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A simple and general thermodynamic theory is applied to describe the irreversible aspects of the continuous process of functional efficiency
loss, which occurs in dissipative biological structures after they reach maturity [1]. This theory, among other things, follows Prigogine [2] by
considering that these dissipative structures perform their functions and carry out cyclical processes per se since they are self-organizing away
from equilibrium. By using the irreversible thermodynamic theory of aging by Montemayor-Aldrete et al. [1], we have obtained results such
as the following: The accumulated damage that occurs in dissipative biological structures after they reach maturity, which is the product of
linear loss of functional efficiency with time, leads to the law of exponential mortality rate by Gompertz. Also, an extension of the irreversible
aging theory of self-organized dissipative systems for the case of living organisms of variable body temperatures has been developed.
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1. Introduction

Since prehistoric times, death and aging have been of great
interest to humanity [3-6]. This concern about death is not
unique to humans, it also exists in some of the higher mam-
mal species [7-10]. With Tito Lucrecio Caro, the first pre-
scientific document written without mention myths or fan-
tasies about human or animal aging appears [11], and with
Lavoisier, the path of scientific research on the aging of both,
humans and animals, begins [12]. Nowadays many theories
address the issue of aging, see [1,13-26]. The possible ap-
plications of the existing theories are multiple, the references
[27-31] give an idea of the breath of the fields where they can
be used to solve specific problems. Many theoretical works
of irreversible thermodynamics about the aging of living be-
ings have been developed [1,13,15,18,22-26].

Recently, one of them [1] has been used to explain why,
on average, women live longer than men. The percentage dis-
crepancy between the experimental value for the population
of Europe and the numerical calculation was 2.5%. In addi-
tion, this theory allowed to describe experimental data about
the linear fall of the functionality of several human body or-
gans overtime after the first 30 years of life. This theory
was recently used to determine the parameter of functional
efficiency loss by functional cycle,α, for 71 living being’s
species as a function of mass covering 18 orders of magni-
tude [32]. Among other results, the mathematical adjustment
allowed us to conclude that there is a minimum in the value
of theα parameter for a 23.3 kilograms mass which is close
enough to the Homo sapiens one.

In the theoretical framework published in the
Montemayor-Aldreteet al [1] theory we will address two
problems: First, the existing relationship between the aging
rate of living organisms and the death rate in a population as
a function of age will be established. Second, an extension

of our irreversible aging theory of self-organized dissipative
systems will be developed for the case of living organisms of
variable body temperatures.

2. Theory

Before introducing our subject, we are going to summarize
the main elements of the theory due to Montemayor-Aldrete
et al [1]; this material will be presented with some additions
and precisions that will make it clearer from a physical point
of view.

All “macroscopic things”, that more than things are
macroscopic processes, together with the living beings that
surround us, are subject to cyclic dissipative processes of di-
verse nature [2]. Everyday life provides us with a wealth of
empirical evidence that many macroscopic objects and the
living systems that surround us, at some point in their exis-
tence begin to age or deteriorate. And eventually, they suffer
the fatal failure, that is, the cease of energy and matter ex-
change between the system and its surroundings it means that
the dissipative structure disintegrates rapidly until it reaches
a state of thermodynamic equilibrium.

From Prigogine [2], we know that the appearance of dis-
sipative structures is due to the stationary state instability,
which as a result of a bifurcation, the systems become self-
organized far away from equilibrium. According to Nieto-
Villar et al. [18]., essentially, such dissipative structures also
emerge as a consequence of chaotic regimes that operate on
the threshold of stationary states instabilities and are main-
tained by dissipating energy and mass to the environment.
After biological beings reach sexual maturity, the chaotic
regime tends to disappear, and the aging processes begin.
Furthermore, experimental evidence indicates the functional-
ity of the organs many living systems decays linearly as time
goes by after reaching sexual maturity [33]; and eventually,
the corresponding self-organizing dissipative systems stop
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working, and the dissipative structures degrade on their way
to reach thermodynamic equilibrium.

According to Th. De Donder, the second thermodynamic
law allows to define the entropy of a system in its differential
form, dS, as

dS ≡ dSi + dSe, (1)

wheredSe is the entropy flux between the system and the
environment anddSi is the production of entropy during its
evolution due to the irreversible processes [34], and by tak-
ing the temporal expression for the entropy production rate
Ṡ ≡ (diS/dt) is obtained

Ṡ ≡ diS

dt
≡

∑

i

JiXi. (2)

WhereJi andXi are respectively the flows and the gen-
eralized forces. On the following, the rate of entropy produc-
tion, diS/dt will be denoted byṠ.

In such expression, it is possible to define the well-known
Rayleigh dissipation function [35] as,

ΦR ≡ T Ṡ, (3)

which is not only applicable to dissipative biological systems
but also to frictional heat production in Lagrangian systems;
and in general, represents the heat production inside a sys-
tem and it can be measured experimentally. For biological
dissipative structures [1], far from the thermodynamic equi-
librium, it is convenient to write the Eq. (3) per unit volume
or mass,φR,

φR = T ṡ. (4)

For humans, there are two different outlines about the
number of chronological stages that the entropy production
rate goes through over their life span. On one hand, the first
proposal due to Aoki [36] is based on his appreciation that

FIGURE 1. The rate of entropy production per surface area, for the
healthy humans under basal conditions for both sex (upper curve
for males and lower curve for females) and different age. This
graph was elaborated with data taken from [1].

FIGURE 2. General schematic diagram corresponding to the spe-
cific entropy production rate,̇s, versus time for a dissipative bio-
logical structures. 1) Initial transitory stage, withṡ > 0, which
corresponds to the growth of the structure, 2) Steady state that cor-
responds to a physical situation in which the production rate of dis-
sipative structure is equal to the rate of its destruction. 3) The ag-
ing stage, where the destruction rate dominates the production pro-
cesses. 4) The failure stage. Note: The rectangle has the same area
as the schematized real function that describes the specific entropy
production rate as a function of time.

the entropy production rate does not reach a steady-state
value, and based on such proposition, he determines that
there are three chronological stages; while on the other hand,
Montemayor-Aldreteet al. [1] consider that for human be-
ings the stationary states for the entropy production rate per
unit body surface, exist, for the healthy humans under basal
conditions for both sex and different age see Fig. 1. Based
on such foundation, they consider that in a general qualitative
way there are four chronological stages, not only for human
beings but for all kinds of living beings. In Fig. 2, the gen-
eral schematic behavior of the different chronological stages
that occur in the living self-organized dissipative structures,
can be observed: 1) An initial transitory stage, where the en-
tropy production rate per unit volume,ṡ, grows more or less
exponentially; after some time, the entropy production rate
reaches a maximum value and begins to decrease. In this
stage the organism develops and increases in size as time goes
on, becoming larger and larger. 2) Then we arrive at a station-
ary stage or stable dissipative state, whereṡ is approximately
constant; this stage corresponds to a dissipative state where
the dissipative structure rates of construction and destruction
are equals to each other. At this stage, the specimen reaches
its adult condition, and starting from there, aging occurs first
at a small, almost imperceptible rate. 3) Aging in the adult
stage corresponds to a stage which is characterized by an ap-
proximately linear decrease iṅs over time, corresponding to
average linear decreases in the physiological functions of all
organs and subsystems of the living being. 4) Finally, a short
duration dissipative state corresponding to a catastrophic or
destructive failure of the dissipative biological structure oc-
curs.
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All living dissipative systems develop functional cycles.
Of these, the most important functional cycles are those re-
lated to the nutrients and oxygen assimilation rates (if appli-
cable) for all and every one of the cells that constitute each
living being. The heartbeat rate promotes the distribution of
specific forms of free energy per unit of time throughout the
body, which allows them to satisfy the needs of their sys-
tems. However, cycle after cycle, all living beings gradually
decrease their capacity to perform work due to their func-
tional disorder increase, which makes it increasingly difficult
for the dissipative structure to obtain free energy and nutri-
ents absorption from the outside, and finally, the catastrophic
failure occurs [37, 38]. For non-living dissipative systems,
these processes could be defined as a process of intrinsic pro-
gressive loss of functionality, which conducts to the ceasing
of working properly and eventually to failure [39]. In other
words: Each dissipative structure that operates through the
performance of functional cycles, necessarily generates a net
amount of functional entropy or functional disorder in each
cycle; and therefore, the structure cannot last beyond a maxi-
mum time of continuous work, which is characteristic of each
structure. Or, the whole energy amount dissipated as heat by
any dissipative structure during its total continuous operat-
ing time has a maximum value characteristic of each struc-
ture [1]. This finite time of continuous operation is due to
the increase in functional entropy or functional disorder that
eventually causes the fatal breakdown or interruption of the
dissipative machine operation.

If we consider that the whole process, corresponding to
basal metabolic conditions, occurs at a constant absolute tem-
peratureT , (the treatment corresponding to basal metabolic
conditions for variable body temperatures will be found in
Appendix 1), for each dissipative system, in particular, the
area under the curve entropy production rate per unit volume
over the total time of continuous operation is the maximum
entropy per unit mass generated during the total time of con-
tinuous operation. In mathematical language:

tf∫

ti

ds

dt
∗ dt =

Ks

T
, (5)

with Ks as the specific energy (per unit mass) dissipated dur-
ing the total process of work for each type of dissipative ma-
chine or living system, whereti andtf are respectively the
initial and final times. Using the mean value theorem of cal-
culus, we have:

ds

dt
(tf − ti) =

Ks

T
, (6)

where ds/dt is the average value of the entropy produc-
tion rate specific to our system between the timesti andtf .
Substituting the Rayleigh dissipation function per unit mass;
φr = T ṡ, (which represents the heat production rate within
a system per unit mass), we get(φ̇R/T )(tf − ti) = Ks/T ,
therefore, the total operating time of the dissipative system is
given by:

(tf − ti) =
Ks

φR

. (7)

This expression shows directly that the dissipative system
has a maximum of continuous operation, which is inversely
proportional to the average of the (specific) Rayleigh dissi-
pation function of the system, and directly proportional to its
constantKs, which is characteristic of every type of dissipa-
tive system.

It is clear that all dissipative structures perform functional
cycles, which are repeated over and over again during their
total continuous operation time, before each structure fails.
One can define an average valueτ for the duration of the
dissipative cycles betweenti and tf , through the following
analysis:tf − (tf − δt)+ (tf − δt)− (tf −2δt)+ ...+(tf −
(n − 1)δt) − (tf − nδt) = nδt = (tf − ti). If we consider
the maximum number of cycles performed by the dissipative
system asNmax, thennδt = (tf − ti) = Nmaxτ . Where is it
clear thatn ¿ Nmax, andt À τ . If we defineτi as the cycle
duration for each of the time intervals given by then groups
of cycles, then it is easy to obtain the following expression:

τ1 ∗ [tf − (tf − δt)]
τ1

+ ... +
τn ∗ δt

τn

=
n∑

i=1

ni ∗ τi = (tf − ti) = Nmaxτ,

and therefore we have the average valueτ of how long a
dissipative cycle lasts, betweenti and tf given by τ =
(
∑n

i=1 ni ∗ τi/Nmax). Then, from Eq. (6) we have:

φR

T
τ

(
tf − ti

τ

)
=

Ks

T
, (8)

Eq. (8) indicates that each timeτ , the living machine per-
forms one of theNmax = [(tf − ti)/τ ] cycles, an amount of
specific entropy equal to(φR/T )τ is produced.

On one hand, there is wide experimental evidence in bi-
ology, which indicates that the functionality of the organs in
many living systems declines linearly over time after reach-
ing sexual maturity [33]. On the other hand, the operation
of the different organs of a self-organized living system re-
quires the arrival of a certain free energy rate which allows
the operation of the different organs and whose dissipation
is the source of the corresponding entropy production rate.
Thus, the union of the experimental evidence [33] and the
theory of Prigogine [34] allow us to conclude that for many
living systems the entropy production rate linearly declines as
time goes by once they reach sexual maturity. Based on the
above physical and phenomenological considerations, we can
ponder that for times greater than that in which macroscopic
signs of aging begin to be observed,tsd, it is possible to per-
form an approximation oṅs(t), which can be expressed as a
function relative to the value of steady-state entropy produc-
tion rate, ˙sss, like a bilinear function ofα andt, ṡ = ṡ(α, t),
whereα it is defined as a thermodynamic aging parameter
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that measures the functional decay of the dissipative systems
in each cycle.

Therefore,ṡ(t) for times greater than the time at which
the stationary state begins to decay,tsd, we must be able to
express it as a development in Taylor series at first order ac-
cording to the temporal difference between timet and the
time tsd. This development must be done around the value of
the entropy production rate at steady state,ṡss, and the sign
of the linear term proportional to(t− tsd) must be negative.
Such negative contribution must grow as the number of cy-
cles of continuous operation grows, therefore such term must
be divided byτ , so that we have the quotient(t− tsd)/τ to
count the number of functional cycles performed betweentsd

andt, wheret > tsd; and finally we need to define a sym-
bol, α, to describe the thermodynamic aging parameter that
measures the functional decay of the dissipative system in
each cycle. Therefore, the equation that allows to express in
a simple wayṡ(t) during the decay stage of the stationary
states due to aging is the following,

˙s(t) = ṡss

[
1− α ∗

(
t− tsd

τ

)]
, (9)

where tsd expresses the time in which the stationary state
begins to decay. In addition, a new macroscopic physical
variable related to the stationary state of entropy production
called theremaining fractional functionalitycan be defined
as,

ΠRe(t) ≡ ṡ(t)
ṡss

. (10)

The residual functionality,ΠRe(t), in a physical sense, is
not only the remaining functionality of any organ; but also,
and fundamentally it is the quotient of the entropy production
rate at timet and the steady-state entropy production rate of
the whole dissipative system, or could also be evaluated for
some particular organ. So,

ΠRe(t) =
[
1− α ∗

(
t− tsd

τ

)]
. (11)

This equation allows to evaluateα, with the experimental
knowledge ofΠRe(t).

From the above equation it is also clear that when the dis-
sipative system collapses,ΠRe(t) = 0. This result implies
thatα can also be evaluated from the total failure condition,
which is expressed as follows,

α =
τ

tf − tsd
. (12)

Hence, we have two equations from which we can deter-
mine the thermodynamic aging parameterα, Eqs. (11), and
(12).

Once the development of the theory has allowed to de-
fine a thermodynamic aging parameterα, that measures the
functional decay of the dissipative system in each cycle, it is
immediate to ask what relationship exists between such ther-
modynamic parameter and the mortality rate of members of

a population with a specific age within a population of a bi-
ological system. This problem will be covered in the next
section.

2.1. Gompertz mortality law and Survival curves, ob-
tained as a consequence of the previous irreversible
thermodynamic theory of aging

In 1820, the actuary Benjamin Gompertz found that the mor-
tality rate behavior of adult human populations as a function
of time obeys a geometric progression law. Since then, it has
been a valuable tool in demography and other scientific dis-
ciplines [40].

In modern notation [41], Gompertz mortality ratėR(t)
can be written as,

˙R(t) = Ṙoe
αGt, (13)

where ˙R(t) is the mortality rate in adulthood at timet, Ṙo

is the mortality rate at initial timeto, andαG is the constant
that describes the monotonic acceleration of aging. The ex-
perimental advantages of presenting Eq. (13) in logarithmic
form are evident. It is easy to see that the expression for the
surviving population of a group at timet, SsurG(t), associated
with Gompertz’s law is,

SsurG(t) ≡ exp

[
Ṙo

αG
∗ (

1− eαGt
)
]

. (14)

According to Ricklefs and Scheuerlein [42], aging is a
continuous decline in physiological functions with age, af-
ter maturity. Our theory through Eq. (11), agrees with
the previous statement. Such equation, which refers to the
residual functionality of any organ from any of all species,
ΠRe(t), is the result of the tendency that the second law of
thermodynamics imposes on any self-organized dissipative
system, to gradually age after upon reaching sexual matu-
rity, such processes eventually lead to the dissipative system
ceasing to exist as such; and reach the state of thermody-
namic equilibrium. Similar considerations to those expressed
by Ricklefs and Scheuerlein, although more precisely, they
are due to Ameset al. [43]: “The degenerative diseases as-
sociated with aging include: cancer, cardiovascular disease,
immune-system decline, brain dysfunction, and cataracts”.
Accordingly, with De and Ghosh [44], “aging is character-
ized by a progressive loss of physiological integrity, lead-
ing to impaired function and increased vulnerability to death.
This deterioration is the primary risk factor for major human
pathologies including cancer, diabetes, cardiovascular disor-
ders, and neurodegenerative diseases”. The decrease in phys-
iological functions of any organism with age manifests itself
in the populations of each species as an increase in the mor-
tality rate at advanced ages. Many functions have been used
to adjust experimental data related to death events in popula-
tions, among which the functions of Gompertz and Weibull
stand out [42]. In this section, we will demonstrate that the
Gompertz mortality law is a physical consequence of the ir-
reversible theory of aging of Montemayor-Aldreteet al. [1].

Supl. Rev. Mex. F́ıs. 1 (4) 59–66



GENERAL THERMODYNAMIC EFFICIENCY LOSS, AGING AND GOMPERTZ MORTALITY LAW 63

From Eqs. (10)-(12) is straightforward to show that,

ṡ(t) = ṡss

[
1−

(
t− tsd

tf − tsd

)]
. (15)

Defining the functional damage functionD(t) as:

D(t) ≡
(

t− tsd

tf − tsd

)
, (16)

it is possible to write the expression that relates the fractional
damage with the residual fractional functionality as:

ΠRe(t) + D(t) = 1. (17)

From Eqs. (12) and (16), the functional damage at timet,
D(t) can be written as,

D(t) = α ∗
(

t− tsd

τ

)
. (18)

At this point we can ask ourselves: What is the death av-
erage probability for an individual member of a population
whose age is given by a time t? This must be proportional to
the accumulated damage which starts at the timetsd, when
the stationary state begins to decay. It should be noted that in
large populations, subsets formed by people suffering from
chronic diseases can be presented and can be globally charac-
terized by their corresponding values of thermodynamic ag-
ing parameterα, which measures the functional decay of the
dissipative system in each cycle. In what follows for these
subsets, the value ofα would simply be seen experimentally,
which describes the accelerated aging of each of these sub-
sets. In mathematical language we have,

Prob(t)
δt

= β [C + D(t)] , (19)

with β > 0 as a constant, andC > 0 also s a constant.
In the first-time increment,δt = t1 − tsd, then D(t1 =
tsd + δt) = α(δt/τ) and Eq. (16) gives: (Prob(t)/δt) =
βC(1 + (α/C) ∗ (δt/τ)). After n increments of magnitude
δt each, we have,

Prob(t)
nδt

= βC

(
1 +

α

C
∗ δt

τ

)n

, (20)

with nδt = dt, n À 1 and(α/Cτ) ¿ 1, finally:

Ṙ(t)Th ≡ Prob(t)
dt

= βC ∗ e(
α

Cτ )t

≡ Ṙ(0)Th ∗ e(
α

Cτ )t. (21)

From the comparison between Eq. (21) with Eq. (13),
the following equivalences are presented between theoretical
and experimental parameters that appear in the expression of
the Gompertz mortality rate:

Ṙ(t)Th ≡ Prob(t)
dt

= Ṙ(t), (22)

(βC)Th = (Ṙ0)exp, (23)
( α

Cτ

)
Th

= αG exp. (24)

In addition, the corresponding Gompertz model for sur-
vival at time, t, is given according to the following analy-
sis: For a populationN the change in time for the fraction
of the surviving population at age,Ssur(t), is (dSsur(t)/dt);
which can be written as the negative of the product of the
mortality rate, multiplied by the fraction of the surviving
population (both at timet), according to:(dSsur(t)/dt) =
−Ṙ(t) ∗ Ssur(t), which is equivalent to:

1
Ssur(t)

∗ dSsur(t)
dt

= −Ṙ(0)Th ∗ e( α
Cτ )t. (25)

After integrating between the limits for the following val-
ues the fraction of the survival rate to timeSsur(0) = 1 and
Ssur(t), which correspond respectively to the timest = 0 and
t, we obtain the expression for survival at the timet, Ssur(t),
which is:

Ssur(t) = exp
[(

βC2τ

α

)
∗

(
1− e(

α
Cτ )t

)]
. (26)

If for a populationN , we consider the fraction of the sur-
viving population corresponding to an individual of theN ,
such asSsur(tsol), then the solution of the following expres-
sion contributes approximately to the maximum life-time for
the members of such speciestsol, the subscript indicates the
life span,

Ssur(tsol) =
1
N

= exp
[(

βC2τ

α

)
∗

(
1− e(

α
Cτ )t

)]
, (27)

the solution of the above equation fortsol is:

tsol =
(

Cτ

α

)
∗ ln

[
1−

(
α

βC2τ

)
ln

(
1
N

)]
, (28)

and the comparison between Eq. (27) and (14) gives us the
following equivalence between the survival functions coeffi-
cients given by one and another equation:

(
βC2τ

α

)

Th

=
Ṙ0

αG
. (29)

At this stage, it is immediate to observe that Eq. (21),
which corresponds to the law of the exponential growth rate
of Gompertz mortality, has been obtained by using an irre-
versible thermodynamic aging theory [1]. In addition, such
Equation provides a solid theoretical foundation to the his-
torical consideration that the parameter,αG , which appears
in Eq. (13), is called the Gompertz aging parameter [45-47].
We consider that this demonstration gives a great physical
foundation to Gompertz mortality law, as compared to other
theories of mortality [33,48-56].

In addition, the previous analysis resolves from the root a
paradox that consists on the linear decay of living systems or-
gans functionality over time after they reach sexual maturity;
and simultaneously, these populations experimentally obey
the exponential law of mortality growth rate with age [33]. It
should be noted that the rate of linear decay of the metabolic
rate for human populations in adulthood is higher in men than
for women [1,57].
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3. Discussion

According to Nieto-Villaret al., in general, the aging theo-
ries can be grouped into three major groups: Those related
to the action of reactive oxygen species, the theories that es-
tablish a link between metabolic rate and the longevity of or-
ganisms, and those that focus the aging processes in an ir-
reversible thermodynamic scheme [31]. Despite their differ-
ences, essentially the three types of theory groups consider
that aging leads to progressive loss of physiological integrity,
leading to impaired function and increased vulnerability to
death. Within the framework of our theory, the different de-
generative diseases associated with the aging of a population
are specific manifestations of the general loss of thermody-
namic efficiency over time. Of course, the theory allows both
the analysis of the macroscopic thermodynamic manifesta-
tions of a specific disease in a subset of the total population
that suffers from it; as well as the comparison of their loss
rate of functional efficiency with another subset of the popu-
lation of the same age that is healthy. However, it should be
remembered that our theory, as any other phenomenological
irreversible theory of aging, only provides general tools for
the experimental and phenomenological macroscopic study
of different irreversible aspects of aging. In other words, this
theory does not replace in any way the concrete study of the
different chronic-degenerative diseases by means of theoret-
ical approaches about microscopic-statistical mechanisms of
physiochemical and cellular biophysics applied to complete
organisms or organs thereof. It is clear that the second law
asserts that a natural process runs only in one-time direction
and is not reversible [34]. The theory of aging presented
and applied here can be classified within the group of irre-
versible thermodynamic theory. Our proof of the Gompertz
equation proof, which is based in the physical consideration
that a growing cumulative damage occurs due to the contin-
uous process of loss of the functional efficiency, is a further
systematic confirmation of the irreversible nature of aging,
which for the portion of the population that has reached ma-
turity or adulthood gives rise to the law of exponential growth
in the death rate over time. This result gives to Gompertz
the expression of a great theoretical advantage in relation to
other biological phenomenological expressions used to de-
scribe the mortality rate as a function of time.

We have extended our irreversible theory for the case of
aging occurring under conditions of variable body tempera-
tures, which will allow the study of living systems such as not
homoeothermic animals, and plants including their ecosys-
tems such as , trees, and forests. The approach here devel-
oped, see for instance Eqs. (11), (13) and (14) can be applied
to contribute to the study of different problems, such as the
long-term (and short -term) effect caused by air pollution in
big cities or by lung virus infections on the aging rate of hu-
man lungs.

4. Conclusions

First, we have demonstrated that cumulative damage due to
the continuous process of functional efficiency loss, which
occurs in mature biological dissipative systems, leads to the
Gompertz mortality law. This demonstration solves a para-
dox: The fact that the functionality of the organs of multicel-
lular living beings that have reached maturity decays linearly
over time and that simultaneously their populations obey the
exponential Gompertz’s mortality law over the elapsed time.

Second, an extension of the irreversible aging theory of
self-organized dissipative systems for the case of living or-
ganisms of variable body temperatures has been obtained,
which in principle allows to study the living systems such
as not homoeothermic animals, plants, trees, and forests.

Appendix A

In the case of the operation of biological dissipative systems
working under variable body temperatures, the physical treat-
ment of the problem mentioned in Section 1 has two possible
approaches.

A). In the case where the body temperature changes are
very small and rather correspond to small oscillations around
an average value, it is immediate that the average tempera-
ture, T lin , that we must take into account in the analysis of
the problem is as follows:

T lin =
∑f

i Tili∑f
i li

(A.1)

Where Ti is for the temperature corresponding to the
quantity of cycles denoted byli, during which the operation
temperature is different;li ¿ Nmax, andNmax =

∑f
i li is

the total number of cycles performed by the dissipative sys-
tem during its continuous operation, andf s the number of
time segments with different temperatures.

B). If the temperature variations are large, then Eq. (5)
appears as follows,

tf∫

ti

ds

dt
∗ dt =

Ks

T
(A.2)

WhereT is the average temperature, which will be de-
fined by the following analysis. Considering Eqs. (1), (2)
and the definition of the Rayleigh dissipation function [34]
as,ΦR = T Ṡ, Eq. (3) which in general, represents the pro-
duction of heat inside a system and it can be measured ex-
perimentally; we have that under those conditions, we can
defineṠ as before by Eqs. (2), (3), and then also the specific
entropy production rate is given by Eq. (4), therefore Eq. (5)
becomes,

tf∫

ti

ds

dt
∗ dt ∼=

tf∑
ti

1
Tj

∆sj

∆tj
∗∆tj (A.3)
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On the following the rate of entropy production,(diS/dt)
will be denoted byṠ.

In other words,

∆Sfi =
Ks

T
(A.4)

From Eqs. (A.3) and (A.4) it is possible to write,

1
T

=

∑tf

ti

1
Ti
∗∆sj∑tf

ti
∆sj

(A.5)

If we want to write Eq. (A.5) similarly to Eq. (6), then
we obtain the following result,

ṠAver,fi ∗ (tf − ti) =
Ks

T
(A.6)

With ṠAver,fi ≡ (∆Sfi/(tf − ti)) , which means that
ṠAver,fi = (

∑tf

ti
∆Sj/(tf − ti) , and as(tf − ti) = Nmax ∗τ ;

then∆Sj = Sj ∗ nj ∗ τ . And therefore,ṠAver,fi is given by

ṠAver,fi =

∑tf

ti
Ṡj ∗ nj(

Nmax =
∑f

i nj

) (A.7)
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