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Liquid metal MHD steady flow and heat transfer in a rectangular duct with
perfectly conducting walls perpendicular to the applied magnetic field
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Several technological applications involve the flow of liquid metals in ducts under a magnetic field, for instance, the coolants of fusion
reactors. In this paper, using a magnetohydrodynamic MHD formulation based on the electric potential, we obtain an analytical solution for
the flow of a liquid metal in a rectangular duct with two insulating walls and two perfectly conducting walls perpendicular to the applied
uniform magnetic field. As the Hartmann number increases, the flow displays high velocities in the boundary layers attached to the insulating
walls and a quasi-stagnant flow at the core. The effect of this flow pattern on the forced convection heat transfer is then explored numerically
considering a uniform heat flux on either the conducting or insulating walls. Compared to the hydrodynamic case, the MHD flow enhances
the heat transfer as the Hartmann number increases only in the case when the heat flux is applied at the insulating walls where high velocities
are present. The increase of the local Nusselt number asttietPlumber grows indicates an efficient heat removal from the heated wall.
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1. Introduction plied field and thin conducting walls parallel to the field. In
these conditions, the electric current distribution may lead to

Liquid metal magnetohydrodynamic (MHD) duct flows are th€ formation of the so-called "M-shaped” or "M-type” ve-
relevant in different technological applications such as MHD!OCItY profiles which are important in the context of liquid
generators, electromagnetic pumps, metallurgical process@€t@! blanket applications [11]. A key dimensionless param-
[1] and, particularly, the design of fusion reactor blankets [2].€t€r in MHD flows is the Hartmann numbefq, (to be de-
Since the experimental study of this kind of flow is expensivelined below) whose square can be interpreted as the ratio of
and complex, a great effort has been devoted to the searéﬂag_”et'c to viscous forces [8]: Hunt’s sglutmn showed that
of analytical solutions in restricted conditions as well as to@ Nigh Hartmann numbers, high velocities are found close

the development of computing codes able to simulate mor® the walls parallel to the field while the core remains al-
realistic situations. In fact, several exact solutions of MHD™MOSt stagnant. This flow pattern is particularly interesting
flows in ducts have been extensively used to validate numefNce the presence of high velocities near the walls may pro-
ical codes, see for instance [3-6]. MHD flow patterns argnote the appearance of instabilities [12] and eventually tur-
determined by the magnetic forces that arise in the conducRUlence [13], with a direct effect on the heat transfer [14]. In
ing fluid owing to the interaction of the applied magnetic field fact, recently an’analytlcal solution of the heat transfer prob-
with electric currents induced by the fluid motion within the €M for the Hunt's flow has been reported [16].

same field. In turn, current paths (particularly the way they According to the choice of the flow and electromag-

close) depend on the electrical conductivity not only of thepeic variables, different equivalent formulations of the MHD
liquid metal but also of the duct walls. Therefore, ducts W'thequations are available [15]. The most common ones are the
different configurations of walls of distinct conductivity may B-formulation, based on the induced magnetic field vector,
lead to very different flow patterns. Since the forced convecyng thegs-formulation, based on the scalar electric potential.
tion heat transfer depends strongly on the flow distribution, if es5 common formulations involve the use of the magnetic
is of relevance to explore MHD flows in ducts with diverse yector potential or the electric current density vector [15].
wall conﬁgurgtlons.' As a matter of fact, many cases havg, fact, Hunt's exact solution [9] was found using ttiz
been treated in the literature (see for instance [7, 8]). formulation. In this work, we obtain an exact solution for the
Pioneering works in this area include Hunt's contribu- MHD flow in a rectangular duct with two perfectly conduct-
tions [9, 10] where fully developed incompressible flows ining walls perpendicular to the uniform magnetic field and two
ducts with rectangular cross-section under a uniform maginsulating walls parallel to the field. Although this solution
netic field transverse to a pair of walls were analysed. In hiss well known in terms of theé3-formulation [7], apparently
first contribution [9], Hunt obtained an exact solution for a it has not been reported for tlgeformulation. Therefore, it
duct with perfectly conducting walls perpendicular to the ap-could be useful for the validation of numerical codes based
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on the latter. In order to assess the effect of the MHD flow
in the heat transfer process, we use the velocity profile of
the exact solution to solve numerically the three-dimensional
heat transfer problem in which a pair of walls, either the con-  du
ducting or the insulating ones, are exposed to a uniform heat 5; +
flux.

In Sec. 2, we present the formulation of the problem. The
analytical solution for the MHD flow is developed in Sec. 3, VZ¢ =V - (u x By), (4)

while numerical heat transfer results are presented in Sec. 4h loci lectrical densi
Finally, some concluding remarks are exposed in Sec. 5. t € ve ocny,u,. pr_essureP, € ectrlca_ current. ensityl, ap-
plied magnetic fieldB,, and electric potentialy, are nor-

malized byU, pU?, cUBy, By and L .U By, respectively,
2. Formulation where the characteristic velocity,, is the entrance flow ve-
] ] ) locity, By is the characteristic magnetic field strengthndo
We consider the fully developed flow of a viscous, incCOM-4re the mass density and electrical conductivity of the liquid,
pressible electrically conducting fluid in a duct of constantypile 1. is the characteristic length which is taken as half the
rectangular cross-section under a transverse uniform maggsiance between the insulating walls. Coordinates, ¢)
netic field. It is assumed that the applied field is perpendicuz e normalized byL., and timet is normalized by inertial
lar to a pair of perfectly conducting walls and is parallel to ajjme L./U in the Navier-Stokes Eq2). The dimensionless

pair of insulating walls. In addition, a constant and uniform cqntro| parameters are the Reynolds numier= UL, /v
heat flux is applied at both perfectly conducting walls, while 3nq the interaction paramete¥, = o B2 L. /pU, which is re-

the insulating walls parallel to the field remain adiabatic. Fig-|ated to the Hartmann number sinde — Ha?/Re, where
ure 1 shows a sketch of the treated problem. The case whetg  _ BoL (O'/pu)l/Q.
the heat flux is applied to the insulating walls is also consid- |, additcion the applied magnetic fieRy,, must satisfy

ergd. We first obtain an analytical solution for the MHD ﬂOW the magnetostatic equations, which guarantee its solenoidal
which is used to solve the heat transfer problem numerically, 4 irrotational character. that is

using the finite volume method. For this study the working

fluid is supposed to be a liquid metal. V- -By =0, V x By = 0. (5)
In liquid metal MHD.ﬂOWS at laboratory and mdugtna! The heat transfer equation for the liquid metal MHD flow

scales, the low magnetic Reynolds numbers apprOX|mat|o|r1Q‘ expressed in dimensionless form as

(R, < 1) holds [8], which indicates that magnetic fields in-

duced by the motion of the fluid are much smaller than the or

V-u=0, @)
1
(U-Vyu=-VP+ EVQU +NJIx By, (2)

J=—-V¢+uxB,, (3

2
applied magnetic field. Under this approximation and using ot TPe(u-V)T=VT, ©)
the ¢-formulation, the governing MHD equations in dimen- where the temperatur&,, has been normalized by the char-
sionless terms are expressed in the form [15] acteristic temperatur@,, which can be chosen as the inlet
fluid temperature. In this equation, timés normalized with
Insulating the diffusive timeL? /., wherea is the thermal diffusivity of
wall \\‘ the liquid metal. The dimensionless control parameter is the

Péclet numberPe = UL./a, which can also be written as

Pe = PrRe. Equation|6) does not consider the heat sources

U/ provided by viscous and Joule dissipations since compared to
the inlet heat flux, they are usually negligible [14].

BO Z
i T SN 3. Analytical solution of the MHD flow
onductin
wall gﬂ By considering a steady fully developed flow in the
Heat direction under a uniform magnetic field applied in the
flrge direction, the set of Eqs1)-(5) are reduced to
/// . @+&+H7a2 % _ldj (7)
. Conducting o0 o2 T 2 \o: ) T Eax
5 wall so 26 o
7 u
97 o 5s =0 (®)

whereu is the velocity component in the-direction andk
FIGURE 1. Sketch of flow and heat transfer of the analyzed prob- is the duct’s aspect ratib = yo/20, yo andz, being half
lem. the distance between the conducting and insulating walls,
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FIGURE 2. Sketch of the physical domain for the analytical solu-
tion.

respectively (see Fig. 2). The axial pressure gradiftdz,
is assumed to be constant, where the pressure was renormal
ized byprU/L..

The velocity component, satisfies non-slip boundary
conditions at all the duct walls. At the perfectly conducting
walls, the electric field tangential to the walls must be zero
while at the insulating walls the normal component of the
current density has to be zero [7]. In terms of the electric po-
tential,¢, the boundary conditions at the perfectly conducting
and insulating walls are expressed, respectively, in the form

0 0
S0 )=0, k) =0. (@)

The velocity field which satisfies the boundary conditions is

given by FIGURE 3. Magnitude of the velocity component in the flow do-

main (square duck = 1). a)Ha = 0 and bH a = 30.

_ > = nmy . mnz Therefore, using Ohm’s law, Eq/3), the electrical current
u(g,z)= D > Amncos o S (10) density field is given by

n=1,3... m=1,3...

1 o0 o0
Jy = Z Z Z N By sin Y sin w, (14)

where o B
n=1,3... m=1,3...
_1ledp (m2 + n_2> sin T cog MT 1 & 2. n? nmy mmz
A = kdr - k: - 2 22 . (1)) J: =13 Z Z Ean cos == €08 ——. (15)
mnm2 |:7"T (m2 + %) + Ha? (2—4):| n=1,3... m=1,3...

Although not shown here, it was verified that the present an-

In turn, the solution for the electric potential is expressed as@lytical solution has a perfect matching with the solution ob-
tained withB— formulation [7].

Figure 3 shows the magnitude of the velocity component

oy, 2) = 2 > > Buncos MY n T2 (12)  for Hartmann number$a = 0 and 30 for a square duct
T Z13.. m=13... 2k 2 (k = 1). Evidently, Ha = 0 corresponds to the hydrody-
namic flow which displays a parabolic profile with maximum
where velocity at the center. Likewise, fdda = 30 the locations
of the maximum velocity are displaced near both insulating
B —264P gip 1T cog T walls. In fact, for high values affa, the flow exhibits a pair
mn T T T e 5 a2y 2 ENE (13) of jets close to the insulating walls while the core flow be-
nm [T m?+ %) + Ha (F)]
comes almost stagnant.
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This is clearly shown in Fig. 4a) where the velocity pro- T N T T
files as a function ot-coordinate are displayed for different 0 O‘ 5 i 1‘ 9
Hartmann numbersH{a = 0, 5,10, 30, 100). The coordinate : 9
system was moved from the center of the duct to the lower- b) Y

left corner to fit it with the system used in the heat trans- _ _ _
fer numerical code. Note that insulating walls are located af'GURE 5. Electric potential and current density fér = 1,
» = 0andz = 2. On the other hand, Fig. 4b) shows the ve- Ha = 30. a) Electric potential isolines, and b) Electric current

locity profiles for the same Hartmann numbers but as a func(-jens'ty vector field.

ion of they-coordinate. In this case, the effect of Increasmgpendicular to the applied magnetic field and the Lorentz force

the Hartmann number is to flatten the velocity profiles. As hat brakes the flow is maximum causing the reduction of ve-
result, mass flow is mainly carried by the side jets near th?ocity in this region

insulating walls, not by the bulk in the central region.

Figure 5a) shows isolines of electric potential while
Fig. 5b) displays the corresponding electric current densityl, Heat transfer numerical results
vector field in the square duct fdfe=30. The analysis of
the electric current distribution dictated by the conductingAs it was mentioned above, the analytical velocity profile was
and insulating walls explains the flow pattern structure. Asused to solve the forced convection heat transfer problem in
the Hartmann number increases, near the insulating walls thi@e duct, assuming that a pair of walls, either the perfectly
current density is almost parallel to the applied magnetic fiel&conducting or the insulating ones, receive a constant uniform
and therefore, the braking Lorentz forée By, is negligible  heat flux. We consider that the duct has a square cross-section
promoting the appearance of high-velocity regions. On thevhose dimensions in the— y — z-directions ard 0 x 2 x 2,
other hand, in the central region the current density is perrespectively, in dimensionless units. At the inlet, the fluid
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FIGURE 6. Temperature profiles at the heated perfectly conducting
wall, z = 1, aty = 0, for different Feclet and Hartmann numbers
(k=1). a) Ha = 30, and b)Pe = 26.5.
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heated (perfectly conducting) wall, = 1, for three differ-

ent Ha numbersHa = 0, 30, 100 and a fixed Bclet number

Pe = 26.5. It can be noticed that the lowest wall tempera-
ture is obtained whe#l a = 0, that is, when the profile is the
hydrodynamic one. Adia increases, the wall temperature
increases manifesting the influence of the small velocities
found at the heated wall due to a stronger opposing Lorentz
force. Therefore, in this case the hydrodynamic parabolic
profile leads to a more efficient heat removal than the flat
MHD profile (see Fig. 4b)).

Figure 7 shows the local Nusselt number at the heated
perfectly conducting wall as a function aefcoordinate for
different Feclet numbersPe = 53,530,2650, and a fixed
Hartmann numbef « = 30. The local Nusselt number, also
known as the local heat transfer coefficient, is defined as

or| L,

Nx 7t:7 T T
U(x ) 83} wa_Tw

(19)
whereL, is the distance between the heated wdll,is the
wall temperature and;, is the bulk temperature given by

fOLy uTdy
fOL” udy

The parameteiNu, gives information about the local heat
transfer rate and, as it is expected, the larger #de® num-
ber, the larger the heat removal and the lower the wall tem-
perature, as discussed in Fig. 6a).

Let us now explore the heat transfer when the uniform
heat flux is applied at the insulating walls. An effect is ex-
pected since the flow exhibits high velocity jets near the in-
sulating walls, parallel to the applied magnetic field. Figure 8

Tb (1’, t) = (20)

temperature is assumed to be constant. Mathematically, trehows the wall temperature profiles along a heated insulating

thermal boundary conditions applied to the solution of BY. (

wall, y = 1, at the mid plane = 0, as a function of the:--

for the case in which the heat flux enters at the perfectly coneoordinate for the same parameters used in Fig. 6. As in the

ducting walls are:

previous case (see Fig. 6a)), Fig. 8a) shows that the larger the
the Feclet number for a given Hartmann numbéfa = 30)

T
z
50 ; ; ;
oT T Pe—hH3 ——
=1, y=0,2, 0<z<2 0<z<10, (17) , s R
dy 0 I, Pe—2650 - - -
T=0, =0, 0<y<2 0<z<2 (18) .
The finite volume method (FVM) was used to solve the heat 30
transfer equation [18] and the Euler method was used to dis- Ny,
cretize the temporal term. Derivatives were discretized using 20
the finite difference approximation while the upwind differ- )
encing approach was used to calculate the convective term. |\ ~ _ T ct-- o
Figure 6a) shows the temperature profile inthe mid plane 10N ==~ = — — — _ _ _ _ _ _
y = 0 at the heated perfectly conducting wall= 1, as a
function of z-coordinate for a Hartmann numbéfa = 30 0 ‘ ‘
and different Rclet numbersPe = 15.9,26.5, 53. It can be 6 8 10

clearly observed that as the&&et number grows, the wall

temperature decreases, indicating a heat transfer enhangasure 7. Local Nusselt number as a functionotoordinate for

ment. In turn, Fig. 6b) shows the temperature profiles at thelifferent Feclet numbers whei a = 30.
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1.6 | : : : Hartmann numbers observing that the higher the Hartmann
14 N number the lower the wall temperature. Evidently, this oc-
’ . curs due to the presence of the high-velocity jets that appear
1.2 ¢ near these walls for higfa promoting a more efficient heat
removal.
1t
ros 5. Conclusion
0.6
In this paper, we used the MHD formulation based on the
0.4 . . . . .
electric potential to obtain an exact analytical solution for the
0.2 fully developed flow of a liquid metal in a duct of rectangu-
lar cross-section with two insulating walls and two perfectly
0 . . . .
conducting walls perpendicular to the applied magnetic field.
a) x This solution is equivalent to the reported solution in terms
1.4 . of the induced magnetic field [7]. The analytical velocity
profile was used to explore numerically the forced convec-
1.2 + 1 tive heat transfer when a constant and uniform heat flux is
1l | imposed on either the perfectly conducting or the insulating
— walls. As expected, the heat transfer process is strongly in-
0.8 | - - fluenced by the flow pattern which displays high-velocity re-
T R ’ gions near both insulating walls for high values of the Hart-
0.6 - PR 1 mann number. For a fixedglet number, when the heat flux
- et enters the perfectly conducting walls, the hydrodynamic pro-
0.4 PR file leads to a stronger heat removal and lower wall tempera-
0al/ - -7 Ha0 — tures than the MHD profiles. However, when the surface heat
7" Ha—=30 — — flux is set at the insulating walls where the high velocity re-
ol \ - , Ha=100 - - - gions are formed, the heat removal is more efficient the larger
b) 0 2 4 6 8 10 the Hartmann number leading to lower wall temperatures. It
T

was also verified that for a constant Hartmann number, the
FIGURE 8. Temperature profile at the heated insulating wall, local Nusselt number increases as tleelBt number grows,

y = 1, atz = 0 for different Feclet and Hartmann numbers which indicates a better heat removal from the heated wall.
(k =1). a)Ha = 30, and b)Pe = 26.5.

the lower the wall temperature. However, in this case, théAcknowledgments

reduction in wall temperature is higher than the case of the
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