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Retarded hydrodynamic fluctuations effects on the light scattering
spectrum and elastic moduli of a linear viscoelastic liquid
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Fluctuating hydrodynamics is one of the theories that describes the dynamics of the fluctuations for fluids at mesoscopic scales. However
it is only valid for Markovian processes. Here we extend this approach for a viscoelastic liquid by using a generalized Langevin equation.
We obtain general analytic expressions for the density fluctuations correlation function, the dynamic structure factor and the light scattering
spectrum. In particular, we calculate the intermediate scattering function when the time memory and the noise correlation function are
power-laws. We find that the difference in values of this quantity as functions of the viscoelasticity may vary between 56.1 - 70.7% for the
time interval 510-6000 s, and might be measurable.
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1. Introduction or van Hove’s self-correlation function [5]. A general expres-
sion for the light scattering structure factor as a function of
The ability to describe time-dependent deformations in soffhe longitudinal elastic modulus of the fluid is also obtained.
materials is important when modelling the large variety of I NUS; if this modulus is modeled or measured, the structure
relaxation processes that occur in many dynamic System;actor could be determined or, alternatively, a measure of the
These type of deformations may preclude a clear Separé_tructure factor will yield an analytic expression for the lon-
tion of time scales associated with the macroscopic transpoftitudinal elastic modulus. We focus our analysis on the theo-
processes and those of the microscopic ones giving rise fetical calculation of the van Hove's function for the case of
them. This is the case for complex systems like viscoelastiPOWer-law fluctuations and viscoelasticity. We find that the
fluids [1,2], glassy materials, synthetic or reinforced po|y_d|f'ference in values of théS F" as functions of the viscoelas-

mers, and of increasing importance for biopolymers, memliCity may reach values as high a8% [6]. Since we are
branes, tissues [3] and other biological systems like activ&©t @ware of experimental measurements of either of these
systems [4], for which the associated relaxation functions arduantities, a comparison between our theoretical results and
non-exponential, due to the large number of highly Coup|edaxper|ment is not feasible and remains to be assessed.
elementary units responsible for the relaxation. For many of

these systems it is the microstructure of the medium whictp  Flyctuating hydrodynamic equations

dictates that the material response may be strongly viscoelas-

tic. This response is manifested in the dynamics of its fluctuConsider a linear, quiescenty(= 0) viscoelastic liquid
ations and on the dynamic behavior of the correlation funcwhich is brought to thermodynamic equilibrium in the pres-
tions associated with many transport properties. In this worlence of certain macroscopic constraints at the (absolute) tem-
we model these retarded fluctuations correlations behavior iperaturel’. In a typical light scattering experiment the defor-
terms of a generalized Langevin equatich/(F) with long  mations produced in the fluid by its interaction with an elec-
time-memory effects when both, the friction kernel and thetromagnetic wave at the intensities usually employed in these
correlation of the stochastic force obey a power-law dynamexperiments, do not drive the system too far from equilibrium
ics. More specifically, for a linear, symmetric, homogeneousand can be described by means of linear response theory. In
viscoelastic fluid we calculate analytically its density correla-this regime the most general constitutive equation for the lin-
tion function and its intermediate scattering functidi$ {) ear stress-strain relation is of the form [7-9]
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! the linearized longitudinal part of the velocity fluctuations is
04 (77,t) = —pbi; + /dt'{K (t —t") v (7, 1) 045 U = v,Z, whereZ is a unit vector in the:-direction. In
0 what follows we shall only consider this longitudinal compo-
nent and will be denoted as = v. Accordingly, the devia-
412G (t—t') [%j (7, ') _}%k (7, t) 6, } }’ (1) tionsdp are related to those ob (7', t) = v(7,t) through
3 the linearized continuity equation

where 7" is the position vector with Cartesian com- 95 (F11) = — v @
ponentsz; = (z,y,2); o (7,t) is the symmetric gt/ TN T TPy,

stress tensorp (7, ) is the pressure and;; (7,t) =  and the equation of motion far(7,t) reduces to

(1/2) (Ov;/0z; + Ov;/0x;) is the rate of strain tensor. The
scalar functiond< (t) andG(¢) denote, respectively, the bulk
(compressional) modulus and the shear modulus, which are
assumed to be spatially homogeneous quantities. Substitu-
tion of Eq. (1) into the momentum conservation equation
yields the equation of motion [10]

a 1 N
—v(r,t)=— Vop(7r,t
g0 1) = == —Vip(7.1)

t
/ / 82 /
0

t
p Ov; o ui\ _ _9p +/dt’ K(t—t) where the longitudinal modulus/ (¢) is defined as
at P oy, O 4
0 M (t) = K() + 5G(0)- (6)
1 0 N
+3G (- t) B vk (7 1) Equation (5) explicitly shows that the dynamics of the den-
’ sity 6p(7, t) and longitudinal velocity, (7, t) fluctuations

are coupled.
+ G (t—t) V3 (T, 1) 3. 2)
. i i " res th %3 Density correlation function and the spec-
onsistency with linear response theory requires tha .
Eg. (2) should be linearized in the small (deterministic) trum of fluctuations

deviations of the mass densigy(7,¢) and the hydrody- The theory of fluctuations in fluids in an equilibrium state
namic velocity v’ (77, t) with respect to the initial reference \yas initiated long ago by Einstein and Onsager, and was later
equilibrium state which will be identified by the subscript reformulated in several but equivalent ways [12-14]. Here
0. These deviations are defined &s(v".t) = p(7',1) —  we construct an approach based on a generalized Langevin
po(7),0p(7,t) = p(7,t) —po @nddv; (7, t) = vi(7', 1) equation approach with Gaussian fluctuations, in the linear
due to Galilei invariance. However, these deviations are reregression regime close to full equilibrium [15,16], based on
ally random quantities, they will manifest themselves as thene hydrodynamic Egs. (4) and (5). If a random teyft),
fluctuations in the hydrodynamic state variables and their dyis added to the r.h.s. of (5) and the Fourier transform with re-
namics should be described stochastically. It is important tqpect to: is taken, (5) becomes a stochastic non-Markovian

an implicit function of both/p andé7T. However, since at

the temperatures of interest in a typical light scattering ex- 9 p

periment using the photon correlation technique, the thermal 00 aﬁ(q,t) = —q2/dt’M (t —t)v(q,t)
diffusion term contributes to the density fluctuation spectrum 0

only in the 10-100 MHz range, which is outside the dynamic

range that can be monitored by this technique [11], in a first —
approximation the thermal diffusion may be neglected. The

effects of temperature fluctuations may then be considered t@/e choose the stochastic noise tefr(t) to be a Gaussian,

1

©_5p(q,t) + £ (£) . )

oXT

be sufficiently small and [12] stationary, stochastic process with zero méaft)) = 0 and
26p a5p\  95p 1 96p with arbitrary correlation
=% - 3)
Oz ( dp )T dxzi  poxr O (FOfE)y =c(t—t]) =C(r), ®)

wherey is the isothermal compressibility.
It is convenient to separate the velocity (7, t) field
into a longitudinal ') and a transverse component £), (f (£)5(q,0)) =0 9)
— — — . . . Ll ’ ’
v = v + U7, which satisfy, respectively, the conditions
V x v =0andV - v = 0. Furthermore, if the direc- which expresses that the noise is uncorrelated with the initial

tion of thez-axis is identified as the longitudinal component, velocity fluctuations.

subject to the condition
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The system of hydrodynamic Eqgs. (4) and (7) describdions and dissipation holds, [21,22].
the fluctuations as a non-Markovian, stationary and Gaus-
sian process [15] and can be recast as a closed second or- C(t) = kpTv(t), (11)

ifa(rt)dif%r;r;tlzta; stochastic equation for density fluctuatlonswherekB is Boltzmann'’s constant ari is the absolute tem-

perature of the fluid.

: Since only the longitudinal velocity fluctuatioas cou-

o , N 9 ple to the density fluctuationgp, to describe their ef-

X+ /dt V(= )X () +wpX(8) = f(1),  (10) fects on the structure factor of the liquid, we first calculate
0 the (longitudinal) velocity fluctuations correlation function,

(X(t)X (1)), and then we evaluate the (Rayleigh) light scat-

tering spectrum in terms of(¢). The formal solutions of

éEqs. (4) and (7) are, respectively, [23],

where the memory kernel is related to the longitudinal mod
ulus, ¥(t) = (¢*/po)M(t), with w2 = (¢*/poxr). If
X(0) = 0, Eq. (10) has the same mathematical form as th
GLFE used in the literature to describe the non-Markovian t

Brownian motion of a particle in a fluid with memory inthe  x(4) = (X)) 5 v + /H(t — ) f(t")dt, (12)
presence of an harmonic external field [16,17]. However, our ore /

GLFE (10)does not describe the Brownian motion of a parti-
t

cle, rather, it describes the stochastic dynamics of a hydrody- dX(t)
namic stochastic variable, namely, the density fluctuations of V() = == = (V(1)) x,v, + /h(t —t)f(t')dt’', (13)
the fluid. 0

In Egs. (8) and (9) the angular brackets denote an avelyin
age over the realizations of the noise and over an equilibrium
ensemble of initial conditions. Apart from being in the lin- !
ear response regime, where thermal fluctuations are Gaussian X (t)) x,v, = Xo |1 — w%/
and are dealt with a variety of standard methods, the rationale 0
for assuming a Gaussian noise has some experimental justi- .
fication. This Gaussian assumption has been experimentall N
shown to be adequate for otheri complex systemz involving,y<V(t)>X0V0 - _w%/h(t )t + Voh(t). (15)
for instance, the motion of tracers suspended in a fluid of 0
swimming microorganisms [18]. In this active system theThe relaxation functiong?(t) and h(t) = dH(t)/dt are
displacement of the tracers has a self-similar probability dengefined in terms of the Laplace transform of the (so far arbi-
sity function with a Gaussian core and exponential tails [19]trary) kerneh (¢) by
a behavior of the tails which is actually a non-Gaussian spa-

H(t"dt"| + VoH(t), (14)

tial effect. However, since in this work we are only concerned 7(c) — 1 —
g . . . H(s) = 5——= R iw, (16)
with time memory kernels and not with spatial effects, itis a 5% + s7(s) + wr
reasonable and more manageable assumption to consider a ~ 1
Gaussian noise with a long-time correlation. h(s) = =5 50 (17)

Although (t) = (¢*/po)M (t) contains dissipation ef-
fects through the viscoelastic longitudinal modulus, it mayThese expressions are general and valid forgnyandC(t)
have the same or different physical origin than theise  With a well defined Laplace-Fourier transforms.
term f(¢), that is, it may be interpreted as internal or exter-
nal noise. In the first case the second fluctuation-dissipation.  pPower-law rheology
theorem is valid, whereas in the second case it has no re-
lation with ~ (¢), i.e, a fluctuation-dissipation theorem does In what follows we shall only consider viscoelastic fluids
not necessarily exist. When the system is in an equilibriunwith a power-law rheology such that
state, it is expected that the viscoelastic kerpgl should
be related to the correlation function of the noi§ét) via M(t)=Mot™, 0<A<L, (18)
the fluctuation-dissipation theoren’ DT') [20]. However, .

o - . . with the Laplace transform

for non-equilibrium states the driving noise and the dissipa-
tion may have different orig?ns and a quctuation—dissipation M(s) = Mol (1 — \) s*2, (19)
relation does not necessarily holds. Although on physical
grounds it is expected that thEDT should hold for the with M, being the zero-frequency longitudinal modulus and
present model, to assume its validity is a rather strong asF(z) the Gamma function. The parametemeasures the de-
sumption that requires justification. In previous works wegree of viscoelasticity of the flow field; low values sfcor-
have shown that this is indeed the case for the present hydroespond to large Weissenberg numbéi& ), which in turn,
dynamic model and that the usual relation between fluctuaimply a weakly elastic flow fieldi.e., more viscoelastic than
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elastic. In contrast, a largeindicates an exceedingly elastic Laplace transform with respect tpone arrives at
flow. Thus, consistency with the assumed long-time memory

kernel,y (t) = (¢*/poM (t), we should consider also a noise <<5ﬁ(q75)>5 5p*(q)>
with a power-law decaying correlation function of the form Clq,s) = 13 p72>
Po
O(t,t") = (f()F(t) [s+ a2y "M ()]
=kpTCO(|t—t'|)=Cst ™", 0<p<1. (20) = —— : (27)

s |:8 + q%pg 1M(s)} + w?,
In this case the inverse Laplace transforms of (16) and

(17) can be calculated analytically in the interoak o < 1, ~ Furthermore, by setting = 7w and taking the real part of the
with the results [23] r.h.s. of Eq. (27) we arrive at [24]

H(t) = 1" Erpa—nita [-Mol (1 = M)t (21) S(q,w) = {Reé(%s)}

and

X rRe [ [s+aPar'M(s)] o8
h(t) =t Eirara |[—MoD (1 = X) tite— 22 = — )
() 1+a—A, [ 0 ( ) ]7 ( ) T s[s—kq?palM(s)} —i—w% B
where

which can also be expressed in terms of the complex longitu-

= z" dinal modulus/ (s)
E,, = E - 23
S MR =3)

is the generalized Mittag-Lefler function (also known as wM (iw :zw/M *i“’tdt:M'(w)H'wM”(w), (29)

Erdelyi’s function). Note that since the viscoelastic fluid in 0

our model complies with the physical conditions assumed for

the derivation of Eq. (11), from Egs. (18)-(20) it follows that where A (w) and M (w) are, respectively, the real and

the FDT reads imaginary parts of\ (iw). Furthermore, the scattering light
spectruml (¢, w) is given by [25]

Cp = kT Myt° >, (24)
kT ~ ~ kT ~
with0 < 3 < land0 < A < 1. I(q,w) = —5(q) [5(6175)L:w ——5(a)
The intensity distribution of the isotropic components of
the light scattering detected at the scattering afigle pro- % a*py wiM h "(w)/w . . (30)
portional to the Fourier transform of the (one-time) correla-  [w2—w?+¢2py "M’ (w)]” + (¢2p5 ") [M" (w)]

tion of the density fluctuatiofp( 7, ¢) given by
This Eq. (30) allows us to calculate the light scattering spec-
Clq,t) = <)A((q, t)Xo(q)> = (0p(q,t)dp(q)) trum as a function of an arbitrary longitudinal modulugz),

as long as it has a well-defined Laplace transform.
€q

= ((09(a. D)spq) 99(0)) (25)

wheredp(q, t) is the spatial Fourier transform of the fluctua- e

tions of the density from the equilibrium valyg within the
scattering volume. Here the notation indicates the following:
take a certain initial valuép(q) att = 0, calculate the av-
erage(dp(q, t))s5(,) conditional on the giveAp(q); multiply

it by p(q) and average the product over the valdg§;), as 25 f
they occur in an equilibrium distribution. Following a proce-
dure described in detail in the Appendix of Ref. [21], in the

40 F

35 fF

Clgt) [au]

3.0 F

limit of long-times ¢ — oo) we get the result L5 : : . . ;
2000 4000 6000 8000 10000
. 2 1 1 t|s]
Ot — 00) v g oot (26) _
pows I' (=3 = A) ¢ FIGURE 1. The behavior o (q,t — o), as given by Eq. (26), for

. ) the material properties of liquid saldl’ = 353.2 K, My = 3.2Go,
If the general form o’ (¢, t), Eq. (25), is constructed from G, = 1.154 Kg/ms, po = 1.212 Kg/m®. The curves correspond to
the general formal solutions (12)-(17), and calculating itsA = 0.3 and\ = 0.15 [26].
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5.

tion of ¢ andA for the values\ = 0.15 and\ = 0.3. The inset
shows that for the time interval (4 s, 100)g, t — 0o, A =
0.3) is always larger thar'(q,t — oo, A = 0.15); how-
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Results and discussion

11

Salol for the material values given in the Fig. 1 caption. As

) ) ) o shown in the figure, this difference can be quite significant,
The long time behavior of (26) is shown in Fig. 1 as a func-fq instance, fort ~ 10* s it is ~ 62%, and it may vary

between 56.1-70.7% for the time interval 510-6000 s, and it
might be measurable. However, ultimately this behavior has
its origin in the microscopic processes generating the meso-

ever, for longer times,10° — 10* s), there is a crossover and scopic dynamics that we are modeling and to describe it is
the latter correlation is always greater than the former. Theertainly outside the scope of the present work.

difference between these quantities was quantified for liquid
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terdisciplinary fields.
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