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Liquid metal MHD steady flow and heat transfer in a rectangular duct with
perfectly conducting walls perpendicular to the applied magnetic field
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Several technological applications involve the flow of liquid metals in ducts under a magnetic field, for instance, the coolants of fusion
reactors. In this paper, using a magnetohydrodynamic MHD formulation based on the electric potential, we obtain an analytical solution for
the flow of a liquid metal in a rectangular duct with two insulating walls and two perfectly conducting walls perpendicular to the applied
uniform magnetic field. As the Hartmann number increases, the flow displays high velocities in the boundary layers attached to the insulating
walls and a quasi-stagnant flow at the core. The effect of this flow pattern on the forced convection heat transfer is then explored numerically
considering a uniform heat flux on either the conducting or insulating walls. Compared to the hydrodynamic case, the MHD flow enhances
the heat transfer as the Hartmann number increases only in the case when the heat flux is applied at the insulating walls where high velocities
are present. The increase of the local Nusselt number as the Péclet number grows indicates an efficient heat removal from the heated wall.
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1. Introduction

Liquid metal magnetohydrodynamic (MHD) duct flows are
relevant in different technological applications such as MHD
generators, electromagnetic pumps, metallurgical processes
[1] and, particularly, the design of fusion reactor blankets [2].
Since the experimental study of this kind of flow is expensive
and complex, a great effort has been devoted to the search
of analytical solutions in restricted conditions as well as to
the development of computing codes able to simulate more
realistic situations. In fact, several exact solutions of MHD
flows in ducts have been extensively used to validate numer-
ical codes, see for instance [3–6]. MHD flow patterns are
determined by the magnetic forces that arise in the conduct-
ing fluid owing to the interaction of the applied magnetic field
with electric currents induced by the fluid motion within the
same field. In turn, current paths (particularly the way they
close) depend on the electrical conductivity not only of the
liquid metal but also of the duct walls. Therefore, ducts with
different configurations of walls of distinct conductivity may
lead to very different flow patterns. Since the forced convec-
tion heat transfer depends strongly on the flow distribution, it
is of relevance to explore MHD flows in ducts with diverse
wall configurations. As a matter of fact, many cases have
been treated in the literature (see for instance [7,8]).

Pioneering works in this area include Hunt’s contribu-
tions [9, 10] where fully developed incompressible flows in
ducts with rectangular cross-section under a uniform mag-
netic field transverse to a pair of walls were analysed. In his
first contribution [9], Hunt obtained an exact solution for a
duct with perfectly conducting walls perpendicular to the ap-

plied field and thin conducting walls parallel to the field. In
these conditions, the electric current distribution may lead to
the formation of the so-called “M-shaped” or “M-type” ve-
locity profiles which are important in the context of liquid
metal blanket applications [11]. A key dimensionless param-
eter in MHD flows is the Hartmann number,Ha, (to be de-
fined below) whose square can be interpreted as the ratio of
magnetic to viscous forces [8]. Hunt’s solution showed that
at high Hartmann numbers, high velocities are found close
to the walls parallel to the field while the core remains al-
most stagnant. This flow pattern is particularly interesting
since the presence of high velocities near the walls may pro-
mote the appearance of instabilities [12] and eventually tur-
bulence [13], with a direct effect on the heat transfer [14]. In
fact, recently an analytical solution of the heat transfer prob-
lem for the Hunt’s flow has been reported [16].

According to the choice of the flow and electromag-
netic variables, different equivalent formulations of the MHD
equations are available [15]. The most common ones are the
B-formulation, based on the induced magnetic field vector,
and theφ-formulation, based on the scalar electric potential.
Less common formulations involve the use of the magnetic
vector potential or the electric current density vector [15].
In fact, Hunt’s exact solution [9] was found using theB-
formulation. In this work, we obtain an exact solution for the
MHD flow in a rectangular duct with two perfectly conduct-
ing walls perpendicular to the uniform magnetic field and two
insulating walls parallel to the field. Although this solution
is well known in terms of theB-formulation [7], apparently
it has not been reported for theφ-formulation. Therefore, it
could be useful for the validation of numerical codes based
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on the latter. In order to assess the effect of the MHD flow
in the heat transfer process, we use the velocity profile of
the exact solution to solve numerically the three-dimensional
heat transfer problem in which a pair of walls, either the con-
ducting or the insulating ones, are exposed to a uniform heat
flux.

In Sec. 2, we present the formulation of the problem. The
analytical solution for the MHD flow is developed in Sec. 3,
while numerical heat transfer results are presented in Sec. 4.
Finally, some concluding remarks are exposed in Sec. 5.

2. Formulation

We consider the fully developed flow of a viscous, incom-
pressible electrically conducting fluid in a duct of constant
rectangular cross-section under a transverse uniform mag-
netic field. It is assumed that the applied field is perpendicu-
lar to a pair of perfectly conducting walls and is parallel to a
pair of insulating walls. In addition, a constant and uniform
heat flux is applied at both perfectly conducting walls, while
the insulating walls parallel to the field remain adiabatic. Fig-
ure 1 shows a sketch of the treated problem. The case where
the heat flux is applied to the insulating walls is also consid-
ered. We first obtain an analytical solution for the MHD flow
which is used to solve the heat transfer problem numerically
using the finite volume method. For this study the working
fluid is supposed to be a liquid metal.

In liquid metal MHD flows at laboratory and industrial
scales, the low magnetic Reynolds numbers approximation
(Rm ¿ 1) holds [8], which indicates that magnetic fields in-
duced by the motion of the fluid are much smaller than the
applied magnetic field. Under this approximation and using
theφ-formulation, the governing MHD equations in dimen-
sionless terms are expressed in the form [15]

FIGURE 1. Sketch of flow and heat transfer of the analyzed prob-
lem.

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇) u = −∇P +
1

Re
∇2u + NJ× B0, (2)

J = −∇φ + u× B0, (3)

∇2φ = ∇ · (u× B0), (4)

the velocity,u, pressure,P , electrical current density,J, ap-
plied magnetic field,B0, and electric potential,φ, are nor-
malized byU , ρU2, σUB0, B0 and LcUB0, respectively,
where the characteristic velocity,U , is the entrance flow ve-
locity, B0 is the characteristic magnetic field strength,ρ andσ
are the mass density and electrical conductivity of the liquid,
while Lc is the characteristic length which is taken as half the
distance between the insulating walls. Coordinates (x,y,z)
are normalized byLc, and timet is normalized by inertial
time Lc/U in the Navier-Stokes Eq. (2). The dimensionless
control parameters are the Reynolds number,Re = ULc/ν,
and the interaction parameter,N = σB2

0Lc/ρU , which is re-
lated to the Hartmann number sinceN = Ha2/Re, where
Ha = B0Lc (σ/ρν)1/2.

In addition, the applied magnetic fieldB0, must satisfy
the magnetostatic equations, which guarantee its solenoidal
and irrotational character, that is,

∇ · B0 = 0, ∇× B0 = 0. (5)

The heat transfer equation for the liquid metal MHD flow
is expressed in dimensionless form as

∂T

∂t
+ Pe (u · ∇)T = ∇2T, (6)

where the temperature,T , has been normalized by the char-
acteristic temperatureT0, which can be chosen as the inlet
fluid temperature. In this equation, timet is normalized with
the diffusive timeL2

c/α, whereα is the thermal diffusivity of
the liquid metal. The dimensionless control parameter is the
Péclet numberPe = ULc/α, which can also be written as
Pe = PrRe. Equation (6) does not consider the heat sources
provided by viscous and Joule dissipations since compared to
the inlet heat flux, they are usually negligible [14].

3. Analytical solution of the MHD flow

By considering a steady fully developed flow in thex-
direction under a uniform magnetic field applied in they-
direction, the set of Eqs. (1)-(5) are reduced to

∂2u

∂y2
+

∂2u

∂z2
+

Ha2

k2

(
∂φ

∂z
− u

)
=

1
k

dP

dx
, (7)

∂2φ

∂y2
+

∂2φ

∂z2
− ∂u

∂z
= 0, (8)

whereu is the velocity component in thex-direction andk
is the duct’s aspect ratiok = y0/z0, y0 and z0 being half
the distance between the conducting and insulating walls,
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FIGURE 2. Sketch of the physical domain for the analytical solu-
tion.

respectively (see Fig. 2). The axial pressure gradient,dP/dx,
is assumed to be constant, where the pressure was renormal-
ized byρνU/Lc.

The velocity componentu satisfies non-slip boundary
conditions at all the duct walls. At the perfectly conducting
walls, the electric field tangential to the walls must be zero
while at the insulating walls the normal component of the
current density has to be zero [7]. In terms of the electric po-
tential,φ, the boundary conditions at the perfectly conducting
and insulating walls are expressed, respectively, in the form

∂φ

∂z
(±y0, z) = 0,

∂φ

∂z
(y,±z0) = 0. (9)

The velocity field which satisfies the boundary conditions is
given by

u(y, z) =
∞∑

n=1,3...

∞∑
m=1,3...

Amn cos
nπy

2k
sin

mπz

2
, (10)

where

Amn =
− 16

k
dP
dx

(
m2 + n2

k2

)
sin nπ

2 cos mπ
2

mnπ2
[

π2

4

(
m2 + n2

k2

)2
+ Ha2

(
n2

k4

)] . (11)

In turn, the solution for the electric potential is expressed as

φ(y, z) =
2
π

∞∑
n=1,3...

∞∑
m=1,3...

Bmn cos
nπy

2k
sin

mπz

2
, (12)

where

Bmn =
− 16

k
dP
dx sin nπ

2 cos mπ
2

nπ2
[

π2

4

(
m2 + n2

k2

)2
+ Ha2

(
n2

k4

)] . (13)

FIGURE 3. Magnitude of the velocity component in the flow do-
main (square duct,k = 1). a)Ha = 0 and b)Ha = 30.

Therefore, using Ohm’s law, Eq. (3), the electrical current
density field is given by

jy =
1
k

∞∑
n=1,3...

∞∑
m=1,3...

nBmn sin
nπy

2k
sin

mπz

2
, (14)

jz =
1
k2

∞∑
n=1,3...

∞∑
m=1,3...

n2

m
Bmn cos

nπy

2k
cos

mπz

2
. (15)

Although not shown here, it was verified that the present an-
alytical solution has a perfect matching with the solution ob-
tained withB− formulation [7].

Figure 3 shows the magnitude of the velocity component
for Hartmann numbersHa = 0 and 30 for a square duct
(k = 1). Evidently, Ha = 0 corresponds to the hydrody-
namic flow which displays a parabolic profile with maximum
velocity at the center. Likewise, forHa = 30 the locations
of the maximum velocity are displaced near both insulating
walls. In fact, for high values ofHa, the flow exhibits a pair
of jets close to the insulating walls while the core flow be-
comes almost stagnant.
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FIGURE 4. Velocity profiles in a square duct (k = 1) for different
Ha values. a)Velocity as a function ofz-coordinate, and b)Velocity
as a function ofy-coordinate.

This is clearly shown in Fig. 4a) where the velocity pro-
files as a function ofz-coordinate are displayed for different
Hartmann numbers (Ha = 0, 5, 10, 30, 100). The coordinate
system was moved from the center of the duct to the lower-
left corner to fit it with the system used in the heat trans-
fer numerical code. Note that insulating walls are located at
z = 0 andz = 2. On the other hand, Fig. 4b) shows the ve-
locity profiles for the same Hartmann numbers but as a func-
tion of they-coordinate. In this case, the effect of increasing
the Hartmann number is to flatten the velocity profiles. As a
result, mass flow is mainly carried by the side jets near the
insulating walls, not by the bulk in the central region.

Figure 5a) shows isolines of electric potential while
Fig. 5b) displays the corresponding electric current density
vector field in the square duct forHa=30. The analysis of
the electric current distribution dictated by the conducting
and insulating walls explains the flow pattern structure. As
the Hartmann number increases, near the insulating walls the
current density is almost parallel to the applied magnetic field
and therefore, the braking Lorentz forceJ×B0 is negligible
promoting the appearance of high-velocity regions. On the
other hand, in the central region the current density is per-

FIGURE 5. Electric potential and current density fork = 1,
Ha = 30. a) Electric potential isolines, and b) Electric current
density vector field.

pendicular to the applied magnetic field and the Lorentz force
that brakes the flow is maximum causing the reduction of ve-
locity in this region.

4. Heat transfer numerical results

As it was mentioned above, the analytical velocity profile was
used to solve the forced convection heat transfer problem in
the duct, assuming that a pair of walls, either the perfectly
conducting or the insulating ones, receive a constant uniform
heat flux. We consider that the duct has a square cross-section
whose dimensions in thex− y− z-directions are10× 2× 2,
respectively, in dimensionless units. At the inlet, the fluid
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FIGURE 6. Temperature profiles at the heated perfectly conducting
wall, z = 1, aty = 0, for different Ṕeclet and Hartmann numbers
(k = 1). a)Ha = 30, and b)Pe = 26.5.

temperature is assumed to be constant. Mathematically, the
thermal boundary conditions applied to the solution of Eq. (6)
for the case in which the heat flux enters at the perfectly con-
ducting walls are:

∂T

∂z
= 0, z = 0, 2, 0 ≤ y ≤ 2, 0 ≤ x ≤ 10, (16)

∂T

∂y
= 1, y = 0, 2, 0 ≤ z ≤ 2, 0 ≤ x ≤ 10, (17)

T = 0, x = 0, 0 ≤ y ≤ 2, 0 ≤ z ≤ 2, (18)

The finite volume method (FVM) was used to solve the heat
transfer equation [18] and the Euler method was used to dis-
cretize the temporal term. Derivatives were discretized using
the finite difference approximation while the upwind differ-
encing approach was used to calculate the convective term.

Figure 6a) shows the temperature profile in the mid plane
y = 0 at the heated perfectly conducting wall,z = 1, as a
function of x-coordinate for a Hartmann numberHa = 30
and different Ṕeclet numbers,Pe = 15.9, 26.5, 53. It can be
clearly observed that as the Péclet number grows, the wall
temperature decreases, indicating a heat transfer enhance-
ment. In turn, Fig. 6b) shows the temperature profiles at the

heated (perfectly conducting) wall,z = 1, for three differ-
entHa numbersHa = 0, 30, 100 and a fixed Ṕeclet number
Pe = 26.5. It can be noticed that the lowest wall tempera-
ture is obtained whenHa = 0, that is, when the profile is the
hydrodynamic one. AsHa increases, the wall temperature
increases manifesting the influence of the small velocities
found at the heated wall due to a stronger opposing Lorentz
force. Therefore, in this case the hydrodynamic parabolic
profile leads to a more efficient heat removal than the flat
MHD profile (see Fig. 4b)).

Figure 7 shows the local Nusselt number at the heated
perfectly conducting wall as a function ofx-coordinate for
different Ṕeclet numbers,Pe = 53, 530, 2650, and a fixed
Hartmann numberHa = 30. The local Nusselt number, also
known as the local heat transfer coefficient, is defined as

Nux(x, t) =
∂T

∂y

∣∣∣∣
w

Ly

Tb − Tw
, (19)

whereLy is the distance between the heated walls,Tw is the
wall temperature andTb is the bulk temperature given by

Tb(x, t) =

∫ Ly

0
uTdy

∫ Ly

0
udy

. (20)

The parameterNux gives information about the local heat
transfer rate and, as it is expected, the larger the Péclet num-
ber, the larger the heat removal and the lower the wall tem-
perature, as discussed in Fig. 6a).

Let us now explore the heat transfer when the uniform
heat flux is applied at the insulating walls. An effect is ex-
pected since the flow exhibits high velocity jets near the in-
sulating walls, parallel to the applied magnetic field. Figure 8
shows the wall temperature profiles along a heated insulating
wall, y = 1, at the mid planez = 0, as a function of thex-
coordinate for the same parameters used in Fig. 6. As in the
previous case (see Fig. 6a)), Fig. 8a) shows that the larger the
the Ṕeclet number for a given Hartmann number (Ha = 30)

FIGURE 7. Local Nusselt number as a function ofx coordinate for
different Ṕeclet numbers whenHa = 30.
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FIGURE 8. Temperature profile at the heated insulating wall,
y = 1, at z = 0 for different Ṕeclet and Hartmann numbers
(k = 1). a)Ha = 30, and b)Pe = 26.5.

the lower the wall temperature. However, in this case, the
reduction in wall temperature is higher than the case of the
heated conducting wall. In addition, Fig. 8b) shows the tem-
perature profiles at the heated insulating wall for different

Hartmann numbers observing that the higher the Hartmann
number the lower the wall temperature. Evidently, this oc-
curs due to the presence of the high-velocity jets that appear
near these walls for highHa promoting a more efficient heat
removal.

5. Conclusion

In this paper, we used the MHD formulation based on the
electric potential to obtain an exact analytical solution for the
fully developed flow of a liquid metal in a duct of rectangu-
lar cross-section with two insulating walls and two perfectly
conducting walls perpendicular to the applied magnetic field.
This solution is equivalent to the reported solution in terms
of the induced magnetic field [7]. The analytical velocity
profile was used to explore numerically the forced convec-
tive heat transfer when a constant and uniform heat flux is
imposed on either the perfectly conducting or the insulating
walls. As expected, the heat transfer process is strongly in-
fluenced by the flow pattern which displays high-velocity re-
gions near both insulating walls for high values of the Hart-
mann number. For a fixed Péclet number, when the heat flux
enters the perfectly conducting walls, the hydrodynamic pro-
file leads to a stronger heat removal and lower wall tempera-
tures than the MHD profiles. However, when the surface heat
flux is set at the insulating walls where the high velocity re-
gions are formed, the heat removal is more efficient the larger
the Hartmann number leading to lower wall temperatures. It
was also verified that for a constant Hartmann number, the
local Nusselt number increases as the Péclet number grows,
which indicates a better heat removal from the heated wall.
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