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Retarded hydrodynamic fluctuations effects on the light scattering
spectrum and elastic moduli of a linear viscoelastic liquidi
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Fluctuating hydrodynamics is one of the theories that describes the dynamics of the fluctuations for fluids at mesoscopic scales. However,
it is only valid for Markovian processes. Here we extend this approach for a viscoelastic liquid by using a generalized Langevin equation.
We obtain general analytic expressions for the density fluctuations correlation function, the dynamic structure factor and the light scattering
spectrum. In particular, we calculate the intermediate scattering function when the time memory and the noise correlation function are
power-laws. We find that the difference in values of this quantity as functions of the viscoelasticity may vary between 56.1 - 70.7% for the
time interval 510-6000 s, and might be measurable.
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1. Introduction

The ability to describe time-dependent deformations in soft
materials is important when modelling the large variety of
relaxation processes that occur in many dynamic systems.
These type of deformations may preclude a clear separa-
tion of time scales associated with the macroscopic transport
processes and those of the microscopic ones giving rise to
them. This is the case for complex systems like viscoelastic
fluids [1,2], glassy materials, synthetic or reinforced poly-
mers, and of increasing importance for biopolymers, mem-
branes, tissues [3] and other biological systems like active
systems [4], for which the associated relaxation functions are
non-exponential, due to the large number of highly coupled
elementary units responsible for the relaxation. For many of
these systems it is the microstructure of the medium which
dictates that the material response may be strongly viscoelas-
tic. This response is manifested in the dynamics of its fluctu-
ations and on the dynamic behavior of the correlation func-
tions associated with many transport properties. In this work
we model these retarded fluctuations correlations behavior in
terms of a generalized Langevin equation (GLE) with long
time-memory effects when both, the friction kernel and the
correlation of the stochastic force obey a power-law dynam-
ics. More specifically, for a linear, symmetric, homogeneous,
viscoelastic fluid we calculate analytically its density correla-
tion function and its intermediate scattering function (ISF )

or van Hove’s self-correlation function [5]. A general expres-
sion for the light scattering structure factor as a function of
the longitudinal elastic modulus of the fluid is also obtained.
Thus, if this modulus is modeled or measured, the structure
factor could be determined or, alternatively, a measure of the
structure factor will yield an analytic expression for the lon-
gitudinal elastic modulus. We focus our analysis on the theo-
retical calculation of the van Hove’s function for the case of
power-law fluctuations and viscoelasticity. We find that the
difference in values of theISF as functions of the viscoelas-
ticity may reach values as high as70% [6]. Since we are
not aware of experimental measurements of either of these
quantities, a comparison between our theoretical results and
experiment is not feasible and remains to be assessed.

2. Fluctuating hydrodynamic equations

Consider a linear, quiescent (v0 = 0) viscoelastic liquid
which is brought to thermodynamic equilibrium in the pres-
ence of certain macroscopic constraints at the (absolute) tem-
peratureT . In a typical light scattering experiment the defor-
mations produced in the fluid by its interaction with an elec-
tromagnetic wave at the intensities usually employed in these
experiments, do not drive the system too far from equilibrium
and can be described by means of linear response theory. In
this regime the most general constitutive equation for the lin-
ear stress-strain relation is of the form [7-9]
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σij (−→r , t) = −pδij +

t∫

0

dt′
{

K (t− t′)
·
γkk (−→r , t′) δij

+2G (t−t′)
[
·
γij (−→r , t′)−1

3
·
γkk (−→r , t′) δij

] }
, (1)

where −→r is the position vector with Cartesian com-
ponents xi = (x, y, z); σij (−→r , t) is the symmetric
stress tensor,p (−→r , t) is the pressure and

·
γij (−→r , t) =

(1/2) (∂vi/∂xj + ∂vj/∂xi) is the rate of strain tensor. The
scalar functionsK(t) andG(t) denote, respectively, the bulk
(compressional) modulus and the shear modulus, which are
assumed to be spatially homogeneous quantities. Substitu-
tion of Eq. (1) into the momentum conservation equation
yields the equation of motion [10]

ρ

(
∂vi

∂t
+ vk

∂vi

∂xk

)
= − ∂p

∂xi
+

t∫

0

dt′
{[

K (t− t′)

+
1
3
G (t− t′)

]
∂

∂xi
∇kvk (−→r , t′)

+ G (t− t′)∇2vi (−→r , t′)

}
. (2)

Consistency with linear response theory requires that
Eq. (2) should be linearized in the small (deterministic)
deviations of the mass densityρ (−→r , t) and the hydrody-
namic velocity−→v (−→r , t) with respect to the initial reference
equilibrium state which will be identified by the subscript
0. These deviations are defined asδρ(−→r , t) ≡ ρ(−→r , t) −
ρ0(−→r ), δp(−→r , t) ≡ p(−→r , t) − p0 andδvi(−→r , t) ≡ vi(−→r , t)
due to Galilei invariance. However, these deviations are re-
ally random quantities, they will manifest themselves as the
fluctuations in the hydrodynamic state variables and their dy-
namics should be described stochastically. It is important to
point out that due to thermal diffusion, the fluctuationsδp are
an implicit function of both,δρ andδT . However, since at
the temperatures of interest in a typical light scattering ex-
periment using the photon correlation technique, the thermal
diffusion term contributes to the density fluctuation spectrum
only in the 10-100 MHz range, which is outside the dynamic
range that can be monitored by this technique [11], in a first
approximation the thermal diffusion may be neglected. The
effects of temperature fluctuations may then be considered to
be sufficiently small and [12]

∂δp

∂xi
=

(
∂δp

∂ρ

)

T

∂δρ

∂xi
=

1
ρ0χT

∂δρ

∂xi
(3)

whereχT is the isothermal compressibility.
It is convenient to separate the velocity−→v (−→r , t) field

into a longitudinal (−→v L) and a transverse component (−→v T ),−→v = −→v L + −→v T , which satisfy, respectively, the conditions
∇ × −→v L = 0 and∇ · −→v T = 0. Furthermore, if the direc-
tion of thez-axis is identified as the longitudinal component,

the linearized longitudinal part of the velocity fluctuations is−→v L ≡ vz ẑ, whereẑ is a unit vector in thez-direction. In
what follows we shall only consider this longitudinal compo-
nent and will be denoted asvz ≡ v. Accordingly, the devia-
tionsδρ are related to those ofδv(−→r , t) ≡ v(−→r , t) through
the linearized continuity equation

∂

∂t
δρ(−→r , t) = −ρ0

∂v

∂z
(4)

and the equation of motion forv (−→r , t) reduces to

ρ0
∂

∂t
v(−→r , t) = − 1

ρ0χT
∇δρ(−→r , t)

+

t∫

0

dt′M (t− t′)
∂2

∂z2
v(z, t′). (5)

where the longitudinal modulusM(t) is defined as

M (t) = K(t) +
4
3
G(t). (6)

Equation (5) explicitly shows that the dynamics of the den-
sity δρ(−→r , t) and longitudinal velocityvz(−→r , t) fluctuations
are coupled.

3. Density correlation function and the spec-
trum of fluctuations

The theory of fluctuations in fluids in an equilibrium state
was initiated long ago by Einstein and Onsager, and was later
reformulated in several but equivalent ways [12-14]. Here
we construct an approach based on a generalized Langevin
equation approach with Gaussian fluctuations, in the linear
regression regime close to full equilibrium [15,16], based on
the hydrodynamic Eqs. (4) and (5). If a random term,f (t),
is added to the r.h.s. of (5) and the Fourier transform with re-
spect toz is taken, (5) becomes a stochastic non-Markovian
equation for the longitudinal velocity fluctuations

ρ0
∂

∂t
v̂(q, t) = −q2

t∫

0

dt′M (t− t′) v̂(q, t′)

− iq

ρ0χT
δρ̂(q, t) + f (t) . (7)

We choose the stochastic noise termf (t) to be a Gaussian,
stationary, stochastic process with zero mean〈f (t)〉 = 0 and
with arbitrary correlation

〈f(t)f(t′)〉 = C(| t− t′ |) ≡ C(τ), (8)

subject to the condition

〈f (t) v̂(q, 0)〉 = 0, (9)

which expresses that the noise is uncorrelated with the initial
velocity fluctuations.
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The system of hydrodynamic Eqs. (4) and (7) describe
the fluctuations as a non-Markovian, stationary and Gaus-
sian process [15] and can be recast as a closed second or-
der differential stochastic equation for density fluctuations
X(t) ≡ δρ̂(q, t),

··
X(t) +

t∫

0

dt′γ(t− t′)
·

X(t′) + ω2
T X(t) = f(t), (10)

where the memory kernel is related to the longitudinal mod-
ulus, γ(t) ≡ (q2/ρ0)M(t), with ω2

T ≡ (q2/ρ0χT ). If
X(0) = 0, Eq. (10) has the same mathematical form as the
GLE used in the literature to describe the non-Markovian
Brownian motion of a particle in a fluid with memory in the
presence of an harmonic external field [16,17]. However, our
GLE (10)does not describe the Brownian motion of a parti-
cle, rather, it describes the stochastic dynamics of a hydrody-
namic stochastic variable, namely, the density fluctuations of
the fluid.

In Eqs. (8) and (9) the angular brackets denote an aver-
age over the realizations of the noise and over an equilibrium
ensemble of initial conditions. Apart from being in the lin-
ear response regime, where thermal fluctuations are Gaussian
and are dealt with a variety of standard methods, the rationale
for assuming a Gaussian noise has some experimental justi-
fication. This Gaussian assumption has been experimentally
shown to be adequate for other complex systems involving,
for instance, the motion of tracers suspended in a fluid of
swimming microorganisms [18]. In this active system the
displacement of the tracers has a self-similar probability den-
sity function with a Gaussian core and exponential tails [19],
a behavior of the tails which is actually a non-Gaussian spa-
tial effect. However, since in this work we are only concerned
with time memory kernels and not with spatial effects, it is a
reasonable and more manageable assumption to consider a
Gaussian noise with a long-time correlation.

Although γ (t) ≡ (q2/ρ0)M(t) contains dissipation ef-
fects through the viscoelastic longitudinal modulus, it may
have the same or different physical origin than thenoise
term f(t), that is, it may be interpreted as internal or exter-
nal noise. In the first case the second fluctuation-dissipation
theorem is valid, whereas in the second case it has no re-
lation with γ (t), i.e., a fluctuation-dissipation theorem does
not necessarily exist. When the system is in an equilibrium
state, it is expected that the viscoelastic kernelγ(t) should
be related to the correlation function of the noiseC(t) via
the fluctuation-dissipation theorem (FDT ) [20]. However,
for non-equilibrium states the driving noise and the dissipa-
tion may have different origins and a fluctuation-dissipation
relation does not necessarily holds. Although on physical
grounds it is expected that theFDT should hold for the
present model, to assume its validity is a rather strong as-
sumption that requires justification. In previous works we
have shown that this is indeed the case for the present hydro-
dynamic model and that the usual relation between fluctua-

tions and dissipation holds, [21,22].

C(t) = kBTγ(t), (11)

wherekB is Boltzmann’s constant andT is the absolute tem-
perature of the fluid.

Since only the longitudinal velocity fluctuationsδv cou-
ple to the density fluctuationsδρ, to describe their ef-
fects on the structure factor of the liquid, we first calculate
the (longitudinal) velocity fluctuations correlation function,
〈X(t)X(t′)〉, and then we evaluate the (Rayleigh) light scat-
tering spectrum in terms ofγ(t). The formal solutions of
Eqs. (4) and (7) are, respectively, [23],

X(t) = 〈X(t)〉X0V0
+

t∫

0

H(t− t′)f(t′)dt′, (12)

V (t) ≡ dX(t)
dt

= 〈V (t)〉X0V0
+

t∫

0

h(t− t′)f(t′)dt′, (13)

with

〈X(t)〉X0V0
= X0


1− ω2

T

t∫

0

H(t′)dt′


 + V0H(t), (14)

〈V (t)〉X0V0
= −ω2

T

t∫

0

h(t′)dt′ + V0h(t). (15)

The relaxation functionsH(t) and h(t) ≡ dH(t)/dt are
defined in terms of the Laplace transform of the (so far arbi-
trary) kernelγ(t) by

Ĥ(s) =
1

s2 + sγ̂(s) + ω2
T

, s = iω, (16)

ĥ(s) =
1

s + γ̂(s)
. (17)

These expressions are general and valid for anyγ(t) andC(t)
with a well defined Laplace-Fourier transforms.

4. Power-law rheology

In what follows we shall only consider viscoelastic fluids
with a power-law rheology such that

M(t) = M0t
−λ, 0 < λ < 1, (18)

with the Laplace transform

M̂(s) = M0Γ (1− λ) sλ−1, (19)

with M0 being the zero-frequency longitudinal modulus and
Γ(x) the Gamma function. The parameterλ measures the de-
gree of viscoelasticity of the flow field; low values ofλ cor-
respond to large Weissenberg numbers (Ws), which in turn,
imply a weakly elastic flow field,i.e., more viscoelastic than
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elastic. In contrast, a largeλ indicates an exceedingly elastic
flow. Thus, consistency with the assumed long-time memory
kernel,γ (t) ≡ (q2/ρ0M(t), we should consider also a noise
with a power-law decaying correlation function of the form

C(t, t′) = 〈f(t)f(t′)〉
= kBTC(| t− t′ |) ≡ Cβt−β , 0 < β < 1. (20)

In this case the inverse Laplace transforms of (16) and
(17) can be calculated analytically in the interval0 < α < 1,
with the results [23]

H(t) = tαE1+α−λ,1+α

[−M0Γ (1− λ) t1+α−λ
]

(21)

and

h(t) = tα−1E1+α−λ,α

[−M0Γ (1− λ) t1+α−λ
]
, (22)

where

Eµ,ν =
∞∑

n=0

zn

Γ (ν + µn)
(23)

is the generalized Mittag-Lefler function (also known as
Erdelyi’s function). Note that since the viscoelastic fluid in
our model complies with the physical conditions assumed for
the derivation of Eq. (11), from Eqs. (18)-(20) it follows that
theFDT reads

Cβ = kBTM0t
β−λ, (24)

with 0 < β < 1 and0 < λ < 1.
The intensity distribution of the isotropic components of

the light scattering detected at the scattering angleθ, is pro-
portional to the Fourier transform of the (one-time) correla-
tion of the density fluctuationδρ(−→r , t) given by

Ĉ(q, t) =
〈
X̂(q, t)X0(q)

〉
≡ 〈δρ̂(q, t)δρ̂(q)〉

≡
〈
〈δρ̂(q, t)〉δρ̂(q) δρ̂(q)

〉eq

, (25)

whereδρ̂(q, t) is the spatial Fourier transform of the fluctua-
tions of the density from the equilibrium valueρ0 within the
scattering volume. Here the notation indicates the following:
take a certain initial valueδρ̂(q) at t = 0, calculate the av-
erage〈δρ̂(q, t)〉δρ̂(q) conditional on the givenδρ̂(q); multiply
it by δρ̂(q) and average the product over the valuesδρ̂(q), as
they occur in an equilibrium distribution. Following a proce-
dure described in detail in the Appendix of Ref. [21], in the
limit of long-times (t →∞) we get the result

Ĉ(q, t →∞) ∼ q2

ρ0ω2
T

1
Γ (−3− λ)

1
tλ

. (26)

If the general form ofĈ(q, t), Eq. (25), is constructed from
the general formal solutions (12)-(17), and calculating its

Laplace transform with respect tot, one arrives at

C̃(q, s) ≡

〈
〈δρ̃(q, s)〉δρ0

δρ∗(q)
〉

〈| δρ0 |2〉

=

[
s + q2ρ−1

0 M̂(s)
]

s
[
s + q2ρ−1

0 M̂(s)
]

+ ω2
T

. (27)

Furthermore, by settings = iω and taking the real part of the
r.h.s. of Eq. (27) we arrive at [24]

S̃ (q, ω) =
[

Re
π

C̃(q, s)
]

s=iω

=
Re
π





[
s + q2ρ−1

0 M̂(s)
]

s
[
s + q2ρ−1

0 M̂(s)
]

+ ω2
T





s=iω

, (28)

which can also be expressed in terms of the complex longitu-
dinal modulusM̂(s)

iωM̂(iω)=iω

∞∫

0

M(t)e−iωtdt=M
′
(ω)+iωM

′′
(ω), (29)

where M
′
(ω) and M

′′
(ω) are, respectively, the real and

imaginary parts of̂M(iω). Furthermore, the scattering light
spectrumI(q, ω) is given by [25]

I(q, ω) =
kBT

π
Ŝ(q)

[
S̃(q, s)

]
s=iω

=
kBT

π
Ŝ(q)

× q2ρ−1
0 ω2

T M
′′
(ω)/ω[

ω2
T−ω2+q2ρ−1

0 M ′(ω)
]2

+
(
q2ρ−1

0

)2
[M ′′(ω)]2

. (30)

This Eq. (30) allows us to calculate the light scattering spec-
trum as a function of an arbitrary longitudinal modulusM(t),
as long as it has a well-defined Laplace transform.

FIGURE 1. The behavior of̂C(q, t →∞), as given by Eq. (26), for
the material properties of liquid salol:T = 353.2 K, M0 = 3.2G0,
G0 = 1.154 Kg/ms,ρ0 = 1.212 Kg/m3. The curves correspond to
λ = 0.3 andλ = 0.15 [26].
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5. Results and discussion

The long time behavior of (26) is shown in Fig. 1 as a func-
tion of t andλ for the valuesλ = 0.15 andλ = 0.3. The inset
shows that for the time interval (4 s, 100 s)Ĉ(q, t →∞, λ =
0.3) is always larger than̂C(q, t → ∞, λ = 0.15); how-
ever, for longer times, (103 − 104 s), there is a crossover and
the latter correlation is always greater than the former. The
difference between these quantities was quantified for liquid

Salol for the material values given in the Fig. 1 caption. As
shown in the figure, this difference can be quite significant,
for instance, fort ∼ 104 s it is ∼ 62%, and it may vary
between 56.1-70.7% for the time interval 510-6000 s, and it
might be measurable. However, ultimately this behavior has
its origin in the microscopic processes generating the meso-
scopic dynamics that we are modeling and to describe it is
certainly outside the scope of the present work.

i. This article is dedicated to the memory of the late Professor
G. Cocho as a token of admiration to his work and his strong
influence on current developments in physics and in many in-
terdisciplinary fields.
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