
Suplemento de la Revista Mexicana de Fı́sica1 (4) 32–53 SEPTEMBER-OCTOBER 2020

A zodiac of studies on complex systems∗

A. Robledoa and L. J. Camacho-Vidalesb

aInstituto de F́ısica y Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Ḿexico.
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We offer a brief description of a set of interrelated research lines on the physics of complex systems developed under a unifying methodology
grown out from nonlinear dynamics of low dimensionality. The research lines were, and are, developed over a two-decade period (tacitly
or not) under a simplifying assumption (and a posteriori corroboration) of a drastic reduction of degrees of freedom. The studies are
conveniently grouped into twelve units, and these in turn into four groups, as in a zodiac. The studies in the first group, named Sensitivities,
Glasses and Localizations, have in common a clear-cut original opening in the sense that, to our knowledge, the main tenet or result is not
found elsewhere. Those in the second group, named Sums, Rankings and Fluctuations, have as a starting point previous stimulating studies
or ideas that we followed up but then we converted into separate approaches. The subjects in the third group, named Networks, Measures
and Games, involve preset work programs to be followed but ended up within unanticipated, perhaps deeper, grounds. The topics in the
final fourth group, named Partitions, Diagonals and Windows, occurred, or are taking place, as specific technical goals that have become
after belated realizations to be possible contributions towards the answer of fundamental quests. We discuss connections underlying different
aspects of these investigations.
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1. Introduction

During the last twenty years we began, increased and con-
solidated a linked set of research lines dedicated to the in-
vestigation of complex systems. This set rests on indepen-
dent, original and rigorous developments [1,2], which are in-
tegrated into a coherent structure for the understanding, and
subsequent use, of the transitions to chaos in the so-called
dissipative nonlinear systems of low dimensionality [3-5].
Two groups of properties have been obtained and further de-
veloped into effective research tools: the dynamicsinside
and the dynamicstowards the attractors that represent the
transitions to chaos. Based on this knowledge, research on
core problems of complex systems has been carried out. In
the physics of condensed matter we have obtained results in
problems of difficult treatment: glassy dynamics, localiza-
tion and critical fluctuations. In complex systems we have
achieved central results for evolutionary dynamics, ranked
data distributions (Zipf and Benford laws), and, recently, on
the rationalization and (needed) statistical-mechanical justi-
fication of the phenomenon of self-organization.

The significance of the results obtained so far rests on the
observation that our low dimensional model systems capture
the main behaviors of high dimensional complex systems.
An extreme reduction of their degrees of freedom has been
fittingly implied in our analysis. A common factor in our
closely related lines of research has been the use of the same
properties of dissipative non-linear dynamical systems of low
dimensionality [1,2], particularly those at the transitions that
these systems show between regular or periodic, and irregu-
lar or chaotic behavior. Our interest has been oriented to the

study of the known routes to chaos exhibited by these model
systems. We have contributed with very specific descriptions
but of unprecedented detail that had remained unexplored:
the dynamical properties at the transitions to chaos together
with those towards the attractors involved. These properties
are anomalous, in that they differ profoundly from both peri-
odic and chaotic dynamics.

A few introductory words about the starting point contri-
butions of the twelve sets of studies we describe below are:
Sensitivities. A central quantity in nonlinear dynamics, the
sensitivity to initial conditions, was determined explicitly for
the pitchfork and tangent bifurcations as well as for the pe-
riod doubling and the golden ratio quasi-periodic transitions
to chaos [6-12], all of which display anomalous properties
while their Lyapunov exponent vanishes.Glasses. The bifur-
cation gap, that encloses and shrouds the period-doubling and
chaotic-band-splitting accumulation points, induced by the
addition of external noise was shown to appear as a crossover
phenomenon along time evolution at the onset of chaos [13-
16]. Localizations. A vital recursion relation for size growth
of a basic wave scattering model was recognized as a nonlin-
ear iteration map with a bifurcation diagram where tangent
bifurcations separate periodic (insulating) and chaotic (con-
ducting) attractors [17-20].Sums. The distributions for sums
of successive positions of trajectories, as in random walks,
for families of chaotic attractors of the quadratic map were
found to conform to a renormalization group scheme such
that its trivial fixed-point matches the central limit theorem
[21-25]. Rankings. The size-rank distribution of all kinds
of numerical data, including Zipf law, were seen to be ob-
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tainable from nonlinear maps close to a tangent bifurcation,
such that data samples are reproduced by their trajectories
[26-32]. Fluctuations. The joint use of density functional
theory (for inhomogeneous systems) and the renormaliza-
tion group fixed-point map (for the tangent bifurcation) de-
livered a space-time description for the dominant fluctuation
at a critical point [33-35].Networks. The transformation of
iterated map trajectories into (Horizontal Visibility) graphs
opened the possibility of reevaluating the link of the renor-
malization group technique with entropy optimization, and
likewise the generalization of the Pesin theorem at the transi-
tions to chaos [36-42].Measures. The alternative description
of nonlinear dynamics via probability densities of ensem-
bles of trajectories instead of the trajectories themselves gave
access to statistical-mechanical viewpoints of known behav-
iors [43]. Games. The initial consideration of the discrete-
time version of the replicator equation of conventional games
leads straightway to novel bifurcation diagrams and valuable
coupled-map models [44-46].Partitions. From the start, the
property that summarized our calculations for the dynamics
towards the periodic attractors of the quadratic map resem-
bled in form that of a partition function. Continued work
supported this interpretation and finally a model for self-
organization materialized [47-54].Diagonals. Originally, we
represented the (master) trajectory at the period-doubling on-
set of chaos in logarithmic scales and this revealed an infi-
nite family of straight lines, or interwoven power laws, that
subsequently led to many fruitful interpretations and ana-
lytical statistical-mechanical results [7,9,14,11,21,30].Win-
dows. The control parameter gaps that interrupt the chaotic
attractor intervals in the bifurcation diagram of the quadratic
map contain infinite families of reproductions of the bifurca-
tion diagram itself, the gaps display power-law spacing and
widths [55,56]. These features are caricature building blocks
for current modeling of nested complex systems.

More details about these sets of studies are given in the
following sections while future directions are delineated in
the concluding section. Additional related reading and com-
mentaries can be found in [57-66]. The significance of the
results obtained so far rests on the observation that our low
dimensional model systems capture the main behaviors of
high dimensional complex systems. A common factor in
our closely related lines of research has been the use of
home-produced properties of basic dissipative non-linear dy-
namical systems.

2. Original beginnings

We shall see now how a generalized Pesin identity (linking
evolution of trajectories to entropy growth) offers an ideal
biodiversity ‘tree of life’ model. This requires knowledge
about the sensitivity to initial conditions at the multifractal
period-doubling onset of chaos. Next, we see that the ideal
glass concept exists and can be precisely represented by the
attractor at the onset of chaos. This requires the knowl-
edge that the noise-induced bifurcation gap is recapitulated

at such, perturbed, onset of chaos. Lastly, we see how the lo-
calization transition between conducting and insulating states
in a model array of wave scatterers is described by the tran-
sition out of chaos at the tangent bifurcation. This requires
the knowledge that the model properties are rigorously anal-
ogous to those of an equivalent nonlinear map.

2.1. Sensitivities

At the transitions to chaos in one-dimensional nonlinear maps
the (only) Lyapunov exponent vanishes. A classical example
is the period-doubling accumulation point attractor (for short,
Feigenbaum attractor) present an infinite number of times in
the bifurcation diagram of quadratic maps. There, the sensi-
tivity to initial conditions ξt behaves anomalously; it fluctu-

FIGURE 1. a) Sub-exponential growth and fluctuating amplitude
of the expansion rateEt shown for the first105 iterations for the
logistic map at the onset of chaos with initial conditionx0 = 0. b)
Absolute values of positions in logarithmic scales of the first 1000
iterations for the trajectory as in a). The numbers correspond to
iteration times. The power-law decay of the time sub-sequences
described in the text can be clearly appreciated.
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ates endlessly in iteration timet with increasing amplitude
that grows sub exponentially. See the expansion rateEt ≡
ln ξt in Fig. 1a). Insight on this behavior can be gained by ex-
amination of the trajectory on this attractor initiated at the ex-
tremum of the map. This is shown in Fig. 1b) in logarithmic
scales, where the infinite number of parallel straight lines,
mentioned before, can be observed running from the upper
left corner to the lower right corner. With few exceptions, our
calculations for quadratic maps have been performed with the
logistic map version

fµ(x) = 1− µx2,−1 ≤ x ≤ 1, 0 ≤ µ ≤ 2, (1)

for which locations of Feigenbaum points are denotedµ∞.
The trajectory initiated atx0 = 0 when decomposed into
position sub-sequencesxt, t = (2k + 1)2n, n = 0, 1, 2, ...,
each for a fixedk = 0, 1, 2, ..., fall into straight lines we
call diagonals. That is, the position sub-sequences obey
power laws with the same exponent (slope in the figure)
m = − ln α/ ln 2 = −1.3236..., whereα ' 2.50290 is the
absolute value of Feigenbaum’s universal constant [3]. The
diagonals run from the most compact region atx = 1 to the
most open region atx = 0 of the multifractal attractor.

Some elements of the sensitivityξt can be determined
from the diagonals. Nearby trajectories initiated atx = 1 will
separate monotonously if observed at sub-sequence times as
they approachx = 0, and vice versa when departure is re-
versed. The result in closed analytical form is [7,10]

ξτ (x0) = expq[λq(x0)τ ], (2)

whereexpq(x) ≡ [1 + (1− q)x]1/1−q is theq-deformed ex-
ponential function. Whenx0 = x2k+1, timesτ are of the
form τ = (2k + 1)2n, n = 0, 1, 2, ..., the q-deformation
index is q = 1 − ln 2/ ln α and theq-generalized Lya-
punov exponent isλq = ln α/(2k + 1) ln 2 [7]. On the
other hand, whenx0 = x2k, times τ are of the form
τ = (2k)2n, n = 0, 1, 2, ..., the q-deformation index is
q = 1+ln 2/2 ln α and theq-generalized Lyapunov exponent
is λq = −2 ln α/(2k + 1) ln 2 [10]. There are many other
values for theq-generalized Lyapunov exponents as there are
many other pairs of regions that trajectories can connect in
the multifractal attractor. There is a spectrum for their val-
ues [10]. Notice that the sensitivityξτ depends always on the
initial conditionx0.

There is a remarkable property in the dynamics at the
Feigenbaum attractor that leads to an identity between theq-
generalized Lyapunov exponentλq and the rate of growth of
the q-generalized entropySq. This is the counterpart of the
Pesin identity that states the equality of the (positive) ordi-
nary Lyapunov exponentλ1 with the Sinai-Kolmogorov en-
tropy K1 for chaotic attractors [3-5]. This property is that a
distribution, say uniform, of initial conditions within a small
interval adjacent to, sayx = 1, remains invariant for later
iteration times, in this case chosen along the previously de-
scribed diagonals (i.e. remains uniform at times of the form
t = 2n, n = 1, 2, 3...). The resultingq-generalized Pesin

identity reads [9]

λq ≡ t−1 lnq ξ(t) = Kq ≡ t−1Sq(t), (3)

where theq-logarithm lnq(x) ≡ [x1−q − 1]/(1 − q) is the
functional inverse ofexpq(x) and

Sq =
∑

i

pi lnq p−1
i . (4)

As there is an infinite family, a spectrum, ofq-generalized
Lyapunov exponentsλq, there is an infinite family ofq-Pesin
identities [10]. This property that indicates iteration time ex-
tensivity, remains, arguably, the most important exact result
in q-statistics.

We advance here a preview of a first application of theq-
Pesin identities that is taking shape only recently. This con-
sists of an ideal model for diversity, intended for biological
systems or other fields where diversity is of central position.
Briefly, a backbone model for the evolution of a ‘tree of life’
and its limiting ‘canopy’, that could be used as a base to ana-
lyze, upon additions or modifications, more realistic circum-
stances. Recall first the familiar diversity index, Hill number,
or effective number of species [67]

qD(R) =

(
R∑

i=1

pq
i

)1/(1−q)

, (5)

whereqD is the diversity index,R the richness (or total num-
ber of types or species in the data set), and thepi, i = 1, ..., R,
are the proportional abundances used in practice as nominal
weights, but we consider normalization to identify them as
probabilities. The parameterq defines a capacity of the diver-
sity index to discriminate between rare and abundant species
(similarly to its use in multifractals [3-5]). Use of Eqs. (3)
and (4) in Eq. (5) gives

λq =
1
R

lnq(qD), (6)

or ξt =q D(R). The connection above requiresR = t =
2n, n = 0, 1, 2, 3, ... and whenq = 1− ln 2/ ln α the entropy
Sq = lnq(qD) grows linearly with the richnessR.

2.2. Glasses

It has been known for already a long time that the addition
of noise to a quadratic map alters its bifurcation diagram in-
troducing what is called a ‘bifurcation gap’ [3]. This gap
consists of the removal of a strip of periodic and chaotic-
band attractors with periods or number of bands larger than
a threshold number2N(σ) whereσ is the noise amplitude in
the perturbed map

xt+1 = fµ(xt) + ηtσ, (7)

and whereηt is a random, say Gaussian, variable. There
is still a distinct transition to chaos atµ∞(σ) where the
noise-perturbed ordinary Lyapunov exponentλ1(σ) changes
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sign and the maximum valueN(σ) is attained. The noise-
perturbedλ1(σ) obeys scaling properties aroundµ∞(σ),
while N(σ) → ∞ asσ → 0 [3]. Dynamics at the Feigen-
baum attractor is nonergodic if considered in terms of its
noise-perturbed counterpart in the sense that the former is
restricted into a multifractal space while the latter has access
to a space-filling real number interval. The limitσ → 0 can
be referred to as an ergodic to non-ergodic transition.

It has also been some time since we pointed out an un-
usual connection between two seemingly different situations
[13,14], one of them the bifurcation gap and the other glass
formation. The first belongs to nonlinear dynamics and the
second to condensed matter physics. It was shown that they
share main defining properties: the gradual disappearance of

FIGURE 2. Glassy diffusion in the noise-perturbed onset of chaos.
a) Time evolution of the mean square displacement for an ensem-
ble of 1000 trajectories with initial conditions randomly distributed
inside [-1,1]. Curves are labeled by the value of the noise ampli-
tude. b) Absolute values of positionsxt in logarithmic scales for
various trajectories at the onset of chaosµ∞(σ) starting atx0 = 0.
Open circles correspond toσ = 0 where the numbers label time
t = 1, ..., 16. Solid (dashed) lines represent trajectories plotted
only at timest = 2n.

diffusion, the scaling law known as aging, anomalous two-
step relaxation, etc. [13-16]. Noise amplitude in one setting
represents temperature difference∆T to a vitreous state in
the other. The two problems indicate loss of ergodicity as
σ and ∆T vanish. And Eq. (7) can be seen to be a kind
of discrete-time nonlinear Langevin equation. Nonetheless,
in one case there is only functional composition while in the
other there are molecular collisions.

Diffusion was studied in the noise-perturbed map via a
repeated-cell map where the map in each cell adapts the fea-
tures needed from the quadratic map [15,16]. Trajectories can
escape to neighboring cells and diffuse throughout only when
σ > 0. The mean square displacement of such trajectories
diminishes gradually asσ → 0 and arrest takes place when
σ = 0 since then all trajectories become finally confined into
single cells. See Fig. 2a). Aging was noticed when studying
trajectories [13,14] and their correlations [15,16] at the noise-
perturbed onset of chaosµ∞(σ). Trajectories there recapitu-
late the structure of the bifurcation diagram with a noise gap,
they initially resemble closely those of the noise-free case un-
til a crossover timet× = 2N(σ) is reached after which they
display superimposed randomness. See Fig. 2b). Actually,
the master trajectory in Fig. 1b),σ = 0, exhibits perfect
aging as this scaling property is exactly represented by the
parallel diagonal position sub-sequences shown there. These
positions can be exactly expressed as

xt+tw = expq[−λq(xtw)t/tw], (8)

where the waiting timetw is tw = 2k + 1, k = 0, 1, ..., andq
andλq are the same as above [13,14]. Trajectory correlations
whenσ = 0 behave similarly [15,16].

This robust analogy remained somewhat unexplained,
suppression of diffusion and arrest due to cell escape-rate
stoppage and aging scaling as a built-in feature. Recent work
in progress is providing understanding and new perspectives.
Glassy dynamics in molecular systems is visualized by a
‘cage effect’, where each molecule is effectively caged by
its neighbors and can only move out when these neighbors
cooperate with a chance opening. Relaxation to equilibrium
requires concerted motions of increasingly larger groups of
molecules as the temperature is lowered. When we consider
an ensemble of trajectories in the Feigenbaum attractor in-
stead of only one we get a parallel situation. If we place one
initial condition at every point of the attractor,i.e. a uniform
distribution, we observe the required concerted motion, since
at every iteration a trajectory positionxt moves to the next
positionxt+1 that has been just left empty by another trajec-
tory and the entire ensemble of trajectories moves jointly to
the right in Fig. 1b). If the position atx = 0 is refilled at ev-
ery iteration the distribution remains uniform. The addition
of noise limits the size of concerted trajectory motion, and
as we have said as a crossover phenomenon. The size of the
groups of collaborative trajectories is dependent on the noise
amplitudeσ.

Some models for traffic flow have been constructed with
nonlinear dynamical elements [68], while other studies of

Supl. Rev. Mex. F́ıs. 1 (4) 32–53



36 A. ROBLEDO AND L. J. CAMACHO-VIDALES

traffic flow and arrest have found similarities with glassy dy-
namics [69]. The picture of a car-filled single or multiple lane
road suggests itself. The noise-perturbed onset of chaos in
quadratic maps puts together the ingredients of a basic model
for traffic flow and jams. Additionally, the concerted dynam-
ical evolution of an ensemble of trajectories at the noise-free
period-doubling onset of chaos provides a concrete answer to
the quest of the ideal glass.

2.3. Localizations

An equation can sometimes lead to a fruitful analogy. This
was the case of a recursion relation involving matrix eigenval-
ues, that for those involved in the study had a specific mean-
ing, but for others, outsiders would convey only its mathe-
matical type. The recursion relation established the change
in quantum transport properties between consecutive sizes of
a model for arrays of wave scatterers [17]. But also that ex-
pression represented a specific dissipative nonlinear iterated
map. The exploration of its bifurcation diagram, the nature
of the attractors, the values of the Lyapunov exponent, and

FIGURE 3. Top: A double Cayley tree of connectivityK = 2 and
lattice constant a. Each bond is a perfect one-dimensional conduc-
tor. Bottom: a) The map transits (solid, dashed, and small-dashed
lines) from tangency of the lower branch to tangency of the upper
branch aska varies. b) Detail where the lower branch changes from
secant to tangent to off tangency. The dotted lines correspond to the
identity. Inset: periodic and chaotic attractors.

other features, followed by their translation into electronic
transport language, provided insight and a concrete original
advance in the field, even though restricted to the limitations
of a fully-solvable model [17].

Some specifics [17], The transport model is made of a
lattice, a double-Cayley tree as shown in Fig. 3, of identical
scatterers on its sites connected via perfect wires. The size
of the system is measured by the generationn, the number
of times the trees are ramified. Wave transport through this
lattice was formulated via the scattering matrix method. Flux
conservation, time-reversal symmetry, and lattice reflection
symmetry implies that the2× 2 scattering matrixSn has the
form

Sn =
(

rn tn
tn rn

)
, (9)

wherern is the reflection andtn the transmission amplitudes.
The matrixSn can be diagonalized by aπ/4 rotation, to yield
two eigenvaluesΛ1(n) = eiθn andΛ2(n) = eiθ′n , whereθn

andθ′n are the eigenphases that satisfyeθn = rn + tn and
eθ′n = rn − tn, so thattn = 1

2 (eθn − eθ′n). The dimen-
sionless conductance depends on the eigenphases through the
Landauer formula asgn = |tn|2 [17].

The size of scattering matrix for the nodesSnode depends
on the connectivityK of the Cayley tree and contains a sin-
gle parameterε, the transmission probability, a real number
within 0 ≤ ε ≤ 1/2, that for convenience we use instead
τ =

√
1− 2ε. The other (tuning) parameter is the incoming

energyka, momentumk and lattice constanta. The recursion
relation for the matrixSn turns out to be [17]

Sn = −(e−2ikaI − τSn−1)−1(τe−2ikaI − Sn−1), (10)

whereI is the identity2×2 matrix, and from which the recur-
sion relation for the phaseθ can be extracted and reads [17]

f(θn) = 2ka− θn + arctan
(

sin θn + τ sin 2ka

cos θn − τ cos 2ka

)
. (11)

The other eigenphaseθ′ behaves similarly.
The mapf(θ) is shown in the panels a and b of Fig. 3 and

its bifurcation diagram in the inset of panel b of the same fig-
ure. The attractors are of two types, there are two intervals of
regular, period 1 sectors for small and largeka, separated by
a sector of chaotic attractors. The attractors at the boundaries
between the two kinds are transitions to chaos of the tangent
bifurcation type [17]. The chaotic attractors exhibit intermit-
tency. As shown in Fig. 3 the map is made of two branches
that diverge when they meet. Depending on the value ofka
either one branch or the other is closer to tangency with the
identity line so that trajectories experience narrowing due to
one branch followed by re-injection mediated by the other.
Trajectories experience successive contractions and expan-
sions leading to sub-exponential growth of sensitivity with
iteration time (or system size)n characteristic of weak chaos
[70], and the Lyapunov exponent vanishes [18]. Furthermore,
this singular dynamics follows a M̈obius transformation on
the unit circle [18].
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A complete transcription from nonlinear-dynamical to
wave-transport languages can be established, the regular and
chaotic regimes correspond, respectively, to the insulating
gaps and conducting bands of the scattering system, and the
tangent bifurcation transitions to and out of chaos to the mo-
bility edges (of difficult access for many approaches in the
field). There, the first vanishing of the Lyapunov exponent
when entering the conducting band corresponds to the diver-
gence of the localization length. Our previous determination
(analytical and in closed form) of the sensitivity to initial con-
ditions at the tangent bifurcation [6],

ξn = expq(λq(x0)n) ≡ [1− (q − 1)λq(x0)n]±
1

(q−1) , (12)

with q = 3/2, became handy to obtain the conductance at the
mobility edge of this model,

gn ∝
(

1− 1
2
λ3/2n

)−4

, (13)

with λ3/2 = −2
√

(1− 2ε)/2ε [17].
Wave propagation through scattering media when de-

scribed by means of a double-Cayley tree permits full solu-
tions as the Bethe lattice, a form of mean-field, often offers.
Other physical situations where the localization phenomenon
occurs, light, sound or elastic media wave scattering, can
be likewise modeled and described by nonlinear dynamics
of low dimensionality, with the underlying implication of a
drastic reduction of degrees of freedom. This dynamics is
represented by the M̈obius transformation, the fixed points
of which correspond to the localized states, and its ever-
changing positions or phases to the extended states that dis-
play coherence due to vanishing Lyapunov exponent. Similar
reductions of degrees of freedom leading to Möbius transfor-
mations have been observed in the synchronization of arrays
of oscillators [71]. Incidentally, new directions for the model-
ing of collective behavior in complex systems, like swarms of
small organisms, schools of fish or murmurations of starlings,
could be based on coherent communication states resembling
those described here for wave propagation.

3. Follow-ups

A claim about a novel kind of central limit stationary dis-
tribution for correlated variables to be displayed at the
period-doubling onset of chaos attracted our attention and we
examined sums of positions of trajectories. This initial effort
led us to clarify the issue by uncovering a remarkable renor-
malization group picture. Unrelatedly, the consideration of
an existing stochastic approach for the reproduction of ranked
data pointed out a formal equivalence of a key mathematical
expression with that for trajectories at the tangent bifurca-
tion. This fact led to a nonlinear dynamical approach for rank
distributions that shows similarities with universality classes
in critical phenomena. Apropos, another instance involving
the same mathematical expression came to our attention from

an independent description of the dominant fluctuation in a
model critical state. We elaborate on our immersion into this
approach.

3.1. Sums

We consider sums of positions of trajectories generated by
traditional nonlinear maps, like the quadratic (logistic) map.
These are sums of deterministic variables as a difference with
the ordinary case of sums of random variables produced by
stochastic processes. For the latter kind, for independent
identically distributed variables, the distribution of the infi-
nite sum is the Gaussian, or normal, distribution as prescribed
by the central limit theorem. Infinite sums of deterministic
variables generated by fully chaotic maps lead also to the
Gaussian distribution [72], but it was considered to be an
open question whether such sums, when produced by attrac-
tors at or in the vicinity of a transition to chaos, would lead
to a different outcome [73,74].

In our work [21-25] we considered sums of positions
from a single trajectory and also from an ensemble of them,
in the latter case started from a set of uniformly-distributed
initial conditions along the interval of definition of the map.
The chaotic-band attractors of the quadratic map are ergodic
and therefore single and ensemble sums lead to the same limit
distribution albeit the former sum takes more terms than the
latter in resembling the final form [21,22]. At the transition
to chaos, atµ∞ in our chosen map, ergodicity is lost and the
limit distributions are different.

The single trajectory atµ∞ leads to a multifractal-valued
sum, that once re-scaled is similar to the trajectory itself
shown in Fig. 1b). The sum can be reproduced analytically
and its distribution is an infinite set of delta functions as it has
as support the mentioned multifractal sum [21]. It is totally
different to the Gaussian distribution. For space shortness we
show here the case of the sum of the absolute values of such
positions,yµ∞(N) ≡ ∑N

t=1 |xt|. See top block of Fig. 4,
where the similarity of the centered sum

y′µ∞(N) ≡
N∑

t=1

(|xt| − c), (14)

shown in panel C with the single trajectory in Ref. [21]
can be appreciated. See Ref. [21] for the analytical deriva-
tion of y′µ∞(N) and the expression for the centering con-
stantc. See also in Ref. [21] the case of the natural sum
zµ∞(N) ≡ ∑N

t=1 xt.
We show in the panel d of the middle block of Fig. 4 the

structure of the sum of positions of an ensemble of trajecto-
ries atµ∞, X(x0, N ; µ∞) ≡ ∑N

t=0 xt, −1 < x0 < 1. This
structure can be understood [23] by considering the equiva-
lent sum for the first few supercycle attractors, shown in the
panels a, b, and c, for periods 2, 4, and 8, respectively, in the
middle block of Fig. 4. The structure of the fractal function,
which is this sum atµ∞ as a function of the initial condition
x0, is built in stages that recapitulate the additional increas-
ingly finer features added along the period-doubling cascade.
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FIGURE 4. Top block: A) Sum of absolute values of visited points,
xt, t = 0, ..., N , of the Feigenbaum attractor with initial condi-
tion x0 = 0. B) a closer look of the path of the sum, for values
of N within the small circle in A. C) Centered sumy′(N) in log-
arithmic scales. Middle block: SumsX(x0, N ; µ∞) as a function
of x0, N ≈ O(106) constructed by steps from period 2, 4 and 8
supercycles, and finally at the Feigenbaum point. Bottom block:
Histograms obtained from the sums above.

The corresponding distributions are shown in the bottom
block of Fig. 4, where we observe again the development
of a fractal function [23].

Whenµ > µ∞ the evolution of the distribution of sums
of positions, of a single trajectory, or of an ensemble of them,
inevitably takes the stationary Gaussian form as the number
of termsN →∞. This can be rationalized [21] when recall-
ing that dynamics inside a2K-band attractor,K = 1, 2, ...,
can be decomposed into inter band periodic motion of period
2K (as in the corresponding periodic attractor) and intra band

chaotic motion. That is, every positionxt can be decomposed
as arrival at the ‘center’̄xt of a band and a shiftδxt within the
band,xt = x̄t + δxt. Therefore the sumzµ(N) ≡ ∑N

t=1 xt

can be split into two termszµ = z̄µ(N) + δzµ(N) where
z̄µ(N) =

∑N
t=0 x̄t andδzµ(N) =

∑N
t=0 δxt. The intra band

shifts behave as independent random variables and the lim-
iting distribution of their sum is Gaussian. The inter band
motion is completely correlated but this contribution is in-
creasingly eliminated when the number of terms in the sum
increases asN → ∞. The values of the total sum, initially
within the chaotic bands, fall into increasingly wider bands
that merge into a single one according to the mean-square
displacement〈[δzµ(N)]2〉1/2 ≈ N1/2 [21].

Remarkably, the overall picture can be cast into a renor-
malization group scheme where the operation is the sum of
positions and this leads to only two fixed points. The non-
trivial corresponds to the multifractal distribution atµ = µ∞
while the trivial one is that prescribed by the ordinary cen-
tral limit theorem [21,22]. Whenµ > µ∞ the flow towards
the trivial fixed point displays a crossover behavior [21,22],
the fine details of which and other relevant issues were re-
solved numerically [24] by considering the family of attrac-
tors at chaotic-band-splitting or Misiurewics points. As it
turned out [25] the distribution at the crossover is related to
incomplete sampling of data and therefore resembles the so-
called T-Student distribution, that can in turn be rewritten into
the form of aq-Gaussian distribution [73,74]. At the present
date, this research line focuses on a specific model of corre-
lated walks that displays anomalous diffusion and arrest.

3.2. Rankings

A clear-cut stochastic approach [75] to obtain theoretical
size-rank functionsN(k) considers samples for the magni-
tudesN of unspecified kinds of data to be represented by
sets of random values generated by a parent or source distri-
bution P (N). WhenP (N) is chosen to be the power law
P (N) ≈ N−α, α > 1, one obtains [75,27]

N(k) = Nmax expα[−Nα−1
maxN−1k], (15)

whereNmax is the largest data value (with initial rankk = 0)
andN is the total number of data in the sample. More-
over, whenNmax → ∞, a pure power-law decay follows,
N(k) ∝ k1/1−α, α > 1. And whenα = 2 it takes the
‘classical’ Zipf formN(k) ∝ k−1.

Now, a very different situation is the, longtime estab-
lished nonlinear-dynamical, problem of determination of
a functional-composition renormalization-group fixed-point
map for a transition to chaos such as, for example, the tangent
bifurcation [76,3]. This is to find the functionf∗(x) (and the
value ofζ) that is the solution off∗(x) = ζf∗(x/ζ), such
that it also complies with the generic form for a map at tan-
gency whenx is small,f∗(x) = x+u|x|z + .... The solution
is [76,3]

f∗(x) = x expz(uxz−1), ζ = 21/(1−z), (16)
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FIGURE 5. Data fitting. Earthquakes (top) and forest fires (below)
[31]. Size-rankN(k) and frequency-rankF (k′) distributions are
inverse functions [31]. As indicated, the values ofα needed for
fitting are close toα = 2 that for the classical Zipf law.

a map with the scaling property, that reflects on the fact that
all its trajectories obey the form [27]

xt = x0 expz(|x0|z−1ut). (17)

For convenience we consider now only trajectories started at
the left of the point of tangencyx = 0, for which all values
of xt < 0.

Equations (15) and (17) are identical, one transforms into
the other through the equivalencesk = t, N(k) = −xt,
Nmax = −x0, α = z andN = u−1. Remarkably, size-
rank distributionsN(k) for all power-law exponentsα can
be reproduced by trajectories of the fixed-point mapf∗(x)
[27]. And as it turns out also forα → ∞. More gener-
ally, N(k) for all source distributionsP (N) can be obtained
from trajectories of the mapx′ = x + u/P (−x) under the
same scheme [32]. The stochastic and the deterministic ap-
proaches are equivalent. This duality permits for an explicit
and quantitative distinction between size-rankN(k) -sizes of
cities- and frequency-rankF (k′) -word frequencies- distri-
butions, as the former appears as a trajectory while the latter
is a sum of positions [31]. The frequency-rank distribution
F (k′) turns out to be the functional inverse ofN(k) [31].
See Fig. 5.

There are other surprising sets of properties related to this
topic that can be obtained from the map at tangency. The re-
ciprocals ofN(k) provide uniformly-distributed probabilities
p(k) for eachk that lead to extensiveq-deformed entropies
where system size is measured by sample sizekmax = N
[29,30]. We haveS2−q(kmax) = ln2−q[p(kmax)/p(k=0)] ∼
N , q = z = α. The numbersN(k), we recall, were obtained
from trajectories, withxt < −1, t = 0, 1, ..., tmax, from the
x < 0 branch of the map. Therefore the probabilitiesp(k) can
be obtained as trajectories, withxt < 1, t = 0, 1, ..., tmax,
from thex > 0 branch of the map [29,30]. Also, trajectories
from that same branch, starting and running now withxt ≥ 1,

FIGURE 6.Data fitting. Examples of four different universality
classes [32]: a) USA city populations. b) Infant mortality per coun-
try. c) Fireams owned per 100 capita and per country. d) Los An-
geles household sizes.

t = 0, 1, ..., generates the most renowned sets of numbers
(or increasingly better approximations of them). Fibonacci
numbers whenz = 1, Natural numbers whenz = 2, Prime
numbers whenz = 2 with logarithmic corrections, Factorial
numbers whenz → ∞. In turn, the negative reciprocal of
these numbers appear as trajectories from thex < 0 branch
of the map withxt > −1, t = 0, ...,∞. The series formed by
these reciprocals converge forz < 2 but diverge forz ≥ 2,
in fact, the borderline for divergence manifests asz = 2 with
logarithmic corrections, related to the known bounds for the
Prime numbers and the very slow divergence of their recipro-
cals. This is reminiscent of borderline dimensionality and its
logarithmic corrections in critical phenomena. (At the mo-
ment of writing this review this material is in preparation for
publication).

We have collected real data cases and reproduced their
size-rank distributionsN(k) quantitatively from our ap-
proach. Infant mortality withα = z = 1; billionaires,
solar flares, California forest-fire areas, and USA city pop-
ulations with α = z = 2; earthquake magnitudes with
α = z = 2 plus logarithmic corrections; and gun owner-
ship withα = z → ∞ [29,31,32]. See Figs. 5 and 6. So,
this is evidence that ranked data appear to be represented by
the universality classes to be distinguished by the above val-
ues forα = z. Interestingly, the nonlinear maps, all of the
fixed-point kindf∗(x) already described, have all a tangency
feature, whenz = 1 the map crosses the identity line, for
z = 2 the map is tangent, and it is regular with nonzero sec-
ond derivative or curvatureu > 0, in the limit α = z → ∞
the tangency point shifts to infinity [32]. Also, the finite size
effect of real data is resolved by taking the matching map off
tangency [32].

Moreover, the expression forN(k) is a q-deformed ex-
ponential, the reciprocal of which is also aq-deformed ex-
ponential but with indexQ = 2 − q or α′ = 2 − α or

Supl. Rev. Mex. F́ıs. 1 (4) 32–53



40 A. ROBLEDO AND L. J. CAMACHO-VIDALES

Z = 2 − z. Whenq = α = z = 1 the ordinary exponen-
tial (N(k)) and its functional inverse the ordinary logarithm
(F (k′)) are far from each other separated by all power-law
decay functions. Asq = α = z grows away from unity the
q-deformed exponential and logarithmic functions develop a
closer resemblance as they both have power-law decay. When
q = α = z = 2 their power-law decay is identical (explain-
ing the usage for bothN(k) andF (k′) as Zipf law). There,
Q = α′ = Z vanishes. The numberQ = α′ = Z has been
shown to represent a ‘contraction’ dimension, an index that
quantifies the reduction of phase space exerted by an attrac-
tor [29,30]. For a chaotic attractorQ = α′ = Z = 1, for a
multifractal attractorQ = α′ = Z < 1, and for a periodic
attractor (including a tangency point)Q = α′ = Z = 0.
Thus, for allq = α = z > 2 the contraction dimension must
remain zero. Within this scheme, the Zipf law appears at a
borderline dimension similar to those in critical phenomena,
and curiously represented by the set of Prime numbers.

3.3. Fluctuations

An interesting set of studies [77,78] for the spatial structure
and temporal evolution of fluctuations at a typical critical
state made use of the Landau-Ginzburg-Wilson (LGW) ef-
fective Hamiltonian together with an inferred nonlinear iter-
ated map near tangency. Detailed results were obtained for
the dominant fluctuation, a large long-lived object obtained
via the saddle-point approximation, as is usual in statistical
mechanics. For the one-dimensional case the resultant order
parameter profileφ(x) expression can be rewritten as [33]

φ(x) = φ0 expq(φ
q−1
0

√
2bx), (18)

whereφ0 is the amplitude at the middle of the fluctuation of
length2R, q = (1 + δ)/2, with δ being the critical isotherm
exponent andb a leading Hamiltonian parameter. It can be
noticed immediately that Eq. (18) is identical to Eq. (17)
with the identificationsx = t, φ(x) = xt, φ0 = x0, q = z
and

√
2b = u. Furthermore, the time evolution of such fluctu-

ations were put forward to be of the intermittent type, gradual
growth (in amplitude or size) until collapse followed by the
appearance of a new fluctuation, and so on [78]. This sequel
would be delivered by a nonlinear map just off tangency fol-
lowed by a cusp feature responsible for re-injection to the left
of the bottleneck.

So, we were presented with another plausible instance
where the renormalization-group fixed-point mapf∗(x) at
the tangent bifurcation would play a main role. And, more
generally, the possibility of unanticipated connections be-
tween the field of critical phenomena in statistical mechan-
ics and anomalous nonlinear dynamics at the transitions to
chaos, a setting where generalizedq-deformed entropy ex-
pressions appear naturally. A powerful method for the study
of inhomogeneous systems is the (Free energy) density func-
tional theory and within this a frequently used functional is
that related to the so-called square-gradient approximation, a

version of which is the LGW Hamiltonian

Ψc[φ] = a

∫
drd

[
1
2
(∇φ)2 + b|φ|δ+1

]
. (19)

However, the object of study, the dominant fluctuation, dif-
fers from the mainstream output in that it is not an equilib-
rium structure.

The vanishing of the first variation of the above free en-
ergy functional, or Euler-Lagrange equation, turns out to be
analogous to the second law for a classical-mechanical parti-
cle [33,35], with positionsφ, at timesx and under a potential
of forceV = −b|φ|δ+1 . This analogy makes it possible to
determine the possible types of order parameter profilesφ(x)
for the dominant critical fluctuation, for example, via the cor-
responding phase portrait

dφ

dx
= ±

√
2(U + b|φ|δ+1), (20)

whereU is the ‘total energy’, the constant arising in the first
integration of the Euler-Lagrange equation. There are two
types of particle trajectories or profiles, antisymmetric and
symmetric with respect to their midpoint such that the force
exerted at their boundaries differs in sign, and this determines
whether the fluctuation grows or shrinks [35]. See Fig. 7.
The expression for the particle trajectoryφ(x) for vanishing
total energyU = 0 corresponds to that in Eq. (18) [33,35].
The fluctuation size or particle’s time of flight diverges for
U = 0.

Interestingly and also helpfully, the calculation of the sec-
ond variation of the free energy functional leads to another
mechanical analogy, this time with a quantum particle. The
second variation expression has the form of a Schrödinger

FIGURE 7. Phase portrait from Eq. (20) for different values of
the total energyU . The insets show the ‘trajectories’ or order-
parameter profilesφ that correspond to the horizontal and vertical
arrows.
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equation such that the associated eigenfunctions correspond
to perturbations of the order parameter profile while the
eigenvalues indicate the stability of the profile to such per-
turbations [35]. We recall that the profileφ(x) describes
an unstable statistical-mechanical object and therefore some
eigenvalue must be negative or at least vanish [35].

Similarly to the previous Section, extensiveq-deformed
entropies can be obtained, this time from the order param-
eter value atx = R, φ(R) = φ0 expq(φ

q−1
0

√
2bR), as

this provides a measure of the dependence of configuration
numbers on fluctuation sizeR [33-35]. We haveSq(R) =
lnq(φ(R)/φ0) ∼ R. For a classical critical pointδ = 3 so
thatq takes the ubiquitous valueq = (1+ δ)/2 = 2, whereas
for an ordinary state off criticalityδ = 2 one recovers the
ordinary caseq = 1 [33-35].

Time evolution via density functional theory is provided,
phenomenologically, via a class of first order but nonlinear
differential equations of which the Landau equation

dφ

dt
= −A

δΨc[φ]
δx

' −B
dφ

dx
, φ ' 0, (21)

here withA andB constants, is prototypical. Time evolution
ends up whenδΨc[φ]/δx = 0, and the Euler-Lagrange equa-
tion delivers a stationary profile. Use of the phase-portrait
expression in Eq. (20) yields

dφ

dt
= ∓B

√
2(U + b|φ|δ+1), φ ' 0. (22)

And the above equation becomes, after introduction of dis-
crete time and the choiceU = 0,

φt+1 = φt + B
√

2b|φt|(δ+1)/2, φ ' 0, (23)

a map that has the common local tangency formf(x) =
x + u|x|z, x ' 0, we have considered above for the discus-
sion about the renormalization group fixed-point mapf∗(x)
in Eq. (16). This timex = φ, u = B

√
2b, andz = (δ+1)/2.

The mapf∗(x) can be perturbed and taken off tangency re-
vealing two branches joined by a cusp [35]. The resulting
trajectories exhibit intermittency, that is, sequels of laminar
episodes (passage through a bottleneck) separated by bursts
(reinjections mediated by the second branch) [35]. Pertur-
bation in the opposite direction leads to fluctuation collapse
[35]. See Figs. 8a) and 8b).

In relation to the previous Subsection, Rankings, it is
worthwhile to mention that some of the properties of domi-
nant fluctuations, basically obtained through the saddle-point
approximation in a coarse-grained partition function, can be
also obtained considering a phenomenological scheme based
on sub-occupation ofφ-phase space [34,28].

Current interest in this problem is directed towards the
determination of early warning signals for the final stage of
the long-lived but finite lifetime of the dominant critical fluc-
tuation.

FIGURE 8. Intermittency a) and collapse b) of fluctuations as de-
scribed by the perturbed fixed point map.

4. Rehearsals

An invitation to join the exploration of a novel algorithm to
transform time series into networks consisted of considering
trajectories representative of the three routes to chaos in low-
dimensional nonlinear systems. This effort led to connec-
tions between renormalization group schemes and entropy
optimization, and also a re-encounter with generalized Pesin
identities. Unconnectedly, a program to revisit the well-
known properties of families of attractors of the quadratic
map as seen through the densities of ensembles of trajecto-
ries ran into a surprising statistical-mechanical picture. An-
other case study consisted of the inspection of the conse-
quences of introducing discrete time to the replicator equa-
tion for a collection of well-known (social) games. We were
headed straightforwardly into a nonlinear-dynamical exten-
sion of evolutionary game theory.

4.1. Networks

The Horizontal Visibility (HV) algorithm [79] transforms
real-valued time seriesxi, i = 0, 1, 2, ..., into connected
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FIGURE 9.Illustration of the HV algorithm that converts time series
into a graph that shows the HV motifs for period doubling.

graphs that contain always as ‘backbone’ a simple chain
graph. See Fig. 9. The algorithm assigns a nodei to each
datumxi and links pairs of nodes(i, j) only when(xi, xj)
fulfills the criterion,xi, xj > xl, for all l betweeni andj,
i < l < j [79]. By construction large families of time series
share the same HV graph, as there are infinitely many near-
valued time series that match the HV criterion in the same
sequential manner. The families of trajectories produced by
attractors of prototypical nonlinear iterated maps represent a
category of time series onto which the HV algorithm can be
straightforwardly applied. Since knowledge about their prop-

erties,e.g. along the established routes to chaos, has substan-
tially accumulated and developed over the years, they offer an
ideal case to evaluate the algorithm, either by its capacity to
capture previous knowledge in a different format or because
it facilitates the generation of new knowledge.

We applied the HV algorithm to representative trajec-
tories inside the attractors along the period-doubling and
chaotic band-splitting cascade of the logistic map [36,37].
And also to trajectories along the quasi-periodic routes to
chaos for the metallic irrational numbers (such as the golden
and silver ratios) of the circle map [39]. Additionally, we
determined the HV graphs for the tangent bifurcation at the
edge of the period-three window of the logistic map and its
chaotic neighborhood where intermittency of Type I occurs
[40]. These implementations allowed us to observe the de-
velopment of interesting invariant HV network structures at
these well-known transitions to chaos. See Fig. 10. Also sig-
nificantly, we obtained analytical expressions for their degree
k distributionsP (k). These distributions show truncated ex-
ponential decay withk along the period-doubling family of
attractors [36,37]. For period2n

P (n, k) =





(
1
2

)k/2

k = 2, 4, 6, ..., 2n,

(
1
2

)n

k = 2(n + 1),

0 k > 2(n + 1).

(24)

FIGURE 10. Top: Sequence of HV graphs for the period-doubling and chaotic-band splitting cascades. Bottom left: Periodic attractor
HV motifs a) associated with the rational fractionsp/q along six levels of the Farey tree. b) Five steps into the Golden ratio route,b = 1
(thick solid line); c) Three steps into the Silver ratio route,b = 2 (thick dashed line). Bottom right: Illustration of an HV graph for Type I
intermittency extracted from the period-three tangent bifurcation in the logistic map.
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The degree distributionP (n, k) for 2n-band chaotic at-
tractors is similar to that in Eq. (24) except that there are
nodes with degreek ≥ 2(n + 1) arising only from the top
band, as the algorithm filters out chaotic motion within all
bands except for that at the top. This contribution decreases
asn → ∞, leading in the limit to a full exponential distri-
bution. A similar result was obtained for the quasi-periodic
metallic number cases [39],

P (n →∞, k) =





φ−1
b k = 2,

1− 2φ−1
b k = 3,

(1− φ−1
b )φ(3−k)/b

b k = bn + 3,

0 otherwise,

(25)

where the metallic numbersφb are those irrational
numbers with pure continued fraction[b, b, b...], b =
1(gold), 2(silver), ..., and for which the attractor periods ap-
proximate the numbersφn

b asn increases. As a difference, the
degree distributionP (k) at the tangent bifurcation decays as
a power law [40].

The structure of the HV networks obtained from attrac-
tor trajectories lends itself in all cases to the consideration of
a simple (contiguous-node-merging) renormalization-group
transformation [36,37,39,40]. For the logistic map there
are two trivial fixed-point HV graphs, those from period
one (single chain) and from a single chaotic band (single
chain dressed with random links), and one nontrivial fixed-
point (scale-invariant) graph, that for the transition to chaos
[36,37]. Parallel results were obtained for the same node-
merging operation on the HV graphs when applied along the
quasi-periodic and intermittency routes to chaos [39,40]. The
ingredients for a test of a previously considered ide a [80]
were in place. This is that that there is a hidden entropy op-
timization procedure underlying the renormalization group
technique, developed to obtain quantitative results for sys-
tems with scale-invariant properties. Specifically, that the
all-important trivial and nontrivial fixed points are extrema
of a suitably defined entropy. From the degree distributions
P (k) there is access to entropy through the Shannon expres-
sion. The results were positive for all cases: period doubling
and chaotic-band splitting cascades and their common accu-
mulation point [36,37], quasi-periodic routes to chaos [39],
and the tangent bifurcation together with its chaotic neigh-
borhood [40].

The scale-invariant HV graphs obtained from the trajec-
tories at the transitions to chaos themselves, the nontrivial
fixed-points in the previous comment, are no longer made of
repetitions of motifs like those for the periodic attractors (see
Fig. 10), as the size of the motif has grown to infinity. The
examination of their network structure, their degree distribu-
tion and their entropy expressions produced another signifi-
cant result: the occurrence of an HV network version of the
q-generalized Pesin identity at the period-doubling [38] and
the quasi-periodic [41] transitions to chaos, described earlier
in Subsection IIA, Sensitivities. In both cases, the ‘distilla-

tory’ quality of the HV algorithm, many time series into one
graph, simplifies the multifractal set at the transition to chaos
attractor into a fractal set. This advance required the network
generalizations of sensitivity to initial conditions and of Lya-
punov exponent. Currently, activity in this topic is centered
on the global statistical-mechanical structure of families of
HV networks along all the quasi-periodic routes to chaos that
comprise the set of all irrational numbers in the unit interval.

4.2. Measures

Recently, we undertook the seemingly unnecessary task of
revisiting the known properties of the logistic map in Eq. (1),
but not by reproducing trajectories and their attractors by run-
ning through the values of the control parameterµ across its
full interval [0, 2]. Instead, we were interested in observing
these properties via the density distributionsρt(x;µ) of en-
sembles of trajectories as they evolve in timet and see how
they settle into their invariant forms fort → ∞. The differ-
ence between these two viewpoints is similar to that famil-
iar in the representations of particle diffusion, one of them
describes the evolution of single particles via the Langevin
equation while the other follows the probability density of all
the particles via the Fokker-Planck equation [81]. The statis-
tical mechanical understanding can be increased [82] by this
dual endeavor, where the place of the Fokker-Plank equation
is taken here by the Frobenius-Perron equation [83].

More specifically, we considered [43] two families of at-
tractors, the supercycles along the period-doubling cascade
and the Misiurewics points along the chaotic-band-splitting
cascade, together with their common accumulation point at
the transition to and out of chaos. When the Frobenius-Perron
equation is particularized to the logistic map reads [43]

ρt+1(x;µ) =
1

2
√

µ(1− x)
[ρt(y) + ρt(−y)] , (26)

wherey =
√

(1− x)/µ. While the reverse time evolution
follows [43]

ρt−1(x; µ) =

{
µxρt(1− µx2), x ∈ [0, 1],

− µxρt(1− µx2), x ∈ [−1, 0].
(27)

We found that the approach of the densities to the final
invariant limit, the invariant measure, is fast and that the de-
velopment and shape of the distribution is very similar for
periodic and chaotic-band attractors. See Figs. 11a) and
11b) [43] where we have considered uniformly-distributed
initial conditions throughout the interval[−1, 1]. Interest-
ingly, the approach to the invariant distributions follows a
precise concerted sequence for both periodic or chaotic at-
tractors. The developments of the distributions for period or
number of bands2n imitate closely those for all smaller pe-
riods or numbers of bands, appearing around iteration times
t ∼ 2k, k = 1, 2, ..., n − 1. We refer to this property as ‘re-
capitulation’.
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FIGURE 11. a) Evolution of an initially uniform density of posi-
tions in the interval [-1,1] for the supercycle of period 4. b) Same
as a) but for the Misiurewics point when 2 chaotic bands are about
to split into 4 bands.

It is instructive to mention that invariance of the distri-
butions in the limitt → ∞ is only observed at times of the
form t = M2n,M a large positive integer, when the ensem-
ble of trajectories is (technically) inside the attractors. That
is, the limit densities follow the known dynamics for the or-
der of visits of positions or bands. Two different time scales
develop,t andn, and these separate increasingly asn →∞.
For the particular case when the initial distribution of posi-
tions is already the invariant distribution time separation of
scales is not observed though, dynamically, the order of vis-
its of positions is always taking place.

As expected another renormalization group scheme be-
came promptly visualized [43] since the families of invariant
densities are linked by a self-affine property, just as their at-
tractors do in the bifurcation diagram(µ, x). On this occa-
sion, the renormalization group operation on the densities is
simply period halving or band merging followed by rescal-
ing. The trivial fixed points are a single delta function for
period one and the bathtub-shaped density for single-band
chaos,ρ∞(x; 2) = (π

√
1− x2)−1. The nontrivial fixed

point is a multi-delta function distribution with multifractal
support [43].

With the families of densities in hand, the opportunity
of evaluating their entropies from Shannon’s expression was
an uncomplicated task. First of all, the fixed points could
again be identified from entropy optimization. For period one
the entropy vanishes reaching its minimum possible value,
while the entropy for the single chaotic band attains the max-
imum value. The entropy for the nontrivial fixed point at the
transition to chaos is maximum for all supercycles and min-
imum for all Misiurewics points. Secondly, the entropy of
the invariant densities grows monotonically from period one
through all supercycles, and all Misiurewcs points to the final
single-band attractor [43].

But most remarkably, when the collection of entropies
for the two families of attractors is viewed along the val-
ues of control parameterµ the familiar pattern appears [43]
of a statistical-mechanical two-phase system separated by a
continuous phase transition, an equation of state containing a
critical point. Similar, for example, to that typical for an or-
der parameter as a function of temperature for zero external
field. Where the role of temperature is taken by the control
parameter.

A few decades ago, it has been a common general com-
mentary within the Complex Systems community that obser-
vations of complex systems in nature appear to indicate, in
the language of nonlinear dynamics, that their conduct is as
if they evolve at the ‘edge of chaos’. Likewise, the same com-
munity nowadays shares the general commentary that the ob-
servations of complex systems in nature seem to imply, in the
language of statistical mechanics, that they thrive in a state
of ‘criticality’. Amusingly, as we describe here, these two
paradigms appear to be equivalent at the transition to chaos
displayed by the archetypal nonlinear dynamical model.

4.3. Games

Game theory is a widespread theoretical tool in the model-
ing of complex systems, that under consideration of many
degrees of freedom, or agents, provides time processes, alto-
gether referred to as evolutionary dynamics [84]. The agents
interact and reproduce according to the result of their inter-
action, which in turn depends on the composition of the pop-
ulation. The prediction of the final population compositions,
or Nash equilibria, is of interest. Under the ‘well-mixed’
version, where agent interactions occur randomly, similar to
mean-field approximation in statistical mechanics, the task
centers in a set of first-order nonlinear differential equations
called the replicator equations [84]. In vector notation, these
equations read

ẋi = xi

[
(Ax)i − xT Ax

]
, (28)

wherexi is the frequency of typei = 1, ...n, x is is the fre-
quency vector describing the population as a whole, the in-
teraction is given by thenxn payoff matrixA. (Ax)i is the
expected payoff for an individual of typei andxT Ax is the
average payoff of the population.
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We focused attention on the simplest option, the well
known social-dilemma (two-strategy, cooperation or defec-
tion,) games represented by symmetric 2x2 payoff matrices
that lead to a single differential equationdx/dt = x(1 −
x)[S + (1 − T − S)x], wherex stands for the proportion
of cooperative strategists in the population (and1 − x that
for defection strategists). The values of the payoff matrix pa-
rametersS andT define four basic social dilemmas: When
T > 1 andS > 0 we have the Snowdrift game (also known as
Chicken or Hawk-Dove); the choiceT < 1 andS < 0 corre-
sponds to the Stag Hunt game; the rangeT > 1 andS < 0 is
for the Prisoner?s Dilemma game where defection is the best
option no matter what the opponent chooses; and finally the
optionT < 1 andS > 0 corresponds to the Harmony game,
with cooperation being now the best strategy. See Ref. [44].

The appearance of chaotic dynamics in these games is
ruled out by the Poincare-Bendixon theorem that establishes
that chaos can only arise in a continuous dynamical system
(specified by differential equations) if it has three or more di-
mensions. Therefore we chose to introduce discrete time into
the replicator equation and convert it into a nonlinear iterated
map with two control parametersS andT ,

xt+1 = xt + xt(1− xt)[S + (1− T − S)xt], (29)

and embark on the program of exploring the mentioned social
games through the bifurcation diagram of the map in Eq. (29).

The results were immediate, the landscape of the three-
dimensional(S, T, x) bifurcation diagram uncovers a rich ar-
rangement of periodic and chaotic attractors connected by
recognizable but somewhat distorted period-doubling and
chaotic band splitting cascades, windows of periodicity, etc.
[44]. See Fig. 12a) where the values of the Lyapunov expo-
nent on the(S, T ) plane are shown through color variation.
A cut along the lineA = S = T is shown in Fig. 12b) where
one can see two disconnected sets of attractors forA < 0
and modified interiors in the, more visible, window of period
three.

Surprisingly for us, the same replicator map in Eq. (29)
was obtained after a major reduction [46] is made on a game-
theoretic adaptation [85] of the Tangled Nature (TaNa) model
[86] for evolutionary dynamics of ecological systems. The
game-theoretic version of the TaNa model consists of a large
payoff matrix so that the replicator equation involves a large
frequency vector [85]. This model exhibits macroscopic non-
stationary intermittent evolution similar to that in the TaNa
model, and, interestingly, its discrete-time version that oper-
ates in the limit of many strategies constitutes a coupled map
lattice (CML). Subsequently, a drastic simplification of these
CML replicator-mutation equations was considered to reduce
the model all the way down to a one-dimensional nonlinear
map [46]. With this approximation, the possible connection
was examined between the macroscopic intermittent behav-
iors of the above-mentioned high-dimensional models with
the known low-dimensional sources of intermittency, such as

FIGURE 12. a) Lyapunov exponent in control parameter plane
(S,T ) (blue indicates negative and yellow/orange positive values.
b) Bifurcation diagram and Lyapunov exponent along the parame-
ter lineA ≡ S = T .

the tangent bifurcation. In short, the many-strategy game-
theoretic problem was reduced to a classic version of two
strategies, where one of them represents a selected agent or
species and the other groups all the others. One advantage
in using this approximation is that a one-dimensional nonlin-
ear dynamical model had been recently constructed [45] such
that its time evolution consists of successive tangent bifurca-
tions that generate patterns resembling those of the full TaNa
model in macroscopic scales. See 13b) and d).

Currently, we are modifying, phenomenologically, the
replicator map in Eq. (29) such that different desired features
in its original bifurcation diagram occur within the physical
interval 0 ≤ x ≤ 1, and can, therefore, be incorporated in
specific model constructions. One example is a game that
replicates Yule’s principle (‘rich get richer’) [87], that in net-
work language terms corresponds to ‘preferential attachment’
[88].

5. Belated insights

We computed properties of ensembles of trajectories evolv-
ing towards (first periodic and then chaotic) attractors of the
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FIGURE 13.Top left panel: Five-times-composed replicator map at
the tangent bifurcation of its period five window and a close view
below [46]. Top right panel: Trajectory for the conditions in the left
panel that imitates the behavioral patterns of a high-dimensional
model for ecological evolution.

quadratic map. The expression descriptive of the popula-
tion of positions already captured by the attractor resem-
bled that of a partition function. Eventually, this statistical-
mechanical likeness became a model for self-organization.
Separately, we made use of the trajectory inside the attrac-
tor at the period-doubling onset of chaos, which appears as
a family of straight lines in logarithmic scales, over sev-
eral years for distinct purposes, until we realized that it
could be obtained analytically from the trajectories of the
renormalization-group fixed-point map of another transition
to chaos, the tangent bifurcation. Likewise for the quasiperi-
odic routes to chaos. Therefore all these fixed-point maps
share analytic closed forms as well as statistical-mechanical
features. Finally, the power law spacing and widths of the
windows (that show miniaturized bifurcation diagrams) in-
tertwined along the chaotic-band attractors of the main bifur-
cation diagram of the quadratic map await their use in the
construction of nested models for likewise complex systems.

5.1. Partitions

A decade and a half ago we embarked on a previously (to our
knowledge) unreported task. This task consisted of study-
ing ensembles of trajectories evolving towards representa-
tive families of attractors of the logistic map. We computed
in detail a basic collection of properties that describe those
journeys. Firstly, the family of attractors chosen was that
of the supercycles together with their accumulation point,
the Feigenbaum attractor [47-50]. Lately, we considered the
family of Misiurewics points, the attractors at which chaotic
bands split [24]. In all cases, we chose ensembles of initial
conditions uniformly-distributed across the interval of defini-
tion of the map. The properties we monitored were: i) The
numbers of iterations necessary for the trajectory initiated at
x0 to reach the attractor (in practice with the necessary use
of a small cutoff). We called these times flight-timestf (x0)

FIGURE 14. a) Flight timestf (number of iterations) for trajecto-
ries to reach the period 4 supercycle attractor. b) Sequential gap
formation of an ensemble of trajectories en route to the period-
doubling accumulation point attractor, with superimposed sharp
transitions approximation (dark line). See text. c) RateWt of ap-
proach to the supercycle attractors of periods2N , N = 1, ..., 5, in
logarithmic scales. See text. d) Same rateWt for the approach to
the Misiurewics points.

[48,49], see Fig. 14a). ii) The sequential formation of tra-
jectory position gaps in the(x, t) plane [48,50]. See Fig.
14b). And iii) the fractionWt of phase space[−1, 1] still oc-
cupied by the ensemble trajectories at timet [48,50,29], see
Figs. 14c) and 14d).

The behavior of the fractionWt caught our attention. In
logarithmic scales (as shown on 14c) and 14d)Wt exhibits
the telltale occurrence of discrete scale invariance, power-law
decay dressed by logarithmic oscillations, where the latter
display the ‘recapitulation’ property mentioned before,i.e.
evolution towards2n-periodic or2n-band chaotic attractors
repeats successively the evolution towards those attractors
with 2k, k = 0, 1, 2, ..., n − 1. Sequential band formation
and flight-times also show recapitulation. This property im-
plies [48,50] that the fractionW2n is proportional to the sum
of so-called supercycle diametersdn,m [3],

W2n ∝ zn ≡
2(n−1)∑
m=0

dn,m, (30)

and likewise for the sum of band widths at the Misiurewics
points [24]. We labeled the sum abovezn, as it is some-
times done for partition functions in statistical mechanics,
even though it is only a sum of interval lengths. And we
began a search for a justification of this impulse.

Only recently [53,54], the first stage in the statistical-
mechanical justification of Eq. (30) as abona fidepartition
function was put together. To begin with, the sequential gap
formation in Fig. 14b) was deliberately sharpened so that
each family of gaps appears suddenly at fixed given times.
This approximation makes this process identical to the con-
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struction by stages of a two-scale Cantor set, a multifractal
with a partition function

zn =
n∑

l=0

(
n

l

)
ln−l
1 ll2, (31)

where l1 ' α−1 and l1 ' α−2, and withα the absolute
value of Feigenbaum constant, so that the lengthsLn,l ≡
ln−l
1 ll2, l = 0, 1, 2, ..., n − 1, scale as the diameters and

bandwidths do asymptotically in the bifurcation diagram of
quadratic maps [53,54]. The next important step was the real-
ization that the same partition function arises in the construc-
tion by stages of another kind of multifractal, the two-weight
multifractal that consists of progressively subdividing the in-
terval [0, 1], halving the size of compartments successively
with weightsWn,l ≡ wn−l

1 wl
2, l = 0, 1, 2, ..., n − 1, where

w1 ' α−1 andw2 ' α−2. That is the same Eq. (31) but with
l1 andl2 replaced byw1 andw2 [54]. This partition function
is made of compartment or subsystem configurations.

If the initial single compartment contains a thermal sys-
tem, irrespective of its nature, it finds itself progressively dec-
imated through subdivisions into ever smaller compartments,
so that its total conventional entropy gradually diminishes un-
til it finally vanishes. This is the unavoidable effect that self-
organization (in our case partitioning) has on the thermal sys-
tem. But, concurrently, a new statistical-mechanical system
develops with its own increasing entropy term asn grows,
that related to the partition functionzn above. We found that
the dynamics towards the multifractal attractor at the period-
doubling onset of chaos is a close analogue to a progressively
constrained thermal system [54].

The balance between numbers of configurations and
Boltzmann-Gibbs statistical weights of the initial thermal
system is strongly altered and ultimately eliminated by the
sequential subdivision procedure that mirrors the actions of
the attractor. However, the emerging set of subsystem con-
figurations implies a different and novel entropy growth pro-
cess that eventually upsets the original loss and has the ca-
pability of marginally [54] locking the system into a self-
organized state with characteristics of criticality, as in the so
called self-organized criticality [89]. In the limitn → ∞
self-organization displays the full scale-invariant properties
of the transition in or out of chaos, similar to space and time
scale invariance of critical states. There, the number of sub-
system configurations and their generalized [54] entropy is
maximal. As indicated in Ref. [54], attaining this state pro-
vides an explanation, within perhaps the simplest model sys-
tem, for the hypothesis of self-organized criticality [89].

Currently, we are characterizing the sequence of sys-
tem subdivisions, originally only mirroring the recapitulation
property of ensembles of trajectories en route to the attrac-
tors, as a sequence of genuine differentiations underlying the
bifurcation cascades, of symmetry-breaking phase transitions
leading to a marginally stable multi-partitioned state.

5.2. Diagonals

There is a renormalization-group fixed-point mapf∗(x) for
each limiting stage of the three routes to or out of chaos, pe-
riod doubling, quasi-periodicity, and intermittency leading to
the tangent bifurcation [3-5]. These fixed-point maps em-
body the universality class property of infinite families of
nonlinear dynamical systems. They express the scaling laws
stemming from functional composition as the basic feedback
element for the transit from regular to chaotic behavior or
vice versa. They (arguably) represent the foundation of non-
linear dynamical theory for dissipative systems. Historically,
the first case to be worked out was that for period-doubling
[3-5], followed by that for quasi-periodicity [3-5], both ef-
forts leading to transcendental functions with no closed-form
expressions forf∗(x) [3-5]. The last case obtained was that
for the tangent bifurcation [3-5], for which the initially per-
ceived simpler feature of a single attractor-repellor point lead,
perhaps not totally unanticipated, to an analytical closed-
form expression forf∗(x), as previously shown in Eq. (16)
[76]. As recollected here we have relied on these fundamental
contributions as the main background support to our studies.

We have made use of fixed-point mapf∗(x) trajecto-
ries directly or indirectly in all the studies already described.
The trajectory at the Feigenbaum pointfµ∞(x) initiated at
x0 = 0, shown in Fig. 1b), is for all purposes one such case.
In Fig. 15a) we show another view for that trajectory, while
in Fig. 15b) we show the equivalent result for the golden-
mean onset of chaos as obtained from the circle map [11].
On the other hand, we have seen that all the trajectories from
the tangent bifurcation fixed-point map in Eq. (16) are given
by Eq. (17).

As we have seen, much can be learned by observing the
structure of the trajectory positions in 1b) and 15a) as they
move in a particularly orchestrated manner across the multi-
fractal attractor. In logarithmic scales the trajectory separates
into equally-spaced horizontal bands, with half of the posi-
tions in the top band (odd iteration times in Fig. 1b) and even
iteration times in 15a). Subsequent horizontal bands contain
2−n, n = 2, 3, ..., fractions of the remaining positions. Each
band consists of sub-bands, and so on. The band structure
expresses geometrically the scaling features of the functional
compositionf∗(x). As shown in Fig. 15b) there is a similar
band structure for the golden-mean trajectory but it is more
difficult to explore it only by means of logarithmic scales.

But the main feature of these trajectories we focus on here
are the ‘diagonals’ we described much earlier. See the text
below Eq. (1). The entire trajectoryxt = f

(t)
µ∞(x0 = 0) can

be decomposed into position sub-sequences all of which obey
the same power-law decay. Also, we saw that such diagonals
possess the ideal glass perfect aging scaling property. See
the text around Eq. (8). The alternate view of this trajectory
shown in Fig. 15b), as well as that for the golden-mean in
Fig. 15b) can be also decomposed into ‘diagonals’, and these
diagonals can be expressed analytically asq-deformed expo-
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FIGURE 15. a) Distance fromx = 1 of the absolute values of posi-
tions in logarithmic scales of the first 1000 iterations for the trajec-
tory at the period-doubling onset of chaos for the logistic map. The
numbers correspond to iteration times. See Fig. 1b). b) Positions
in logarithmic scales of the first 1000 iterations for the trajectory at
the golden mean onset of chaos for the circle map. TheFn are Fi-
bonacci numbers in the position labels that correspond to iteration
times. In both cases a) and b) the power-law decay of positions
along the time sub-sequences described in the text can be clearly
appreciated.

nentials,e.g. Eq. (8). See also Ref. [30] for other cases,
including the first diagonal of the golden-mean trajectory.

The recent idea or question that has made us revisit the
trajectory features we call diagonals is the realization that all
the fixed-point mapsf∗(x), for the three routes, are more
closely related than originally thought, and that they share,
amongst other ingredients, the same closed-form analytic
expression that was first found for the tangent bifurcation
[to be published]. Our intention was to find an alternative
way to obtain the multifractal trajectories produced by the
known fixed-point mapsf∗(x) for period doubling and quasi-
periodicity. That is, the program we followed was to repro-
duce the master trajectoriesf∗(t)(x0) in 15a), and 15b), di-
agonal by diagonal, from the tangent bifurcation trajectories

f∗(t)(x0)

xt = f∗(t)(x0) = x0 expz(|x0|z−1ut). (32)

Each diagonal, say,Dk, k = 1, 2, ...., requires one initial con-
dition x

(k)
0 and an iteration time transformation from the con-

secutive times in Eq. (32) to the diagonal sub-sequence times,
say,τ (k). Each route to chaos fixes the value of the deformed
exponential parameterz as well as that for the curvature pa-
rameteru [to be published].

This hitherto unseen connection between all the classi-
cal transitions to chaos constitutes a formal advance about
the required mathematical structure of viable fixed points
mapsf∗(x), those that express the universal scaling features
of general families or classes of nonlinear dynamical sys-
tems when driven into regime borderlines. But also, as we
have seen, to the occurrence ofq-generalized entropies in the
statistical-mechanical descriptions mentioned here. This ap-
plies to our model perspectives for glass formation, critical
fluctuations and localization transitions in condensed mat-
ter physics, more generally, to complex systems paradigms
and self-organization, and also to our simplified modeling
and treatments to diversity, ranked data, networks from time
series, correlated random walks, and certain specific game-
theoretical situations.

5.3. Windows

There is a collection of features in the classic bifurcation di-
agram for quadratic maps that have been left out so far in
our discussions. These features are related to the infinite
collection of interruptions, called ‘windows’, of the chaotic
band attractors sets displayed alongµ > µ∞, and shown in
Fig. 16a). There is an infinite number of windows that con-
tain families of reproductions of the bifurcation diagram it-
self, and again, repeatedly, within each smaller replica, since
the bifurcation diagram is a fractal object. The interruptions
display power-law spacing and widths that have been char-
acterized a long time ago [55,56]. The same window fea-
tures occur across the bifurcation diagrams of many other
low-dimensional iterated maps, including those for the circle
maps [3-5] with two control parameters, and also that other
two-parameter bifurcation diagram we mentioned briefly for
the replicator map in Eq. (29).

There are other related structures in the quadratic map
bifurcation diagram that are worth mentioning here. These
are the so-called ‘shadow’ curves and their dual ‘period’
curves [90]. The first set is given by the set of functions
x(µ) = f

(2n)
µ (0), n = 0, 1, ..., while the second set by the

solutions ofx = f
(2n)
µ (x), n = 0, 1, ..., both as a function

of µ. See 16b) and 16c). The shadow curves have mutual
points of tangency and also intersect themselves at the Mis-
iurewics points, they envelop the bifurcation replicas within
the windows. The period curves trace the periodic solutions
independently of whether they are stable (attractors) or unsta-
ble (repellors). The two sets of shadow and periodic curves
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FIGURE 16. a) Widely-known logistic map bifurcation diagram
showing strip windows in the chaotic regime and an amplification
of the widest (period three) window. b) Shade curves outlining the
bifurcation diagram in a) See text. c) Period curves where both
stable and unstable periodic solutions are shown. See text.

interact, they are tangent at the pitchfork bifurcations within
the windows.

We had already made use of the windows in the bifur-
cation diagram, but only marginally, by using the properties
in the chaotic neighborhood of their tangent bifurcation bor-
ders, the existence of the infinite set of windows was used

to construct a simple model [45,46] to reproduce the punc-
tuated equilibrium [86] observed in the nature of evolution-
ary ecology, that is captured by Jensen’s TaNa model [86].
But other insights are awaiting for the more complete use
of the features of the sets of windows, for example, for the
construction of simple enough models that would describe
complex systems where the most significant property is em-
bedding, nested systems within systems. Like the case of the
microbiota, the ecological communities of microorganisms
found in and on all multicellular organisms from plants to
animals [91].

The different sets of power laws displayed by the fam-
ilies of windows make certain the existence of general-
ized statistical-mechanical behaviors not yet characterized,
as other sets of power laws occurring in the dynamics of
quadratic and related maps have been,e.g. as in all the pre-
vious subsections. These, say still ‘idle’, sets of power laws
correspond to the spacing of the windows across the bifur-
cation diagram, their widths, and other features within them,
as are the replicas of the main cascades in the primary dia-
gram. Additionally, this complex structure is wrapped by the
intricate system of shadow and period curves.

6. Outlook

As future directions, we put together a list of idealizations or
models, unpretentious but effective for providing specific an-
swers to complex systems problems and subjects. Currently,
they are at different stages of development, and all are based
on the nonlinear dynamical content in each of our twelve sets
of studies:

Sensitivities. A model for the ideal growth of diversity,
a mainstay ‘phylogenetic tree’, based on the period doubling
route to chaos, and its recapitulation at the transition to chaos.
In its base format diversity is quantified via the anomalous,
multifractal, sensitivity to initial conditions.

Glasses. A model for the flow (and arrest) of traffic (an-
imal, human, vehicular) that makes use of our discovery of
the manifestation of vitreous dynamics in the noise-induced
bifurcation gap at the onset of chaos.

Localizations. A model for collective behavior in com-
plex systems based on coherent communication states resem-
bling those described here for wave propagation through scat-
tering media.

Sums. A model of correlated walks that displays pro-
gressively anomalous diffusion and arrest based on sums
of position trajectories across the chaotic-band attractors of
quadratic maps.

Rankings. A model for ranked distributions based on non-
linear dynamics near or at tangent bifurcations that reveals
universality classes and borderline dimensionality (as in crit-
ical phenomena), with links to number theory (in particular
prime numbers for the class that corresponds to the empirical
Zipf law).

Fluctuations. A model for the identification of early
warnings based on our studies on the spatial structure and
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temporal evolution of the dominant fluctuations at a critical
point.

Networks. A model statistical-mechanical structure for a
class of networks, those obtained via the HV algorithm from
time series formed by trajectories along the period doubling
and all the quasi-periodic routes to chaos.

Measures. A model to observe the equivalence between
the two main paradigms for the understanding of complex
systems in recent decades: edge of chaos and criticality.

Games. A phenomenological model based on sequences
of transitions to chaos via intermittency that reproduces
quasi-stable states descriptive of punctuated equilibrium ob-
served in the evolution of ecosystems (biological, urban,
technological).

Partitions. A model capable of offering a physical ba-
sis to self-organization, analogous to the non-linear dynam-
ics towards the attractors that form the period-doubling and
chaotic-band splitting cascades in quadratic maps.

Diagonals. A pathway to demonstrate the general oc-
currence ofq-generalized statistical-mechanical properties in
all the models of this list provided by the recently realized
link between all renormalization-group fixed-point maps at
the transitions to chaos.

Windows. Models constructed to describe complex sys-
tems where the most significant property is embedding, sys-
tems nested within systems.

The twelve units of studies we described are interrelated
in various ways. To highlight these, as in a zodiac, they could
have been grouped differently, into four classes that underline
another common traits, or distributed in three groups contain-
ing each four studies that share the same quality, or separated
into only two sets of six studies each (or vice versa), to clas-
sify them according to other common characteristic, and so
on. Connections amongst these dozen research lines become
evident with each of these different allocations. We chose a
classification that reflects only circumstances in their elabo-
ration.
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