from the unit during
the beam splitting process but it recovers, although not com-
pletely but still good enough in the recombination stage.

In summary, three specific regimes have been manifested
in the dynamics of the implemented interferometer.
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5. Conclusions

We build numerically a time-dependent external trapping po-
tential to confine Bose-Einstein condensates and simulate a
Mach-Zehnder interferometer. In order to do so, three ac-
tivation functions of the double-well potential were consid-
ered and, based on the set of defined observables, theβ3(t)
function has been chosen to lead to the most adiabatic possi-
ble dynamics. This function takes the important role of the
matter-wave beam-splitter for our interferometer.

Once the beam-splitter is established, the phase-shifter
δ(x, t) is introduced in the confinement potential, through
which a relative depth was generated between the minima of
the double-well potential.δ(x, t) had a range of variation me-
diated by parameterδ0, which generates relative depth values
betweenh = 0 andh ≈ 5.51, while the distance between the
wells is kept atx ≈ 3.31.

It was found that the dynamics of the system exhibits
three distinct regimes in the recombination stage, which must
be analyzed in detail in future works.
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