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Stroboscopic observation of a random walker
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The behavior of mobile agents has received recently wide attention. There is a number of researches, ranging from albatrosses to human
beings. Special emphasis has been taken in the statistical distribution of the distances that such agents cover. In some cases due to the
lack of accurate data about the mobility of the agents, very ingenious and original experiments have been designed. In these experiments,
loosely speaking, is intended to infer the real motion of the agents from the observed position of them at several consecutive positions with
observation times taken from a known or assumed distribution. The aim of this paper is to show that, at least for a Gaussian random walker,
the distribution of the distances between observed positions is conditioned by the distribution of the observation times. A wide range of
numerical experiments are presented to sustain this claim.

Descriptores: Random walker; Levy flights; Gaussian walker.

PACS: 05.65.+b; 12.20.Fv; 63.90.+t; 89.70.+c

1. Introduction

In recent times, mainly due to the existence and development
of internet and electronic devices such as global positioning
systems and mobile phones, some properties of the motion of
living beings have been unveiled. Ranging from Albatrosses
[1-2], Pigeons [3], Monkeys [4], Jackals [5] to human be-
ings [6-9], very ingenious studies have been done using data
collected with electronic devices or other original forms of
tracking. In these experiments, the position of the living be-
ings is observed at consecutive time intervals. The duration
of these time intervals in some experiments is constant and in
others is taken from a statistical distribution calculated from
the same data. Although is hard to believe that the motion of
these living beings is completely random, a question is posed
about, how accurate is the description of the statistical prop-
erties of real motion obtained from these observed positions.

The aim of this paper is to show that, at least for a Gaus-
sian random walker, which is an extreme kind of motion, the
distribution of the distances between observed positions is
conditioned by the distribution of the observation times.

The paper is organized as follows. In Sec. 2 we describe
the numerical experiments we have carried out. In Sec. 3 we
analyze the data obtained from these experiments. Section 4
is devoted to conclusions.

2. Description of the numerical experiments

We study 2-dimensional random walkers. Their trajectories
are a collection of independent and identical distributed pairs
(θi, si ) i = 1..., n, whereθi is a random variable uniformly
distributed in the interval (0, 2π] andsi is a Gaussian random
variablee.g., its probability density function is:

p(s) =
1√
2πσ

e−1/2(s−µ/σ)2 . (1)

Along each experiment, we keepµ andσ constants. The
variableθi represents the angle with respect to the positive

horizontal line of theith step andsi the length of this step. In
Fig. 1 a short trajectory is visualized. We assume the time to
be discrete and during each unit time intervalδt one and only
one step of the walk is executed.

The trajectories are observed at some time intervals of
lengthnkδt. The lengthnk of these time intervals are ran-
dom variables with a distribution similar to those reported in
the literature, basically Levy distributions and Levy distribu-
tions with exponential cut off. For the definitions, see Sec. 3.

We briefly describe the core of all our simulations. In
Fig. 2a, the real trajectory of the random walker (blue line)
and the observed trajectory (red line) are shown. Figure 2b)
shows with enhanced details the portion of the trajectory in-
side the box of Fig. 1a). In both figures, red dots represent
the positions where observations of the real trajectory were
done. In this case the length of the time intervals between
consecutives observation was drawn from a Levy distribution
with exponential cut off. In Fig. 2c) is shown the distribu-
tion of length steps in real trajectory (blue segments) and in
Fig. 2d)

FIGURE 1. A 2-dimensional random walker. The anglesθi are
random variables which are uniformly distributed in the interval
(0, 2π]. They are measured from the positive horizontal line. The
valuessi are the lengths of the steps. They are taken form a Gaus-
sian distribution.
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FIGURE 2. a) The trajectory of the Gaussian random walker (blue line) and the observed trajectory (red line). The red dots represent the
position where observations of real trajectory were done. b) Section of the trajectories in the box of Fig. 2a with enhanced details. The red
dots represent the position where observations of real trajectory were done. c) The probability density function of the steps in real trajectory.
d) The probability density function of the steps in the observed trajectory.

FIGURE 3. A random sample of 12 numerical experiments developed taken the probability density function of the time intervals between
observations as a Levy distribution. The red lines represent the distribution of length steps and the blue line the fitted Levy distribution. See
text for details.

is shown the distribution of length steps (red segments) in the
observed trajectory.

The simulations were done forµ = 50, 55, 60, ..., 200.
For each value ofµ we did simulations withσ ∈
{µ/10, µ/10 + 1, ..., µ/5}, that is, ranging from the 10 per-
cent ofµ to the 20 percent. In all of our calculations, the
length of the trajectories was n=250000. For each of the

58513 above described pairs of (µ, σ) we developed several
simulations, changing the values of parameters of the se-
lected time intervals distribution. In each of these simulations
the distribution of the length steps in the real trajectory as
well as the distribution of the length steps in the observed tra-
jectory were calculated. Further, in each case we calculated
the values of the parameters of a theoretical distribution

Supl. Rev. Mex. F́ıs. 1 (4) 54–58



56 R. MANSILLA

that best fit the values of the observed distribution calculated
from the data. Interestingly, we found the following result:
if the length of the time intervals between consecutive obser-
vations is drawn from a Levy distribution, the corresponding
empirical distribution of the space steps is also a Levy type.
Similar results were found for a Levy distribution with expo-
nential cut off.

3. Analysis of the results

In our study two types of distribution for the intervals be-
tween consecutive observations were used. Our selection is
based on the ubiquity of these distributions in the most recent
researches [6-9]. Obviously dollar bills and human beings do
not behave as random walkers.

Let us denote by∆t the time interval between two con-
secutive observations of the random walker. The distribution
of lengths of these time intervals is Levy type ifP (∆t) ∼
∆t−α for some exponentα. In Ref. [6] is found that the dis-
tribution of rests between observed displacements of dollar
bills fits this distribution withα ≈ 1.6.

We made simulations withα = 1, 1.1, 1.2,..., 2. For
each of these values ofα we did the 58513 simulations de-
scribed in Sec. 2. The distribution of the observed lengths
was calculated in each case. The best fit occurred with the
Levy distribution. In Fig. 3 is shown a random sample of
these experiments. The title in each subfigure ismean-X-
std-Y-alpha-Z where X stands for the meanµ of the steps
distribution of the random walker, Y is its standard deviation
σ and Z the value ofα used in the Levy distribution of time

interval lengths between observed positions. The procedure
for fitting to a Levy distribution was done in logarithmic vari-
ables and theR2 of each regression were also calculated. The
distribution of theseR2 is shown in Fig. 4.

Let assume now that the distribution of the time intervals
between observations is Levy type with an exponential cut-
off, that is,P (∆t) ∼ ∆t−αe−τ∆t, whereα andτ are both
constants. The cutoff here is1/τ . In Ref. [8] it is found
that the distribution of the time interval∆t between two con-
secutive phone calls fits this distribution withα = 0.9 and
τ = 1/48 days when time intervals∆t and the probabil-
ity P (∆t) are properly rescaled. Further, the authors claim
that this is a universal property of the system. The above-
mentioned distribution is obtained from the calling activity
of 6× 106 mobile phone users during one month.

FIGURE 4. The distribution of theR2 coefficients in the experi-
ments shown in Fig. 3.

FIGURE 5. A random sample of 12 numerical experiments developed taken the probability density function of the time intervals between
observations as a Levy distribution with exponential cutoff. The red lines represent the distribution of length steps and the blue line the fitted
Levy distribution. See text for details.
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We developed simulations withτ = 1, 1.1, 1.2,..., 5. For
each of these values ofτ we did the 58513 simulations de-
scribed in Sec. 2. The distribution of the observed lengths
was calculated in each case. The best fit for the distribution
of the observed lengths was obtained by a Levy distribution
with an exponential cutoff. In Fig. 5 a random sample of
these experiments is shown. As above; the title in each sub-
figure ismean-X-std-Y-tau-Z, where X stands for the mean
µ of the steps distribution of the random walker, Y is its stan-
dard deviationσ and Z the value ofτ used as exponential
cutoff of the distribution of time interval lengths between ob-
served positions. The procedure for fitting to a Levy distri-
bution was also done in logarithmic variables and theR2 of
each regression was calculated. The distribution of theR2 is
shown in Fig. 6.

A complementary test which shows that observed trajec-
tories do not follow a Gaussian random walk is the behavior

of the mean squared displacement〈F 2(∆t)〉 [4-5]. It is well
known that for Gaussian random walker〈F 2(∆t) ∼ ∆t.

FIGURE 6. Distribution of theR2 coefficients in the experiments
shown in Fig. 5.

FIGURE 7. A random sample of 12 calculated〈F 2(∆t)〉 in the experiments shown in Fig. 3. See text for details.

FIGURE 8. The distribution of theα exponents in the fittings
〈F 2(∆t)〉 ∼ ∆tα shown in Fig. 7.

FIGURE 9. The distribution of theR2 in the fittings shown in Fig. 7.
See the text for details.
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We calculated the mean squared displacement for each
simulation of the first case studied,e.g., where the distribu-
tion of the time interval lengths between observations is Levy
type. In Fig. 7 a random sample of these experiments is
shown. Here the titles of the subfigures aremean-X-std-Y-
alpha-Z, where X stands for the meanµ of the steps distri-
bution of the random walker, Y is its standard deviationσ
and Z the value ofα used in the Levy type distribution of
time interval lengths between observed positions. We found
the following scaling〈F 2(∆t)〉 ∼ ∆tα with α = 2 ± 0.05.
The distribution of the exponentsα can be shown in Fig. 8.
The procedure for fitting〈F 2(∆t)〉 ∼ ∆tα was also done in
logarithmic variables the same scale of Fig. 7 and theR2 of
each regression was calculated. The distribution of theR2 is
shown in Fig. 9.

4. Concluding remarks

If the agents under study behave as Gaussian random walkers,
our study concludes that the distribution of the length steps

between observed positions is similar to the distribution of
the time interval lengths between such observations, at least
for the ubiquitous Levy type or Levy type with cutoff distri-
butions. Hence an accurate recovery of the trajectories of the
Gaussian random walker only could be done with a constant
length interval of observation. In this case, the Central Limit
Theorem assures similar parameters in the distribution.

The subordination of the observed distribution to the spa-
tial properties of the environment where agents move have
been already studied [10]. Similar results were found.

Acknowledgments

In memory of my dear teacher and friend Germinal Cocho.
The author would like to thanks to P. Miramontes and O.
Fontanelli for some fruitful discussions, to O. Miramontes for
call our attention to Refs. [2,10], to N. Del Castillo for pro-
vide very important advices in the programming tasks, and to
and the specialists of the supercomputing facility of UNAM
for all the support offered during the calculations.

1. G. M. Viswanathanet al., Levy search patterns of wandering al-
batrosses,Nature 381(1996) 413.https://doi.org/10.
1038/381413a0

2. A. M. Edwards et al., Revisiting Levy type search pat-
terns of wandering albatrosses, bumblebees and deer,Na-
ture, 449 (2007) 1044.https://doi.org/10.1038/
nature06199

3. M. Nagyet al., Hierarchical groups dynamics in pigeon flocks,
Nature 464 (2010) 890.https://doi.org/10.1038/
nature08891

4. G. Ramos-Fernandezet al., Levy walk patterns in the forag-
ing movements of spider monkeys,Behavioral Ecology and So-
ciobiology55 (2004) 223.https://doi.org/10.1007/
s00265-003-0700-6

5. R. P. D. Atkinsonet al., Scale-free dynamics in the movement
patterns of jackalsOIKOS 98 (2002) 134.https://doi.
org/10.1034/j.1600-0706.2002.980114.x

6. D. Brockmann et al., Scaling law of human travels,
Nature 439 (2006) 462.https://doi.org/10.1038/
nature04292

7. M. Gonzalezet al., Understanding individual human mobility
patterns,Nature453 (2008) 779.https://doi.org/10.
1038/nature06958

8. J. Candiaet al., Uncovering individual and collective human
dynamics from mobile phone records,Journal of Physics A:
Mathematical and Theoretical41 (2008) 1.https://doi.
org/10.1088/1751-8113/41/22/224015

9. Ch. Songet al., Modeling the scaling properties of human mo-
bility, Nature Physics6 (2010) 818.https://doi.org/
10.1038/nphys1760

10. S. Benhamou, How many animals really do the Levy walks,
Ecology, 88 (2007) 1962.https://doi.org/10.1890/
06-1769.1

Supl. Rev. Mex. F́ıs. 1 (4) 54–58

https://doi.org/10.1038/381413a0�
https://doi.org/10.1038/381413a0�
https://doi.org/10.1038/nature06199�
https://doi.org/10.1038/nature06199�
https://doi.org/10.1038/nature08891�
https://doi.org/10.1038/nature08891�
https://doi.org/10.1007/s00265-003-0700-6�
https://doi.org/10.1007/s00265-003-0700-6�
https://doi.org/10.1034/j.1600-0706.2002.980114.x�
https://doi.org/10.1034/j.1600-0706.2002.980114.x�
https://doi.org/10.1038/nature04292�
https://doi.org/10.1038/nature04292�
https://doi.org/10.1038/nature06958�
https://doi.org/10.1038/nature06958�
https://doi.org/10.1088/1751-8113/41/22/224015�
https://doi.org/10.1088/1751-8113/41/22/224015�
https://doi.org/10.1038/nphys1760�
https://doi.org/10.1038/nphys1760�
https://doi.org/10.1890/06-1769.1�
https://doi.org/10.1890/06-1769.1�

