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We offer a brief description of a set of interrelated research lines on the physics of complex systems developed under a unifying methodology
grown out from nonlinear dynamics of low dimensionality. The research lines were, and are, developed over a two-decade period (tacitly
or not) under a simplifying assumption (and a posteriori corroboration) of a drastic reduction of degrees of freedom. The studies are
conveniently grouped into twelve units, and these in turn into four groups, as in a zodiac. The studies in the first group, named Sensitivities,
Glasses and Localizations, have in common a clear-cut original opening in the sense that, to our knowledge, the main tenet or result is not
found elsewhere. Those in the second group, named Sums, Rankings and Fluctuations, have as a starting point previous stimulating studies
or ideas that we followed up but then we converted into separate approaches. The subjects in the third group, named Networks, Measures
and Games, involve preset work programs to be followed but ended up within unanticipated, perhaps deeper, grounds. The topics in the
final fourth group, named Partitions, Diagonals and Windows, occurred, or are taking place, as specific technical goals that have become
after belated realizations to be possible contributions towards the answer of fundamental quests. We discuss connections underlying different
aspects of these investigations.
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1. Introduction study of the known routes to chaos exhibited by these model
systems. We have contributed with very specific descriptions
During the last twenty years we began, increased and corbut of unprecedented detail that had remained unexplored:
solidated a linked set of research lines dedicated to the inthe dynamical properties at the transitions to chaos together
vestigation of complex systems. This set rests on indepenwith those towards the attractors involved. These properties
dent, original and rigorous developments [1,2], which are in-are anomalous, in that they differ profoundly from both peri-
tegrated into a coherent structure for the understanding, anstlic and chaotic dynamics.
subsequent use, of the transitions to chaos in the so-called
dissipative nonlinear systems of low dimensionality [3-5]. A few introductory words about the starting point contri-
Two groups of properties have been obtained and further desutions of the twelve sets of studies we describe below are:
veloped into effective research tools: the dynamitside  Sensitivities A central quantity in nonlinear dynamics, the
and the dynamicsowardsthe attractors that represent the sensitivity to initial conditions, was determined explicitly for
transitions to chaos. Based on this knowledge, research ahe pitchfork and tangent bifurcations as well as for the pe-
core problems of complex systems has been carried out. Ifod doubling and the golden ratio quasi-periodic transitions
the physics of condensed matter we have obtained results to chaos [6-12], all of which display anomalous properties
problems of difficult treatment: glassy dynamics, localiza-while their Lyapunov exponent vanishe3lasses The bifur-
tion and critical fluctuations. In complex systems we havecation gap, that encloses and shrouds the period-doubling and
achieved central results for evolutionary dynamics, ranke@haotic-band-splitting accumulation points, induced by the
data distributions (Zipf and Benford laws), and, recently, onaddition of external noise was shown to appear as a crossover
the rationalization and (needed) statistical-mechanical justiphenomenon along time evolution at the onset of chaos [13-
fication of the phenomenon of self-organization. 16]. Localizations A vital recursion relation for size growth
The significance of the results obtained so far rests on thef a basic wave scattering model was recognized as a nonlin-
observation that our low dimensional model systems capturear iteration map with a bifurcation diagram where tangent
the main behaviors of high dimensional complex systemsbifurcations separate periodic (insulating) and chaotic (con-
An extreme reduction of their degrees of freedom has beeducting) attractors [17-20Bums The distributions for sums
fittingly implied in our analysis. A common factor in our of successive positions of trajectories, as in random walks,
closely related lines of research has been the use of the sarfer families of chaotic attractors of the quadratic map were
properties of dissipative non-linear dynamical systems of lowfound to conform to a renormalization group scheme such
dimensionality [1,2], particularly those at the transitions thatthat its trivial fixed-point matches the central limit theorem
these systems show between regular or periodic, and irreg{21-25]. Rankings The size-rank distribution of all kinds
lar or chaotic behavior. Our interest has been oriented to thef numerical data, including Zipf law, were seen to be ob-
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tainable from nonlinear maps close to a tangent bifurcationat such, perturbed, onset of chaos. Lastly, we see how the lo-
such that data samples are reproduced by their trajectorieslization transition between conducting and insulating states
[26-32]. Fluctuations The joint use of density functional in a model array of wave scatterers is described by the tran-
theory (for inhomogeneous systems) and the renormalizasition out of chaos at the tangent bifurcation. This requires
tion group fixed-point map (for the tangent bifurcation) de-the knowledge that the model properties are rigorously anal-
livered a space-time description for the dominant fluctuatiorogous to those of an equivalent nonlinear map.

at a critical point [33-35].Networks The transformation of
iterated map trajectories into (Horizontal Visibility) graphs
opened the possibility of reevaluating the link of the renor-
malization group technique with entropy optimization, and
likewise the generalization of the Pesin theorem at the trans
tions to chaos [36-42Measures The alternative description

2.1. Sensitivities

At the transitions to chaos in one-dimensional nonlinear maps
the (only) Lyapunov exponent vanishes. A classical example

. X . - " is the period-doubling accumulation point attractor (for short,
of nonlinear dynamics via probability densities of ensem-

. S . . Feigenbaum attractor) present an infinite number of times in
bles of trajectories instead of the trajectories themselves 98\f e bifurcation diagram of quadratic maps. There, the sensi-

access to statistical-mechanical viewpoints of known behav:, . o e i
jors [43]. Games The initial consideration of the discrete- tivity to initial conditions &; behaves anomalously; it fluctu-
time version of the replicator equation of conventional games
leads straightway to novel bifurcation diagrams and valuable
coupled-map models [44-46Partitions. From the start, the
property that summarized our calculations for the dynamics
towards the periodic attractors of the quadratic map resem- 44 | Eit=1In
bled in form that of a partition function. Continued work
supported this interpretation and finally a model for self-
organization materialized [47-54Diagonals Originally, we 3
represented the (master) trajectory at the period-doubling on-~ 5 |
set of chaos in logarithmic scales and this revealed an infi-
nite family of straight lines, or interwoven power laws, that ‘
subsequently led to many fruitful interpretations and ana- ol VJ\/\/WW L]
lytical statistical-mechanical results [7,9,14,11,21,30}in- ' ‘
dows The control parameter gaps that interrupt the chaotic
attractor intervals in the bifurcation diagram of the quadratic
map cpntam mﬂmte families of'reproductlons of the b]furca- -51 0 100 1000 15000 100000
tion diagram itself, the gaps display power-law spacing and a) t
widths [55,56]. These features are caricature building blocks 10° . s i
for current modeling of nested complex systems. G T
More details about these sets of studies are given in the % R [ EAOL 2
following sections while future directions are delineated in A o’y LIPS R R XL
. . ;. R 107 "2
the concluding section. Additional related reading and com- 5 e
mentaries can be found in [57-66]. The significance of the
results obtained so far rests on the observation that our low __ 2
dimensional model systems capture the main behaviors of = 107 ¢ . R R
high dimensional complex systems. A common factor in . RIS
our closely related lines of research has been the use of
home-produced properties of basic dissipative non-linear dy- 107 _slope ) .
namical systems. -A=-Ina/In2=-1.3236... * .

o =2.50291 .
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We shall see now how a generalized Pesin identity (linking b) f
EYOIlfmon. of ‘traJeCtor.leS, to entropy 'grovvth). offers an ideal FIGURE 1. a) Sub-exponential growth and fluctuating amplitude
iodiversity tre_e. (.)f life .n_u.)del. Thl.s requires knOMEdge of the expansion rat&; shown for the firstl0® iterations for the
abqut the se_n5|t|V|ty to initial conditions at the multn‘rac_tal logistic map at the onset of chaos with initial condition = 0. b)
period-doubling onset of chaos. Next, we see that the ideghpsoute values of positions in logarithmic scales of the first 1000
glass concept exists and can be precisely represented by thgrations for the trajectory as in a). The numbers correspond to
attractor at the onset of chaos. This requires the knowliteration times. The power-law decay of the time sub-sequences
edge that the noise-induced bifurcation gap is recapitulatedescribed in the text can be clearly appreciated.
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ates endlessly in iteration timewith increasing amplitude identity reads [9]

that grows sub exponentially. See the expansion Fates . .

In &, in Fig. 1a). Insight on this behavior can be gained by ex- Ag =t Ing&(t) = Kqg =7 54(1), 3)

amination of the trajectory on this attractor initiated at the ex- . _ i-g .

tremum of the map. This is shown in Fig. 1b) in logarithmic where theg-logarithmln, (x) = [z7¢ —1]/(1 — q) is the
L - .~ functional inverse oéxp,(x) and

scales, where the infinite number of parallel straight lines, a

mentioned before, can be observed running from the upper g - Z o 4)

left corner to the lower right corner. With few exceptions, our ¢ = 2 Pitabi

calculations for quadratic maps have been performed with the
logistic map version As there is an infinite family, a spectrum, gfgeneralized
Lyapunov exponents,, there is an infinite family of-Pesin
fu@)=1—pa® -1<2<1,0< p<2, (1)  identities [10]. This property that indicates iteration time ex-
, , , , tensivity, remains, arguably, the most important exact result
for which locations of Feigenbaum points are denqgted in ¢-statistics.
The trajectory initiated ak, = 0 when decomposed into We advance here a preview of a first application of¢he
position sub-sequences, ¢ = (2k +1)2",n = 0,1,2,...,  pegin identities that is taking shape only recently. This con-
each for a fixedk = 0,1,2, ..., fall into straight lines we  gists of an ideal model for diversity, intended for biological
call diagonals. That is, the position sub-sequences obeyystems or other fields where diversity is of central position.
power laws with the same exponent (slope in the figure)yiefiy a hackbone model for the evolution of a ‘tree of life’
m = —Ina/ln2 = —1.3236..., wherea =~ 2.50290 is the 54 jts limiting ‘canopy’, that could be used as a base to ana-
absolute value of Feigenbaum’s universal constant [3]. Thg ;e ypon additions or modifications, more realistic circum-

diagonals run from the most compact regiomat 1 tothe  giances. Recallfirst the familiar diversity index, Hill number,
most open region at = 0 of the multifractal attractor. or effective number of species [67]

Some elements of the sensitivity can be determined
from the diagonals. Nearby trajectories initiated at 1 will R 1/(1=aq)
separate monotonously if observed at sub-sequence times as D(R) = (Z p;’) , (5)
they approach: = 0, and vice versa when departure is re- i=1

versed. The result in closed analytical form is [7,10] where?D is the diversity indexR the richness (or total num-

£, (o) = exp, [Ag(20)7] ) ber of types or species in the data set), anghthe=1, ..., R,
i @ ’ are the proportional abundances used in practice as nominal
whereexp, (z) = [L+ (1 — q)z]"/1~ is theq-deformed ex- weights, but we consider normalization to identify them as

ponential function. Whemy = 2451, timesr are of the probabilities. The parameteefines a capacity of the diver-
form 7 = (2k + 1)2",n = 0,1,2,..., the ¢-deformation sity index to discriminate between rare and abundant species

index iS q = 1 —1n 2/ Ina and theq_generanzed Lya_ (S|m|lar|y to |ts use in multifl’acta|s [3'5]) Use Of Equ)(
punov exponent is\, = Ina/(2k + 1)In2 [7]. On the and@)inEq. ) gives

other hand, whenrg = =z, times t are of the form 1

T = (2k)2",n = 0,1,2,...,, the g-deformation index is A = 3 Ing(*D), (6)

g = 1+1In2/21n « and theg-generalized Lyapunov exponent . .

is A\, = —2Ina/(2k + 1)In2 [10]. There are many other Or & =? D(R). The connection above requirés = ¢ =

values for thej-generalized Lyapunov exponents as there ar&”",n = 0,1,2,3, ... and whery = 1 —In 2/ In o the entropy

many other pairs of regions that trajectories can connect ifq = Ing(?D) grows linearly with the richnesg.

the multifractal attractor. There is a spectrum for their val-

ues [10]. Notice that the sensitivity depends always on the 2:2- Glasses

mltl'?’LCe?gdiglc;nCrceor.narkable property in the dynamics at the!-t has_ been known fqr already a ang 'Fime that th_e additi_on

Feigenbaum attractor that leads to an identity between-the of noise toa quz_;\dratlc map(a_lters |t_s blfurczjmon d|agram in-
eneralized Lyapunov exponeky and the rate of growth of trodu_cmg what is called a blfurpat|on 9ap .[3]' This gap

tghe g-generalized entropy,. This is the counterpart of the consists of the re.movall of a strip of periodic and chaotic-

Pesin identity that states the equality of the (positive) ordi—band attractors WlthN?f)r'OdS or n.umber O.f bands I.arger.than

nary Lyapunov exponent, with the Sinai-Kolmogorov en- ahthreshold numbet whereo is the noise amplitude in

tropy K for chaotic attractors [3-5]. This property is that a the perturbed map

distribution, say uniform, of initial conditions within a small Tig1 = fulz) + mo, (7

interval adjacent to, say = 1, remains invariant for later

iteration times, in this case chosen along the previously deand wherer, is a random, say Gaussian, variable. There

scribed diagonals.e. remains uniform at times of the form is still a distinct transition to chaos at,,(c) where the

t = 2" n = 1,2,3...). The resultingg-generalized Pesin noise-perturbed ordinary Lyapunov expongnfs) changes
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sign and the maximum valu¥ (¢) is attained. The noise- diffusion, the scaling law known as aging, anomalous two-
perturbed\; (o) obeys scaling properties around, (o), step relaxation, etc. [13-16]. Noise amplitude in one setting
while N(o) — oo aso — 0 [3]. Dynamics at the Feigen- represents temperature differend” to a vitreous state in
baum attractor is nonergodic if considered in terms of itsthe other. The two problems indicate loss of ergodicity as
noise-perturbed counterpart in the sense that the former is and AT vanish. And Eq. () can be seen to be a kind
restricted into a multifractal space while the latter has accessf discrete-time nonlinear Langevin equation. Nonetheless,
to a space-filling real number interval. The limit— 0 can  in one case there is only functional composition while in the
be referred to as an ergodic to non-ergodic transition. other there are molecular collisions.

It has also been some time since we pointed out an un- Diffusion was studied in the noise-perturbed map via a
usual connection between two seemingly different situationgepeated-cell map where the map in each cell adapts the fea-
[13,14], one of them the bifurcation gap and the other glas$ures needed from the quadratic map [15,16]. Trajectories can
formation. The first belongs to nonlinear dynamics and theescape to neighboring cells and diffuse throughout only when
second to condensed matter physics. It was shown that they > 0. The mean square displacement of such trajectories
share main defining properties: the gradual disappearance @iminishes gradually as — 0 and arrest takes place when
o = 0 since then all trajectories become finally confined into
single cells. See Fig. 2a). Aging was noticed when studying
trajectories [13,14] and their correlations [15,16] at the noise-
perturbed onset of chags,, (o). Trajectories there recapitu-
late the structure of the bifurcation diagram with a noise gap,
they initially resemble closely those of the noise-free case un-
til a crossover time . = 2N(?) is reached after which they
display superimposed randomness. See Fig. 2b). Actually,
the master trajectory in Fig. 1by = 0, exhibits perfect
aging as this scaling property is exactly represented by the
parallel diagonal position sub-sequences shown there. These
positions can be exactly expressed as

Tiye, = exXPy[—Ag(Tt, )t/ tw], 8

where the waiting time,, ist,, =2k + 1,k = 0,1, ..., andg
and)\, are the same as above [13,14]. Trajectory correlations
wheng = 0 behave similarly [15,16].

This robust analogy remained somewhat unexplained,
suppression of diffusion and arrest due to cell escape-rate
stoppage and aging scaling as a built-in feature. Recent work
in progress is providing understanding and new perspectives.
Glassy dynamics in molecular systems is visualized by a
‘cage effect’, where each molecule is effectively caged by
its neighbors and can only move out when these neighbors
cooperate with a chance opening. Relaxation to equilibrium
requires concerted motions of increasingly larger groups of
molecules as the temperature is lowered. When we consider
an ensemble of trajectories in the Feigenbaum attractor in-
stead of only one we get a parallel situation. If we place one
initial condition at every point of the attractdore. a uniform

: 5 distribution, we observe the required concerted motion, since
10 10 at every iteration a trajectory positian moves to the next
b) !t positionz;, 1 that has been just left empty by another trajec-
tory and the entire ensemble of trajectories moves jointly to
FIGl.JRE 2. Gla§sy diffusion in the noise-perturbed onset of chaos. the right in Fig. 1b). If the position at = 0 is refilled at ev-
a) Time evolution of the mean square displacement for an ensemg, . jaration the distribution remains uniform. The addition
ple_of 1000 trajectories with initial conditions randomly dl_strlbuted_ f noise limits the si f ted traiect fi d
inside [-1,1]. Curves are labeled by the value of the noise ampll-O noIse fimi S_ € Size ot concerted trajectory mo Io_n, an
as we have said as a crossover phenomenon. The size of the

tude. b) Absolute values of positions in logarithmic scales for § " MR ]
various trajectories at the onset of chaas (o) starting atco = 0. groups of collaborative trajectories is dependent on the noise

Open circles correspond t = 0 where the numbers label time @mplitudes. _ _
t = 1,..,16. Solid (dashed) lines represent trajectories plotted ~ Some models for traffic flow have been constructed with

only at timest = 2™. nonlinear dynamical elements [68], while other studies of
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traffic flow and arrest have found similarities with glassy dy-other features, followed by their translation into electronic
namics [69]. The picture of a car-filled single or multiple lane transport language, provided insight and a concrete original
road suggests itself. The noise-perturbed onset of chaos advance in the field, even though restricted to the limitations
guadratic maps puts together the ingredients of a basic modef a fully-solvable model [17].

for traffic flow and jams. Additionally, the concerted dynam-  Some specifics [17], The transport model is made of a
ical evolution of an ensemble of trajectories at the noise-fredattice, a double-Cayley tree as shown in Fig. 3, of identical
period-doubling onset of chaos provides a concrete answer t&catterers on its sites connected via perfect wires. The size
the quest of the ideal glass. of the system is measured by the generatioithe number

of times the trees are ramified. Wave transport through this
lattice was formulated via the scattering matrix method. Flux
conservation, time-reversal symmetry, and lattice reflection

An equation can sometimes lead to a fruitful analogy. Thissymmetry implies that thg x 2 scattering matrixS,, has the

was the case of a recursion relation involving matrix eigenvalform
ues, that for those involved in the study had a specific mean- S, = (;‘n tn) ’ 9)
n  Tn

ing, but for others, outsiders would convey only its mathe-
matical type. The recursion relation established the changeherer,, is the reflection and, the transmission amplitudes.
in quantum transport properties between consecutive sizes @he matrixS,, can be diagonalized by/4 rotation, to yield
a model for arrays of wave scatterers [17]. But also that extwo eigenvalues\; (n) = ¢ andAy(n) = ¢, whered,,
pression represented a specific dissipative nonlinear iterateahd ¢/, are the eigenphases that satisfy = r,, + t,, and
map. The exploration of its bifurcation diagram, the naturec’> = r, — t,, so thatt, = (e — ef»). The dimen-
of the attractors, the values of the Lyapunov exponent, andionless conductance depends on the eigenphases through the
Landauer formula ag, = |t,|? [17].

The size of scattering matrix for the nodgs, ;. depends
on the connectivity' of the Cayley tree and contains a sin-
gle parametee, the transmission probability, a real number
within 0 < e < 1/2, that for convenience we use instead
7 = +/1 — 2¢. The other (tuning) parameter is the incoming
energyka, momentunk and lattice constant. The recursion

relation for the matrixS,, turns out to be [17]

2.3. Localizations

Sn = _(e—QikaI — TSn_1)_1(T€_2ikaI - Sn—1)7 (10)

wherel is the identity2 x 2 matrix, and from which the recur-
sion relation for the phagecan be extracted and reads [17]

sin @, +Tsin2ka) A

0n) = 2ka — 0, t
f(6n) “ +arctan (cos 0, — 7 cos 2ka

The other eigenpha#¥ behaves similarly.

The mapf (0) is shown in the panels a and b of Fig. 3 and
its bifurcation diagram in the inset of panel b of the same fig-
ure. The attractors are of two types, there are two intervals of
regular, period 1 sectors for small and lafge separated by
a sector of chaotic attractors. The attractors at the boundaries
between the two kinds are transitions to chaos of the tangent
I 1 bifurcation type [17]. The chaotic attractors exhibit intermit-

/ | P tency. As shown in Fig. 3 the map is made of two branches

l L AL x L that diverge when they meet. Depending on the valukaof

0 2 4 6 0 2 4 6 either one branch or the other is closer to tangency with the
0 V) identity line so that trajectories experience narrowing due to

one branch followed by re-injection mediated by the other.

FIGURE 3. Top: A double Cayley tree of connectivify = 2 and . : ) . .
Trajectories experience successive contractions and expan-

lattice constant a. Each bond is a perfect one-dimensional conduc-. leadi b il h of e ith
tor. Bottom: a) The map transits (solid, dashed, and small-dashed;'ons_ ea_ Ing to su -equnentla growt_ _O sensitivity wit
lines) from tangency of the lower branch to tangency of the UIOper|terat|on time (or system size) characteristic of weak chaos

branch aga varies. b) Detail where the lower branch changes from [79], Qnd the Lyapunov exponent Var_‘iShes [18]. Furt.hermore,
secant to tangent to off tangency. The dotted lines correspond to théhis singular dynamics follows a &bius transformation on
identity. Inset: periodic and chaotic attractors. the unit circle [18].

f(e)
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A complete transcription from nonlinear-dynamical to an independent description of the dominant fluctuation in a
wave-transport languages can be established, the regular anwdel critical state. We elaborate on our immersion into this
chaotic regimes correspond, respectively, to the insulatingpproach.
gaps and conducting bands of the scattering system, and the
tangent bifurcation transitions to and out of chaos to the mo3-1.  Sums

bility edges (of difficult access for many approaches in thewe consider sums of positions of trajectories generated by
field). There, the first vanishing of the Lyapunov exponentyragitional nonlinear maps, like the quadratic (logistic) map.
when entering the conducting band corresponds to the divefrhese are sums of deterministic variables as a difference with
gence of the localization length. Our previous determinationpe ordinary case of sums of random variables produced by
(analytical and in closed form) of the sensitivity to initial con- stochastic processes. For the latter kind, for independent
ditions at the tangent bifurcation [6], identically distributed variables, the distribution of the infi-
R nite sum is the Gaussian, or normal, distribution as prescribed
€n = expy(Ag(zo)n) = [1 = (¢ = DAg(wo)n]™ @1, (12)  py the central limit theorem. Infinite sums of deterministic

ith o — b hand btain th q hvariables generated by fully chaotic maps lead also to the
with ¢ = 3/2, became handy to obtain the conductance att %aussian distribution [72], but it was considered to be an

mobility edge of this model, open question whether such sums, when produced by attrac-

1 —4 tors at or in the vicinity of a transition to chaos, would lead
gn X <1 — 2)\3/2n) , (18) to a different outcome [73,74].
In our work [21-25] we considered sums of positions
with Asjp = —2/(1 = 26)/2¢ [17]. from a single trajectory and also from an ensemble of them,

. . . in the latter case started from a set of uniformly-distributed
Wave propagation through scattering media when de: . . . . -
. . initial conditions along the interval of definition of the map.
scribed by means of a double-Cayley tree permits full solu-

tions as the Bethe lattice, a form of mean-field, often offers.The chaotic-band attractors of the quadratic map are ergodic

X o L and therefore single and ensemble sums lead to the same limit
Other physical situations where the localization phenomenon. . . ~. )

' . ; : istribution albeit the former sum takes more terms than the
occurs, light, sound or elastic media wave scattering, ca

be likewise modeled and described by nonlinear dynamicpatter in resembling the final form [21,22]. At the transition

of low dimensionality, with the underlying implication of a §0 chaos, ati., in our chosen map, ergodicity is lost and the

drastic reduction of degrees of freedom. This dynamics is“m't d|str|.but|ons _are different. .
The single trajectory ai, leads to a multifractal-valued

represented by the &bius transformation, the fixed points ° T . .
of which correspond to the localized states, and its everzUm: that once re-scaled is similar to the trajectory itself

changing positions or phases to the extended states that d%l]ov_vn In Fig. 1b)'. The_su_m_ can be reproduce_d analypcally
play coherence due to vanishing Lyapunov exponent. Simila?nd its distribution is an infinite _set of delta functlons_ asithas
reductions of degrees of freedom leading tolus transfor- as support the mentpned .mu_ltlfrgctal sum [21]. Itis totally
mations have been observed in the synchronization of arra fferent to the Gaussian distribution. For space shortness we
of oscillators [71]. Incidentally, new directions for the model- show here the case of the sum of the absolute values of such

-, ~ N ;
ing of collective behavior in complex systems, like swarms ofP0SONS Y. (N) = >4, |a¢|. See top block of Fig. 4,

small organisms, schools of fish or murmurations of s;tarlings\,Nhere the similarity of the centered sum

could be based on coherent communication states resembling N

those described here for wave propagation. y, (N) = Z(|xt| —0), (14)
t=1

3. Follow-ups shown in panel C with the single trajectory in Ref. [21]

can be appreciated. See Ref. [21] for the analytical deriva-
A claim about a novel kind of central limit stationary dis- tion of y;, (V) and the expression for the centering con-
tribution for correlated variables to be displayed at thestantc. See also in Ref. [21] the case of the natural sum
period-doubling onset of chaos attracted our attention and we,,_ (N) = Zi\;l Ty
examined sums of positions of trajectories. This initial effort ~ We show in the panel d of the middle block of Fig. 4 the
led us to clarify the issue by uncovering a remarkable renorstructure of the sum of positions of an ensemble of trajecto-
malization group picture. Unrelatedly, the consideration ofries atuo., X (2o, N; pioo) = Zivzo T, —1 < mg < 1. This
an existing stochastic approach for the reproduction of rankestructure can be understood [23] by considering the equiva-
data pointed out a formal equivalence of a key mathematicdent sum for the first few supercycle attractors, shown in the
expression with that for trajectories at the tangent bifurcapanels a, b, and c, for periods 2, 4, and 8, respectively, in the
tion. This fact led to a nonlinear dynamical approach for rankmiddle block of Fig. 4. The structure of the fractal function,
distributions that shows similarities with universality classeswhich is this sum at:, as a function of the initial condition
in critical phenomena. Apropos, another instance involvingz, is built in stages that recapitulate the additional increas-
the same mathematical expression came to our attention fromgly finer features added along the period-doubling cascade.
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FIGURE 4. Top block: A) Sum of absolute values of visited points,
xt, t = 0,..., N, of the Feigenbaum attractor with initial condi-
tion xo = 0. B) a closer look of the path of the sum, for values
of N within the small circle in A. C) Centered suph(N) in log-
arithmic scales. Middle block: Sun®(zo, N; 10) @s a function
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chaotic motion. That s, every positian can be decomposed

as arrival at the ‘centef?, of a band and a shiftz; within the
band,z; = #; + dz,. Therefore the sum, (N) = SN |

can be split into two terms,, = z,(N) + dz,(NN) where
Zu(N) = Zflo Ty anddz,(N) = Zflo dx¢. The intra band
shifts behave as independent random variables and the lim-
iting distribution of their sum is Gaussian. The inter band
motion is completely correlated but this contribution is in-
creasingly eliminated when the number of terms in the sum
increases a®%' — oo. The values of the total sum, initially
within the chaotic bands, fall into increasingly wider bands
that merge into a single one according to the mean-square
displacement[z, (N)]?)'/? ~ N1/2 [21].

Remarkably, the overall picture can be cast into a renor-
malization group scheme where the operation is the sum of
positions and this leads to only two fixed points. The non-
trivial corresponds to the multifractal distributionat= 11,
while the trivial one is that prescribed by the ordinary cen-
tral limit theorem [21,22]. Whem > ., the flow towards
the trivial fixed point displays a crossover behavior [21,22],
the fine details of which and other relevant issues were re-
solved numerically [24] by considering the family of attrac-
tors at chaotic-band-splitting or Misiurewics points. As it
turned out [25] the distribution at the crossover is related to
incomplete sampling of data and therefore resembles the so-
called T-Student distribution, that can in turn be rewritten into
the form of ag-Gaussian distribution [73,74]. At the present
date, this research line focuses on a specific model of corre-
lated walks that displays anomalous diffusion and arrest.

3.2. Rankings

A clear-cut stochastic approach [75] to obtain theoretical
size-rank functionsV (k) considers samples for the magni-
tudes N of unspecified kinds of data to be represented by
sets of random values generated by a parent or source distri-
bution P(N). When P(N) is chosen to be the power law
P(N)~ N~% a > 1, one obtains [75,27]
N(k) = Nmax expa[_NI?l;XlN_lk]’ (15)

whereN,,. is the largest data value (with initial raitk= 0)
and NV is the total number of data in the sample. More-

of o, N ~ O(10°) constructed by steps from period 2, 4 and 8 over, whenN,,,x — oo, a pure power-law decay follows,
supercycles, and finally at the Feigenbaum point. Bottom block: N (k) o k=« o > 1. And whena = 2 it takes the

Histograms obtained from the sums above.

‘classical’ Zipf form N (k) o k~1.
Now, a very different situation is the, longtime estab-

The corresponding distributions are shown in the bottomished nonlinear-dynamical, problem of determination of
block of Fig. 4, where we observe again the developmeng functional-composition renormalization-group fixed-point

of a fractal function [23].

map for a transition to chaos such as, for example, the tangent

Whenp > uo the evolution of the distribution of sums bifurcation [76,3]. This is to find the functiofi*(z) (and the
of positions, of a single trajectory, or of an ensemble of themyalue of ) that is the solution off*(z) = ¢ f*(x/(), such
inevitably takes the stationary Gaussian form as the numbehat it also complies with the generic form for a map at tan-
of termsN — oo. This can be rationalized [21] when recall- gency when: is small,f*(x) = x +u|z|* +.... The solution

ing that dynamics inside 2% -band attractork = 1,2, ...,

is [76,3]

can be decomposed into inter band periodic motion of period

2K (as in the corresponding periodic attractor) and intra band

fr(x) = wexp, (ua®™h),¢ =202, (16)
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FIGURE 5. Data fitting. Earthquakes (top) and forest fires (below) FIGURE 6.Data fitting. Examples of four different universality
[31]. Size-rankN (k) and frequency-rank’(k’) distributions are  classes [32]: a) USA city populations. b) Infant mortality per coun-
inverse functions [31]. As indicated, the valuescoheeded for  try. c) Fireams owned per 100 capita and per country. d) Los An-
fitting are close tax = 2 that for the classical Zipf law. geles household sizes.

a map with the scaling property, that reflects on the fact that — , 1, ..., generates the most renowned sets of numbers

all its trajectories obey the form [27] (or increasingly better approximations of them). Fibonacci
1 numbers wherr = 1, Natural numbers when = 2, Prime
@y = wo exp, (|wo|* " ut). (A7) numbers when = 2 with logarithmic corrections, Factorial

umbers wherr — oo. In turn, the negative reciprocal of
these numbers appear as trajectories fromethe 0 branch
of the map withz; > —1,¢ =0, ..., c0. The series formed by

For convenience we consider now only trajectories started
the left of the point of tangency = 0, for which all values

ofz < 0. th iprocal for< 2 but diverge forz > 2
Equations/15) and [L7) are identical, one transforms into . €se reciprocals converge fors. = but diverge forz = 2,
the other through the equivalencks— ¢, N(k) — —a, in fact, the borderline for divergence manifestsas 2 with
N = e = zandN = -l R’emarkably siz,e logarithmic corrections, related to the known bounds for the
max — ~ 40 - - . 3 -

Prime numbers and the very slow divergence of their recipro-
cals. This is reminiscent of borderline dimensionality and its
logarithmic corrections in critical phenomena. (At the mo-

ally, N (k) for all source distribution®(') can be obtained men_t of_writing this review this material is in preparation for
from trajectories of the map’ = z + u/P(—x) under the publication).
same scheme [32]. The stochastic and the deterministic ap- e have collected real data cases and reproduced their
proaches are equivalent. This duality permits for an expliciize-rank distributionsV (k) quantitatively from our ap-
and quantitative distinction between size-ravikk) -sizes of ~ Proach. Infant mortality withh = z = 1; billionaires,
cities- and frequency-rank' (k') -word frequencies- distri- solar flares, California forest-fire areas, and USA city pop-
butions, as the former appears as a trajectory while the lattéfations witha = =z = 2; earthquake magnitudes with
is a sum of positions [31]. The frequency-rank distribution® = 2 = 2 plus logarithmic corrections; and gun owner-
F(K') turns out to be the functional inverse 8f(k) [31].  Ship witha = z — o0 [29,31,32]. See Figs. 5 and 6. So,
See Fig. 5. this is evidence that ranked data appear to be represented by
There are other surprising sets of properties related to thi1e universality classes to be distinguished by the above val-
topic that can be obtained from the map at tangency. The réi€s fora = z. Interestingly, the nonlinear maps, all of the
ciprocals ofN (k) provide uniformly-distributed probabilities fixed-pointkindf*(z) already described, have all a tangency
p®) for eachk that lead to extensivg-deformed entropies feature, wher: = 1 the map crosses the identity line, for
where system size is measured by sample Bizg, = N 2 = 2 the map is tangent, and it is regular with nonzero sec-
[29,30]. We haveSy_,(kmax) = Ing_,[pFmaz) /p(E=0] ~ ond derivative or curvature > 0, in the limita = z — oo
N, q = z = a. The numbersV (k), we recall, were obtained the tangency point shifts to infinity [32]. Also, the finite size
from trajectories, withe, < —1,¢ = 0,1, ..., tmae, from the effect of real data is resolved by taking the matching map off

z < 0 branch of the map. Therefore the probabiliti#s can ~ tangency [32].

rank distributionsN (k) for all power-law exponenta can
be reproduced by trajectories of the fixed-point nmygga)
[27]. And as it turns out also forr — oo. More gener-

be obtained as trajectories, with < 1,t = 0,1, ..., tjaa, Moreover, the expression fav (k) is a ¢-deformed ex-
from thez > 0 branch of the map [29,30]. Also, trajectories ponential, the reciprocal of which is alsogedeformed ex-
from that same branch, starting and running now witk 1, ponential but with index) = 2 —gqora’ = 2 — «a or
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Z =2 — z. Wheng = a = z = 1 the ordinary exponen- version of which is the LGW Hamiltonian

tial (V(k)) and its functional inverse the ordinary logarithm 1

(F(K'")) are far from each other separated by all power-law U, [6] = a/drd |:(V¢)2 + blp|° T . (19)
decay functions. Ag = o = z grows away from unity the 2

g-deformed exponential and logarithmic functions develop 8owever, the object of study, the dominant fluctuation, dif-
closer resemblance as they both have power-law decay. Whegrs from the mainstream output in that it is not an equilib-
q = a = z = 2 their power-law decay is identical (explain- jum structure.

ing the usage for botV (k) and /(') as Zipf law). There, The vanishing of the first variation of the above free en-
Q = o/ = Z vanishes. The numb&} = o/ = Z hasbeen  ¢rqy functional, or Euler-Lagrange equation, turns out to be
shown to represent a ‘contraction’ dimension, an index thagnajogous to the second law for a classical-mechanical parti-
guantifies the reductlon.of phase space exerted by an attrag, [33,35], with positions, at times: and under a potential
tor [29,30]. For a chaotic attract@) = o' = Z = 1,fora o force 1V = —p|¢|0+! . This analogy makes it possible to
multifractal attractor) = o/ = Z < 1, and for a periodic  ggtermine the possible types of order parameter prafiles

attractor (including a tangency poin) = o/ = Z = 0. for the dominant critical fluctuation, for example, via the cor-
Thus, for all§ = o = z > 2 the contraction dimension must responding phase portrait

remain zero. Within this scheme, the Zipf law appears at a

borderline dimension similar to those in critical phenomena, do _ I /2(U +blgloH), (20)

and curiously represented by the set of Prime numbers. dx

_ whereU is the ‘total energy’, the constant arising in the first
3.3. Fluctuations integration of the Euler-Lagrange equation. There are two
i i . ) types of particle trajectories or profiles, antisymmetric and
An interesting set of studies [77,78] for the spatial structurégymmetric with respect to their midpoint such that the force
and temporal evolution of fluctuations at a typical critical gyerted at their boundaries differs in sign, and this determines
state made use of the Landau-Ginzburg-Wilson (LGW) efyhether the fluctuation grows or shrinks [35]. See Fig. 7.
fective Hamiltonian together with an inferred nonlinear iter- .o expression for the particle trajectasyz) for vanishing
ated map near tangency. Detailed results were obtained f@g;, energyl/ = 0 corresponds to that in Eq1®) [33,35].

the dominant fluctuation, a large long-lived object obtainedrpe fiyctuation size or particle’s time of flight diverges for
via the saddle-point approximation, as is usual in statistica}; _

mechanics. For the one-dimensional case the resultant order Intérestingly and also helpfully
parameter profile(x) expression can be rewritten as [33]

the calculation of the sec-
ond variation of the free energy functional leads to another
-1 mechanical analogy, this time with a quantum particle. The
$(x) = Po expy (¢ V2bx), (18)  second variation expression has the form of a Sdimger

whereg, is the amplitude at the middle of the fluctuation of

length2R, ¢ = (1 + 6)/2, with ¢ being the critical isotherm Izilaseportmlt*]pg
exponent and a leading Hamiltonian parameter. It can be b

noticed immediately that Eq.[18) is identical to Eq. [17) ‘ o

with the identificationse = ¢, ¢(z) = 4, ¢o = w0, q = 2 o6 P%

andv/2b = u. Furthermore, the time evolution of such fluctu-

ations were put forward to be of the intermittent type, gradual 0sl
growth (in amplitude or size) until collapse followed by the
appearance of a new fluctuation, and so on [78]. This sequel oz}
would be delivered by a nonlinear map just off tangency fol-
lowed by a cusp feature responsible for re-injection to the left Sz ot
of the bottleneck.

So, we were presented with another plausible instance  -ozf
where the renormalization-group fixed-point mép(x) at
the tangent bifurcation would play a main role. And, more s |
generally, the possibility of unanticipated connections be- 7
tween the field of critical phenomena in statistical mechan- ~ °®p#"
ics and anomalous nonlinear dynamics at the transitions to Y
chaos, a setting where generalizedeformed entropy ex-
pressions appear naturally. A powerful method for the studytigyre 7. Phase portrait from Eq.20) for different values of
of inhomogeneous systems is the (Free energy) density fungne total energy/. The insets show the ‘trajectories’ or order-
tional theory and within this a frequently used functional is parameter profiles that correspond to the horizontal and vertical
that related to the so-called square-gradient approximation, arrows.
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equation such that the associated eigenfunctions correspond 4
to perturbations of the order parameter profile while the

eigenvalues indicate the stability of the profile to such per- 7 - Z Jﬁ

turbations [35]. We recall that the profilg(x) describes ol & o%g

an unstable statistical-mechanical object and therefore some -2 r

eigenvalue must be negative or at least vanish [35]. 2 _40 T el 1
Similarly to the previous Section, extensiyaleformed S o t

entropies can be obtained, this time from the order param- I

eter value atr = R, ¢(R) = ¢oexp,(¢d 'V2bR), as -1

this provides a measure of the dependence of configuration
numbers on fluctuation sizB [33-35]. We haveS,(R) =
In,(¢(R)/¢o) ~ R. For a classical critical point = 3 so -3
thatq takes the ubiquitous value= (1+ §)/2 = 2, whereas
for an ordinary state off criticality = 2 one recovers the
ordinary caseg = 1 [33-35].

Time evolution via density functional theory is provided,
phenomenologically, via a class of first order but nonlinear
differential equations of which the Landau equation

dp _ 0V[g] =~ do
E_iA dr de,gZ)_O, (21)

here withA and B constants, is prototypical. Time evolution
ends up whe¥.[¢]/dx = 0, and the Euler-Lagrange equa-
tion delivers a stationary profile. Use of the phase-portrait
expression in Eq.20) yields

; ;
CT(? = FB/2(U +b[p[+1),¢ ~ 0. (22) _a-

—4 -2 0 2 4

b) ¢
And the above equation becomes, after introduction of dis- _ )
crete time and the choidé = 0 FIGURE 8. Intermittency a) and collapse b) of fluctuations as de-

scribed by the perturbed fixed point map.

bri1 = ¢ + BV2b|gy|OTV/2 p ~ 0, (23)

a map that has the common local tangency fofm) = 4. Rehearsals

@ + ulz|*, z =~ 0, we have considered above for the discus-pp, jnitation to join the exploration of a novel algorithm to
sion about the renormalization group fixed-point nfagx)  ansform time series into networks consisted of considering
in Eq. {16). This timex = ¢, u = BV/2b, andz = (5+1)/2. trajectories representative of the three routes to chaos in low-
The map/*(x) can be perturbed and taken off tangency re-gimensjonal nonlinear systems. This effort led to connec-
vealing two branches joined by a cusp [35]. The resultingjong petween renormalization group schemes and entropy
trajectories exhibit intermittency, that is, sequels of Iamlnar0 timization, and also a re-encounter with generalized Pesin
episodes (passage through a bottleneck) separated by burigiities. Unconnectedly, a program to revisit the well-
(reinjections mediated by the second branch) [35]. Perturgnqn properties of families of attractors of the quadratic

bation in the opposite direction leads to fluctuation coIIapsqnap as seen through the densities of ensembles of trajecto-
[35]. See Figs. 8a) and 8b). ries ran into a surprising statistical-mechanical picture. An-
In relation to the previous Subsection, Rankings, it iSgther case study consisted of the inspection of the conse-
worthwhile to mention that some of the properties of domi-quences of introducing discrete time to the replicator equa-
nant fluctuations, basically obtained through the saddle-poinion for a collection of well-known (social) games. We were

approximation in a coarse-grained partition function, can beyeaded straightforwardly into a nonlinear-dynamical exten-
also obtained considering a phenomenological scheme basgghn of evolutionary game theory.

on sub-occupation af-phase space [34,28].
Current interest in this problem is directed towards the4 1. Networks
determination of early warning signals for the final stage of
the long-lived but finite lifetime of the dominant critical fluc- The Horizontal Visibility (HV) algorithm [79] transforms
tuation. real-valued time series;, i =0,1,2,..., into connected
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* erties,e.g along the established routes to chaos, has substan-
__<x‘ tially accumulated and developed over the years, they offer an
. ideal case to evaluate the algorithm, either by its capacity to
a |00 | X capture previous knowledge in a different format or because
5 g it facilitates the generation of new knowledge.
5 I We applied the HV algorithm to representative trajec-
Q;‘_I tories inside the attractors along the period-doubling and
% '_,J 1 @ chaotic band-splitting cascade of the logistic map [36,37].
— X % KX And also to trajectories along the quasi-periodic routes to
x x chaos for the metallic irrational numbers (such as the golden
‘fj ) r and silver ratios) of the circle map [39]. Additionally, we
) determined the HV graphs for the tangent bifurcation at the
) B s l‘ 1 I @ edge of the period-three window of the logistic map and its
n Xy Xy Xy Xo Xg Xg Xp Xg X,

chaotic neighborhood where intermittency of Type | occurs
FIGURE 9.lllustration of the HV algorithm that converts time series [40]. These implementations allowed us to observe the de-
into a graph that shows the HV motifs for period doubling. velopment of interesting invariant HV network structures at
these well-known transitions to chaos. See Fig. 10. Also sig-
graphs that contain always as ‘backbone’ a simple chaimificantly, we obtained analytical expressions for their degree
graph. See Fig. 9. The algorithm assigns a notteeach & distributionsP(k). These distributions show truncated ex-
datumz; and links pairs of node§, j) only when(xz;,z;)  ponential decay witlk along the period-doubling family of
fulfills the criterion, z;, z; > =, for all [ between; andj,  attractors [36,37]. For periozl®
i < I < j[79]. By construction large families of time series

share the same HV graph, as there are infinitely many near- <1>k/2 k=946 .. 9

valued time series that match the HV criterion in the same 2 o
sequential manner. The families of trajectories produced by P(n,k) = " (24)
attractors of prototypical nonlinear iterated maps represent a ’ () k=2(n+1),
category of time series onto which the HV algorithm can be )

straightforwardly applied. Since knowledge about their prop- 0 k>2(n+1).

n=0
A Y Y YEYYYY YA 2
7 . ATV A A g
-3 £ 8
= - H
N | e >
y
=5 =574
" I o) - ; :
1 () f : ak nod
fana ‘ an PEJ .
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i 1 n 4 ¥ §. i il { i i n 1y /--u-a"-l.a"-l.-éw.J‘:‘JL.-(a’-‘-.s’.m{z,z,‘-.f.‘:..s',”.,\o ssdontien
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FIGURE 10. Top: Sequence of HV graphs for the period-doubling and chaotic-band splitting cascades. Bottom left: Periodic attractor
HV motifs a) associated with the rational fractions; along six levels of the Farey tree. b) Five steps into the Golden ratio rbute]l

(thick solid line); c) Three steps into the Silver ratio routes 2 (thick dashed line). Bottom right: Illustration of an HV graph for Type |
intermittency extracted from the period-three tangent bifurcation in the logistic map.
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The degree distributio®®(n, k) for 2*-band chaotic at- tory’ quality of the HV algorithm, many time series into one
tractors is similar to that in Eq.128) except that there are graph, simplifies the multifractal set at the transition to chaos
nodes with degreé > 2(n + 1) arising only from the top attractor into a fractal set. This advance required the network
band, as the algorithm filters out chaotic motion within all generalizations of sensitivity to initial conditions and of Lya-
bands except for that at the top. This contribution decreasgaunov exponent. Currently, activity in this topic is centered
asn — oo, leading in the limit to a full exponential distri- on the global statistical-mechanical structure of families of
bution. A similar result was obtained for the quasi-periodicHV networks along all the quasi-periodic routes to chaos that

metallic number cases [39], comprise the set of all irrational numbers in the unit interval.
-1
k=2,
% 4.2. Measures
1—2¢," k=3,
P(n — o0, k) = 5k /b (25)  Recently, we undertook the seemingly unnecessary task of
(1-— ¢;1)¢£ R k= bn + 3, revisiting the known properties of the logistic map in E%), (
. but not by reproducing trajectories and their attractors by run-
0 otherwise

ning through the values of the control parametexcross its

where the metallic numbersp, are those irrational full interval [0,2]. Instead, we were interested in observing

numbers with pure continued fractiofb,b,b...],b =  these properties via the density distributignéz; ;1) of en-

1(gold), 2(silver), ..., and for which the attractor periods ap- sembles of trajectories as they evolve in timend see how

proximate the numbe[ﬁl asn increases. As a difference, the they settle into their invariant forms fer— oo. The differ-

degree distributiorP (k) at the tangent bifurcation decays as ence between these two viewpoints is similar to that famil-

a power law [40]. iar in the representations of particle diffusion, one of them
The structure of the HV networks obtained from attrac-describes the evolution of single particles via the Langevin

tor trajectories lends itself in all cases to the consideration oquation while the other follows the probability density of all

a simple (contiguous-node-merging) renormalization-groughe particles via the Fokker-Planck equation [81]. The statis-

transformation [36,37,39,40]. For the logistic map theretical mechanical understanding can be increased [82] by this

are two trivial fixed-point HV graphs, those from period dual endeavor, where the place of the Fokker-Plank equation

one (single chain) and from a single chaotic band (singlds taken here by the Frobenius-Perron equation [83].

chain dressed with random links), and one nontrivial fixed- More specifically, we considered [43] two families of at-

point (scale-invariant) graph, that for the transition to chaogractors, the supercycles along the period-doubling cascade

[36,37]. Parallel results were obtained for the same nodeand the Misiurewics points along the chaotic-band-splitting

merging operation on the HV graphs when applied along th€ascade, together with their common accumulation point at

quasi-periodic and intermittency routes to chaos [39,40]. Théhe transition to and out of chaos. When the Frobenius-Perron

ingredients for a test of a previously considered ide a [80pquation is particularized to the logistic map reads [43]

were in place. This is that that there is a hidden entropy op- 1

tlmlza_non procedure underlymg the re_zno_rmallzatlon group pra1 (w5 1) = ——[pe(y) + pt(—9)], (26)

technique, developed to obtain quantitative results for sys- 2y/p(1 — )

tems with scale-invariant properties. Specifically, that the

all-important trivial and nontrivial fixed points are extrema Wherey = /(1 —z)/u. While the reverse time evolution

of a suitably defined entropy. From the degree distributiondollows [43]

P_(k) there is access to ent_r(_)py through the.Sha_nnon expres- ppe(1— pa?), v e0,1],

sion. The results were positive for all cases: period doubling oo (s 1) = { 27)

and chaotic-band splitting cascades and their common accu-

mulation point [36,37], quasi-periodic routes to chaos [39],

and the tangent bifurcation together with its chaotic neigh- We found that the approach of the densities to the final

borhood [40]. invariant limit, the invariant measure, is fast and that the de-
The scale-invariant HV graphs obtained from the trajec-velopment and shape of the distribution is very similar for

tories at the transitions to chaos themselves, the nontrivigteriodic and chaotic-band attractors. See Figs. 11a) and

fixed-points in the previous comment, are no longer made o11b) [43] where we have considered uniformly-distributed

repetitions of motifs like those for the periodic attractors (seenitial conditions throughout the interva-1,1]. Interest-

Fig. 10), as the size of the motif has grown to infinity. Theingly, the approach to the invariant distributions follows a

examination of their network structure, their degree distribuprecise concerted sequence for both periodic or chaotic at-

tion and their entropy expressions produced another signifitractors. The developments of the distributions for period or

cant result: the occurrence of an HV network version of thenumber of band&™ imitate closely those for all smaller pe-

g-generalized Pesin identity at the period-doubling [38] andiiods or numbers of bands, appearing around iteration times

the quasi-periodic [41] transitions to chaos, described earlier ~ 2% k = 1,2, ...,n — 1. We refer to this property as ‘re-

in Subsection IIA, Sensitivities. In both cases, the ‘distilla- capitulation’.

— pzpi(1— pa?®), x€[-1,0]
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10 10 With the families of densities in hand, the opportunity

Y % of evaluating their entropies from Shannon’s expression was
_ _ an uncomplicated task. First of all, the fixed points could
?. 5 g, 3 again be identified from entropy optimization. For period one
- - the entropy vanishes reaching its minimum possible value,
0 " 0 while the entropy for the single chaotic band attains the max-
0 03 ] 0 05 | imum value. The entropy for the nontrivial fixed point at the
it 10 transition to chaos is maximum for all supercycles and min-
° ' 9 imum for all Misiurewics points. Secondly, the entropy of
02 the invariant densities grows monotonically from period one
0 through all supercycles, and all Misiurewcs points to the final
J : single-band attractor [43].
0 0 But most remarkably, when the collection of entropies
a) 0 03 for the two families of attractors is viewed along the val-
x ues of control parameter the familiar pattern appears [43]
10 10 of a statistical-mechanical two-phase system separated by a
continuous phase transition, an equation of state containing a
] critical point. Similar, for example, to that typical for an or-
0 der parameter as a function of temperature for zero external
field. Where the role of temperature is taken by the control

(=1
(=1
n

0 0 parameter.
05 0 05 I 03 0 05 I A few decades ago, it has been a common general com-
10 x10° 10 x10° mentary within the Complex Systems community that obser-

9 a vations of complex systems in nature appear to indicate, in
_ ~ the language of nonlinear dynamics, that their conduct is as

% 3 5{,5 if they evolve at the ‘edge of chaos’. Likewise, the same com-
« J munity nowadays shares the general commentary that the ob-

J servations of complex systems in nature seem to imply, in the

0, 05 1 language of statistical mechanics, that they thrive in a state

of ‘criticality’. Amusingly, as we describe here, these two

FIGURE 11. a) Evolution of an initially uniform density of posi-  paradigms appear to be equivalent at the transition to chaos

tions in the interval [-1,1] for the supercycle of period 4. b) Same displayed by the archetypal nonlinear dynamical model.
as a) but for the Misiurewics point when 2 chaotic bands are about

to split into 4 bands.

b) -0.5 0 . 0.5 I -0.5

o . ] ] ) ~ 43. Games
It is instructive to mention that invariance of the distri-

butions in the limitt — oo is only observed at times of the Game theory is a widespread theoretical tool in the model-
formt = M2", M alarge positive integer, when the ensem-ing of complex systems, that under consideration of many
ble of trajectories is (technically) inside the attractors. Thaldegrees of freedom, or agents, provides time processes, alto-
is, the limit densities follow the known dynamics for the or- gether referred to as evolutionary dynamics [84]. The agents
der of visits of positions or bands. Two different time scalesinteract and reproduce according to the result of their inter-
develop,t andn, and these separate increasingly:as> co.  action, which in turn depends on the composition of the pop-
For the particular case when the initial distribution of posi-ulation. The prediction of the final population compositions,
tions is already the invariant distribution time separation ofor Nash equilibria, is of interest. Under the ‘well-mixed’
scales is not observed though, dynamically, the order of visyersion, where agent interactions occur randomly, similar to
its of positions is always taking place. mean-field approximation in statistical mechanics, the task
As expected another renormalization group scheme becenters in a set of first-order nonlinear differential equations
came promptly visualized [43] since the families of invariantcalled the replicator equations [84]. In vector notation, these
densities are linked by a self-affine property, just as their atequations read
tractors do in the bifurcation diagrafm, ). On this occa-
sion, the renormalization group operation on the densities is =y [(Ax)i — xTAx] , (28)
simply period halving or band merging followed by rescal-
ing. The trivial fixed points are a single delta function for wherez; is the frequency of typé = 1, ...n, X is is the fre-
period one and the bathtub-shaped density for single-banguency vector describing the population as a whole, the in-
chaos, poo (7;2) = (mv/1—22)~t. The nontrivial fixed teraction is given by thexn payoff matrix A. (Ax); is the
point is a multi-delta function distribution with multifractal expected payoff for an individual of typeandx” Ax is the
support [43]. average payoff of the population.
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We focused attention on the simplest option, the well R
known social-dilemma (two-strategy, cooperation or defec-
tion,) games represented by symmetric 2x2 payoff matrices
that lead to a single differential equatioly/dt = x(1 —

x)[S 4+ (1 = T — S)z], wherez stands for the proportion

of cooperative strategists in the population (dnd x that

for defection strategists). The values of the payoff matrix pa-
rametersS andT" define four basic social dilemmas: When
T > 1andS > 0we have the Snowdrift game (also known as
Chicken or Hawk-Dove); the choicg < 1 andS < 0 corre-
sponds to the Stag Hunt game; the rafige 1 andS < 0is

for the Prisoner?s Dilemma game where defection is the best
option no matter what the opponent chooses; and finally the a)
optionT < 1 andS > 0 corresponds to the Harmony game,
with cooperation being now the best strategy. See Ref. [44].

The appearance of chaotic dynamics in these games is
ruled out by the Poincare-Bendixon theorem that establishes » °°
that chaos can only arise in a continuous dynamical system ,
(specified by differential equations) if it has three or more di- il
mensions. Therefore we chose to introduce discrete time into .
the replicator equation and convert it into a nonlinear iterated
map with two control parametesandT’,

(< =

Ti41 = Tt + iCt(]. - l’t)[S + (]. T - S)ivt], (29) -in

and embark on the program of exploring the mentioned social -
games through the bifurcation diagram of the map in [E€). ( b) = o A

The results were immediate, the landscape of the three- _

dimensional s, T, =) bifurcation diagram uncovers a rich ar- F/GURE 12. a) Lyapunov exponent in control parameter plane

rangement of periodic and chaotic attractors connected b 'T_) (blug 'nd'.cates negative and yellow/orange positive values.
. . . . ) Bifurcation diagram and Lyapunov exponent along the parame-

recognizable but somewhat distorted period-doubling an i lined =S — T

chaotic band splitting cascades, windows of periodicity, etc. -

[44]. See Fig. 12a) where the values of the Lyapuno_v eXPOgne tangent bifurcation.

nent on the(S, T') plane are shown through color variation.

A cut along the lined = S = T'is shown in Fig. 12b) where

one can see two disconnected sets of attractorsifer 0

In short, the many-strategy game-
theoretic problem was reduced to a classic version of two
strategies, where one of them represents a selected agent or
o= o > i . species and the other groups all the others. One advantage
and modified interiors in the, more visible, window of period in using this approximation is that a one-dimensional nonlin-
three. ear dynamical model had been recently constructed [45] such
Surprisingly for us, the same replicator map in EB9)(  that its time evolution consists of successive tangent bifurca-
was obtained after a major reduction [46] is made on a gameions that generate patterns resembling those of the full TaNa
theoretic adaptation [85] of the Tangled Nature (TaNa) modemodel in macroscopic scales. See 13b) and d).
[86] for eVOlUtionary dynamiCS of ec0|Ogica| SyStemS. The Currently, we are modifying, phenomeno'ogica”y, the
game-theoretic version of the TaNa model consists of a larggeplicator map in Eq/29) such that different desired features
payoff matrix so that the replicator equation involves a largejn, its original bifurcation diagram occur within the physical
frequency vector [85]. This model exhibits macroscopic Nnon4nterval 0 < = < 1, and can, therefore, be incorporated in
Stationary intermittent eVOlUtion Similar to that in the TaNa Specific mode' Constructions' One examp|e iS a game that
model, and, interestingly, its discrete-time version that operreplicates Yule’s principle (‘rich get richer’) [87], that in net-

ates in the limit of many strategies constitutes a coupled magork language terms corresponds to ‘preferential attachment’
lattice (CML). Subsequently, a drastic simplification of these[gg]_

CML replicator-mutation equations was considered to reduce

the model all the way down to a one-dimensional nonlinear

map [46]. With this approximation, the possible connection5, Belated insights

was examined between the macroscopic intermittent behav-

iors of the above-mentioned high-dimensional models withWe computed properties of ensembles of trajectories evolv-
the known low-dimensional sources of intermittency, such asng towards (first periodic and then chaotic) attractors of the
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FIGURE 13.Top left panel: Five-times-composed replicator map at FIGURE 14. &) Flight timest; (number of iterations) for trajecto-
the tangent bifurcation of its period five window and a close view Ti€s to reach the period 4 supercycle attractor. b) Sequential gap
below [46]. Top right panel: Trajectory for the conditions in the left formation of an ensemble of trajectories en route to the period-

panel that imitates the behavioral patterns of a high-dimensionaldoubling accumulation point attractor, with superimposed sharp
model for ecological evolution. transitions approximation (dark line). See text. c) Rfeof ap-

proach to the supercycle attractors of periads N = 1, ..., 5, in
quadratic map. The expression descriptive of the populalogarithmic scales. See text. d) Same rétgfor the approach to
tion of positions already captured by the attractor resem{he Misiurewics points.
bled that of a partition function. Eventually, this statistical-
mechanical likeness became a model for self-organizatiod48,49], see Fig. 14a). ii) The sequential formation of tra-
Separately, we made use of the trajectory inside the attragectory position gaps in théz,t) plane [48,50]. See Fig.
tor at the period-doubling onset of chaos, which appears a4b). And iii) the fractioniV; of phase spack-1, 1] still oc-
a family of straight lines in logarithmic scales, over sev-cupied by the ensemble trajectories at titr{é8,50,29], see
eral years for distinct purposes, until we realized that itFigs. 14c) and 14d).
could be obtained analytically from the trajectories of the  The behavior of the fractiofi’, caught our attention. In
renormalization-group fixed-point map of another transitionjogarithmic scales (as shown on 14c) and 1#d) exhibits
to chaos, the tangent bifurcation. Likewise for the quasiperithe telltale occurrence of discrete scale invariance, power-law
odic routes to chaos. Therefore all these fixed-point mapgecay dressed by logarithmic oscillations, where the latter
share analytic closed forms as well as statistical-mechanicgjisplay the ‘recapitulation’ property mentioned before,
features. Finally, the power law spacing and widths of theeyolution toward2”-periodic or2”-band chaotic attractors
windows (that show miniaturized bifurcation diagrams) in-repeats successively the evolution towards those attractors
tertwined along the chaotic-band attractors of the main bifurwith 2% k = 0,1,2,...,n — 1. Sequential band formation
cation diagram of the quadratic map await their use in theand flight-times also show recapitulation. This property im-
construction of nested models for likewise complex systemsplies [48,50] that the fractiofi/»~ is proportional to the sum

of so-called supercycle diametets ,, [3],
5.1. Partitions

A decade and a half ago we embarked on a previously (to our 2

knowledge) unreported task. This task consisted of study- Wan o 20 = Z dn,m, (30)

ing ensembles of trajectories evolving towards representa- m=0

tive families of attractors of the logistic map. We computed ) ) ) o ]

in detail a basic collection of properties that describe thos@nd likewise for the sum of band widths at the Misiurewics

journeys. Firstly, the family of attractors chosen was that?Cints [24]. We labeled the sum abowg, as it is some-

of the supercycles together with their accumulation point,t'mes done fqr 'partltlon funcﬂon; in statistical mechanics,

the Feigenbaum attractor [47-50]. Lately, we considered th€Ven though it is only a sum of interval lengths. And we

family of Misiurewics points, the attractors at which chaotic P&9an a search for a justification of this impulse.

bands split [24]. In all cases, we chose ensembles of initial Only recently [53,54], the first stage in the statistical-

conditions uniformly-distributed across the interval of defini- mechanical justification of Eq/30) as abona fidepartition

tion of the map. The properties we monitored were: i) Thefunction was put together. To begin with, the sequential gap
numbers of iterations necessary for the trajectory initiated atormation in Fig. 14b) was deliberately sharpened so that
xo to reach the attractor (in practice with the necessary useach family of gaps appears suddenly at fixed given times.
of a small cutoff). We called these times flight-timig§z,)  This approximation makes this process identical to the con-
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struction by stages of a two-scale Cantor set, a multifractab.2. Diagonals
with a partition function

There is a renormalization-group fixed-point maf{(x) for

" /n . each limiting stage of the three routes to or out of chaos, pe-
Fn = Z (l>l1 I3, B riod doubling, quasi-periodicity, and intermittency leading to
1=0 the tangent bifurcation [3-5]. These fixed-point maps em-

body the universality class property of infinite families of
wherel; ~ o~ ! andl; ~ a2, and witha the absolute nonlinear dynamical systems. They express the scaling laws
value of Feigenbaum constant, so that the lendihs =  stemming from functional composition as the basic feedback
l?‘llé,l = 0,1,2,....,n — 1, scale as the diameters and element for the transit from regular to chaotic behavior or
bandwidths do asymptotically in the bifurcation diagram ofvice versa. They (arguably) represent the foundation of non-
quadratic maps [53,54]. The nextimportant step was the realinear dynamical theory for dissipative systems. Historically,
ization that the same partition function arises in the constructhe first case to be worked out was that for period-doubling
tion by stages of another kind of multifractal, the two-weight[3-5], followed by that for quasi-periodicity [3-5], both ef-
multifractal that consists of progressively subdividing the in-forts leading to transcendental functions with no closed-form
terval [0, 1], halving the size of compartments successivelyexpressions fof*(x) [3-5]. The last case obtained was that
with weightsW,, ; = w’f*lwé,l =0,1,2,...,.,n — 1, where for the tangent bifurcation [3-5], for which the initially per-
w1 ~ o~ andwy ~ o2, Thatis the same Ec31) butwith  ceived simpler feature of a single attractor-repellor point lead,
l; andi, replaced by, andws [54]. This partition function  perhaps not totally unanticipated, to an analytical closed-
is made of compartment or subsystem configurations. form expression forf*(x), as previously shown in Eq16)

If the initial single compartment contains a thermal Sys_[76]. As r.ecollected herg we have relied on these fundamelntal
tem, irrespective of its nature, it finds itself progressively dec-contributions as the main background support to our studies.
imated through subdivisions into ever smaller compartments, We have made use of fixed-point mgp(x) trajecto-
so that its total conventional entropy gradually diminishes un+ies directly or indirectly in all the studies already described.
til it finally vanishes. This is the unavoidable effect that self- The trajectory at the Feigenbaum pojifit_(x) initiated at
organization (in our case partitioning) has on the thermal sysz, = 0, shown in Fig. 1b), is for all purposes one such case.
tem. But, concurrently, a new statistical-mechanical systenin Fig. 15a) we show another view for that trajectory, while
develops with its own increasing entropy termragrows, in Fig. 15b) we show the equivalent result for the golden-
that related to the partition function, above. We found that mean onset of chaos as obtained from the circle map [11].
the dynamics towards the multifractal attractor at the periodOn the other hand, we have seen that all the trajectories from
doubling onset of chaos is a close analogue to a progressivetiie tangent bifurcation fixed-point map in EQ4.6] are given
constrained thermal system [54]. by Eq. 7).

The balance between numbers of configurations and As we have seen, much can be learned by observing the
Boltzmann-Gibbs statistical weights of the initial thermal structure of the trajectory positions in 1b) and 15a) as they
system is strongly altered and ultimately eliminated by themove in a particularly orchestrated manner across the multi-
sequential subdivision procedure that mirrors the actions ofractal attractor. In logarithmic scales the trajectory separates
the attractor. However, the emerging set of subsystem corinto equally-spaced horizontal bands, with half of the posi-
figurations implies a different and novel entropy growth pro-tions in the top band (odd iteration times in Fig. 1b) and even
cess that eventually upsets the original loss and has the caeration times in 15a). Subsequent horizontal bands contain
pability of marginally [54] locking the system into a self- 27", n = 2,3, ..., fractions of the remaining positions. Each
organized state with characteristics of criticality, as in the sdand consists of sub-bands, and so on. The band structure
called self-organized criticality [89]. In the limit — oo expresses geometrically the scaling features of the functional
self-organization displays the full scale-invariant propertiescompositionf*(x). As shown in Fig. 15b) there is a similar
of the transition in or out of chaos, similar to space and timeband structure for the golden-mean trajectory but it is more
scale invariance of critical states. There, the number of suldifficult to explore it only by means of logarithmic scales.
system configurations and their generalized [54] entropy is gyt the main feature of these trajectories we focus on here
maximal. As indicated in Ref. [54], attaining this state pro- 5re the ‘diagonals’ we described much earlier. See the text
vides an explanatlon,_wnhln perhaps_ the S|rn_ple_st model syS5ejow Eq. [1). The entire trajectory; — f;(t?g (zo = 0) can
tem, for the hypothesis of self-organized criticality [89]. be decomposed into position sub-sequences all of which obey

Currently, we are characterizing the sequence of systhe same power-law decay. Also, we saw that such diagonals
tem subdivisions, originally only mirroring the recapitulation possess the ideal glass perfect aging scaling property. See
property of ensembles of trajectories en route to the attracthe text around Eq/8). The alternate view of this trajectory
tors, as a sequence of genuine differentiations underlying thehown in Fig. 15b), as well as that for the golden-mean in
bifurcation cascades, of symmetry-breaking phase transitioriSig. 15b) can be also decomposed into ‘diagonals’, and these
leading to a marginally stable multi-partitioned state. diagonals can be expressed analytically-aeformed expo-
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F*O(x)

T = f*(t)(xo) =0 expz(|xo|z_1ut). (32)

PR Each diagonal, say)x, k = 1, 2, ...., requires one initial con-
. TR dition mgk) and an iteration time transformation from the con-
secutive times in Eq'3@) to the diagonal sub-sequence times,
say,7(¥). Each route to chaos fixes the value of the deformed
exponential parameteras well as that for the curvature pa-
6 . ! rameteru [to be published].
¢ . This hitherto unseen connection between all the classi-
o cal transitions to chaos constitutes a formal advance about

-8 . , the required mathematical structure of viable fixed points

10° 10" 102 10° mapsf*(x), those that express the universal scaling features
a) t of general families or classes of nonlinear dynamical sys-
tems when driven into regime borderlines. But also, as we
have seen, to the occurrencejedieneralized entropies in the
statistical-mechanical descriptions mentioned here. This ap-
plies to our model perspectives for glass formation, critical
fluctuations and localization transitions in condensed mat-
ter physics, more generally, to complex systems paradigms
and self-organization, and also to our simplified modeling
and treatments to diversity, ranked data, networks from time
series, correlated random walks, and certain specific game-
theoretical situations.

; 10_4 F * o P ettt Y
-
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| 5.3. Windows

(a)

jo2L—+ .+ S There is a collection of features in the classic bifurcation di-

b) b e ;g e agram for quadratic maps that have been left out so far in

our discussions. These features are related to the infinite
collection of interruptions, called ‘windows’, of the chaotic

FIGURE 15. a) Distance fromx = 1 of the absolute values of posi- band attractors sets displaved al and shown in
tions in logarithmic scales of the first 1000 iterations for the trajec- play ng- Hoo,

tory at the period-doubling onset of chaos for the logistic map. TheFig' 166‘.)_- There is an infinite number. of WiQdOW§ that con-
numbers correspond to iteration times. See Fig. 1b). b) Positiond@in families of reproductions of the bifurcation diagram it-

in logarithmic scales of the first 1000 iterations for the trajectory at Self, and again, repeatedly, within each smaller replica, since
the golden mean onset of chaos for the circle map. Fhare Fi- the bifurcation diagram is a fractal object. The interruptions

bonacci numbers in the position labels that correspond to iteratiordisplay power-law spacing and widths that have been char-
times. In both cases a) and b) the power-law decay of positionsacterized a long time ago [55,56]. The same window fea-
along the time sub-sequences described in the text can be clearly,res occur across the bifurcation diagrams of many other
appreciated. low-dimensional iterated maps, including those for the circle

maps [3-5] with two control parameters, and also that other
nentials,e.g Eq. ). See also Ref. [30] for other cases, two-parameter bifurcation diagram we mentioned briefly for
including the first diagonal of the golden-mean trajectory.  the replicator map in Eq20).

The recent idea or question that has made us revisit the There are other related structures in the quadratic map
trajectory features we call diagonals is the realization that albifurcation diagram that are worth mentioning here. These
the fixed-point mapg*(z), for the three routes, are more are the so-called ‘shadow’ curves and their dual ‘period’
closely related than originally thought, and that they sharegurves [90]. The first set is given by the set of functions
amongst other ingredients, the same closed-form analytic(x) = f,(f )(0),n = 0,1,..., while the second set by the
expression that was first found for the tangent bifurcationsolutions ofz = f,(f ')(x),n = 0,1, ..., both as a function
[to be published]. Our intention was to find an alternativeof u. See 16b) and 16c¢). The shadow curves have mutual
way to obtain the multifractal trajectories produced by thepoints of tangency and also intersect themselves at the Mis-
known fixed-point mapg* (z) for period doubling and quasi- iurewics points, they envelop the bifurcation replicas within
periodicity. That is, the program we followed was to repro-the windows. The period curves trace the periodic solutions
duce the master trajectorigg® (z) in 15a), and 15b), di- independently of whether they are stable (attractors) or unsta-
agonal by diagonal, from the tangent bifurcation trajectoriedle (repellors). The two sets of shadow and periodic curves
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to construct a simple model [45,46] to reproduce the punc-
tuated equilibrium [86] observed in the nature of evolution-
ary ecology, that is captured by Jensen’s TaNa model [86].
But other insights are awaiting for the more complete use
of the features of the sets of windows, for example, for the
construction of simple enough models that would describe
complex systems where the most significant property is em-
bedding, nested systems within systems. Like the case of the
microbiota, the ecological communities of microorganisms
; found in and on all multicellular organisms from plants to
“ & animals [91].

The different sets of power laws displayed by the fam-
ilies of windows make certain the existence of general-
ized statistical-mechanical behaviors not yet characterized,
as other sets of power laws occurring in the dynamics of
quadratic and related maps have beg, as in all the pre-
vious subsections. These, say still ‘idle’, sets of power laws
correspond to the spacing of the windows across the bifur-
cation diagram, their widths, and other features within them,
as are the replicas of the main cascades in the primary dia-
gram. Additionally, this complex structure is wrapped by the
intricate system of shadow and period curves.

Diagram.jpg
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6. Outlook

As future directions, we put together a list of idealizations or
models, unpretentious but effective for providing specific an-

m=138] S

0.5

c)

5

i

swers to complex systems problems and subjects. Currently,
they are at different stages of development, and all are based
on the nonlinear dynamical content in each of our twelve sets

of studies:

Sensitivities A model for the ideal growth of diversity,

a mainstay ‘phylogenetic tree’, based on the period doubling
route to chaos, and its recapitulation at the transition to chaos.
In its base format diversity is quantified via the anomalous,

multifractal, sensitivity to initial conditions.

Glasses A model for the flow (and arrest) of traffic (an-
imal, human, vehicular) that makes use of our discovery of
the manifestation of vitreous dynamics in the noise-induced
bifurcation gap at the onset of chaos.

Localizations A model for collective behavior in com-
plex systems based on coherent communication states resem-
bling those described here for wave propagation through scat-
tering media.

FIGURE 16. a) Widely-known logistic map bifurcation diagram Sums A model of correlated walks that displays pro-
showing strip windows in the chaotic regime and an amplification gressively anomalous diffusion and arrest based on sums
of the widest (period three) window. b) Shade curves outlining the of position trajectories across the chaotic-band attractors of
bifurcation diagram in a) See text. c) Period curves where bothquadratic maps.
stable and unstable periodic solutions are shown. See text. Rankings A model for ranked distributions based on non-
linear dynamics near or at tangent bifurcations that reveals
interact, they are tangent at the pitchfork bifurcations withinuniversality classes and borderline dimensionality (as in crit-
the windows. ical phenomena), with links to number theory (in particular
We had already made use of the windows in the bifur-prime numbers for the class that corresponds to the empirical
cation diagram, but only marginally, by using the propertiesZipf law).
in the chaotic neighborhood of their tangent bifurcation bor-  Fluctuations A model for the identification of early
ders, the existence of the infinite set of windows was usedvarnings based on our studies on the spatial structure and
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temporal evolution of the dominant fluctuations at a critical ~Windows Models constructed to describe complex sys-
point. tems where the most significant property is embedding, sys-

Networks A model statistical-mechanical structure for a tems nested within systems.
class of networks, those obtained via the HV algorithm from  The twelve units of studies we described are interrelated
time series formed by trajectories along the period doublingn various ways. To highlight these, as in a zodiac, they could
and all the quasi-periodic routes to chaos. have been grouped differently, into four classes that underline

Measures A model to observe the equivalence betweenanother common traits, or distributed in three groups contain-
the two main paradigms for the understanding of complexng each four studies that share the same quality, or separated
systems in recent decades: edge of chaos and criticality.  into only two sets of six studies each (or vice versa), to clas-

Games A phenomenological model based on sequencesify them according to other common characteristic, and so
of transitions to chaos via intermittency that reproduceson. Connections amongst these dozen research lines become
guasi-stable states descriptive of punctuated equilibrium obevident with each of these different allocations. We chose a
served in the evolution of ecosystems (biological, urbanclassification that reflects only circumstances in their elabo-
technological). ration.

Partitions A model capable of offering a physical ba-
sis to self-organization, analogous to the non-linear dynam-
ics towards the attractors that form the period-doubling andAcknowledgements
chaotic-band splitting cascades in quadratic maps.

Diagonals A pathway to demonstrate the general oc-AR is profoundly thankful to all his collaborators over the
currence ofj-generalized statistical-mechanical properties inyears and deeply appreciative to all colleagues with whom
all the models of this list provided by the recently realizedvaluable discussions took place. Support is acknowledged
link between all renormalization-group fixed-point maps atfrom IN106120-PAPIIT-DGAPA-UNAM.
the transitions to chaos.
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