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Analysis of whispering gallery modes resonators:
wave propagation and energy balance models
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Electromagnetic whispering gallery modes (WGM) are surface waves guided by the curvature of an interface. Microspheres, microdisks,
and microcylinders —for example, standard optical fibers— are high quality microresonators for the WGM. In fact, they can be regarded as
compact and small ring resonators. Here, we present a comparison between wave propagation and energy balance models, establishing t
equivalence and discussing the basic characteristics of these two complementary approaches.
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1. Introduction 2. The wave propagation model (WPM)

Microresonators based on WGM exhibit high factors, Figure lillustrates the system that we are going to study, and
probably the highest ever reported, which makes them pait also includes two scanning electron microscope (SEM) im-
ticularly attractive for different applications as narrowbandages of representative WGM resonators. In principle, we as-
spectral filtering [1], single-frequency lasers [2], generationsume that the cross-section of the microresonator is a perfect
of frequency combs [3], and sensing [4]. In particular, az-Circle that is coupled to a microfiber via evanescent fields.
imuthal WGM resonances of optical fibers have been demonlhe input wave with amplitud; will be, in most cases, the
strated to be useful for the characterization of optical fibersfundamental mode of a microfiber. The coupling between
thermal effects in active fibers [5], fiber diameter fluctuationsthe input wave and the resonator is modeled with a four ports
[6,7], UV-induced losses [8], and Pockels’ coefficients [9]. coupler defined by the matrix:

Different approaches have been developed for the theo- )
retical analysis of WGM resonators. On the one hand, WGM ( By ) - ( L=n I ) ( 1;77 ) . (D)
resonators can be regarded as compact and small interferome an V1=n? Becw
ters and can be described in terms of the amplitude and phase ) ) ) )
of the electromagnetic waves that propagate in the device. Ofhere £¢ is the amplitude of the transmitted wave in the
the other hand, being a resonator, one can formulate a diffefRiCrofiber, Ec.,, is the amplitude of the counter-clockwise
ential equation that describes the energy balance between tfiCM at the coupling pointky,, is the amplitude Of the
WGM and the input and output waves. We will refer to the WGM at the entrance of the coupling regioni.e., £

first one as a wave propagation model (WPM) and the second £ccw after propagating one trip along the surface of the
as an energy balance model (EBM).

microresonator— is the coupling coefficient angd= /—1.
. . ) . .

The WPM is closely related to the approach that is com- The relaltlut)nshlp .beltwe;a ‘Em andlEccwdls dehtermgwed
monly used for the description of fiber interferometers as thé)y an overall transmission factg(f < 1) and a phase de-

analysis developed by Evgeny Kuzin for the fiber Sagnac in-

ccw

terferometer [10]. The same approach has been used for thi Microresonator

study of the Mach-Zehnder interferometers [11] and ring res- /

onators [12]. A microresonator coupled to an optical fiber via ,

the evanescent fields of microfiber can be regarded as a tiny Etcw Eccw !

optical fiber ring resonator. The EBM [13,14] is analogous U e il _
to the laser models based on time dependent rate equat|0|[") B : F{t) f

where the spatial variation of the fields is not included [15].
Here, we will establish the equivalence between WPM and
EBM and a comparison with experimental data will be alsoFicure 1. a) Scheme of the experimental setup. b) SEM images
discussed. of two WGM resonators: a microcapillary and a microsphere.

a) b)
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termined by the phase velocity of the WGM and the perime-  The characteristic parametérs.x, Tmin, aNdA¢ can be

ter of the microresonator cross-section: calculated from Eq. (5):
at ¢=0:
Eécw = feij(lsEccw- (2) 2 2
T~=<1— Tl(l—f) ) (6)
(1= VI=Pf)
Combining Egs. (1) and (2), we obtain the amplitudes of at ¢=0:
the WGM and the transmitted wave as a function of the input i )
wave: _ n°(1—f%)
Tmax - 1-— ) (7)
(1+V1=nf)?

Eccw =

Jn _ -1 2y/1—n*f
(FW&—M)’ ) A = 2oon <1+(1—n2)f2>
VI=F — et RN, ©

Et = - . 4 )
(1 . mf> “ Vi

where the approximation in Eq. (8) applies for highreso-
nances.

From a practical point of view, the transmittance is mea-
sured versus wavelength)( so it is useful to write the rela-
tion betweenp and\:

1%

Finally, we can obtain transmitted powerversus the in-
put powerP; computing the amplitude squared of the waves:

P=[1- Ul P,. (5) 2r 9
! 14+ (1 —n2)f2 —2/1—n2f cos(¢) " (bijnm e, ©)
wheren,,, is the WGM index and: the microresonator ra-
dius. The WGM index is the modal index that is determined
Figure 2 gives a theoretical example: the transmittancéy the phase velocity of the surface wave that defines the
Pt/ Pi versus the phasg, computed fom = 0.26899 and WGM and propagates along with the interface of the res-
f = 0.95542. We observe that whep = 0, i.e, when onator. The actual value of,, can be obtained by solving
the WGM adds in phase every round trip, a resonance agMaxwell equations for the specific geometry of the resonator
pears. Figure 2 includes some lines and labels to illustratand is slightly lower than the refractive index of the resonator
the definition of some of the most characteristics parammaterial. For example, in a cylindrical resonator as the one
eters: the maximum transmittance levél,(y), the min-  reported in Fig. 3 made of silicay,,, = 1.398. Thus, for
imum at resonancell,;,), and the linewidth measured at a highQ resonator, the linewidth in terms of wavelength is
T1/2 = (Tmax + Tmin) /2 (A¢ in Fig. 2). given by the expression:

Ao 1 VIZwf (10)
(%) nmay/ VI =72 f

Besides from an experimental point of view, if we mea-
sure the transmitted power without normalization, we can
quite easily obtain the experimental value for the ratio
T Ay Pt,min/Pt,mai\x- Therefore,' it is useful to have the theoreti-

1=y - cal expression for that ratio:

Puain - ((\/172 N+ Wf))% an
Prmax  \ (V1= + (1 -/1-7?)

In a typical experiment, after measuring the transmis-
sion spectrum around a resonance, we can work out the ex-
perimental values foAX and P; min/Prmax. Then, using
Egs. (10) and (11) we can compute the actual valuesaofd
FIGURE 2. Transmittance versusfor a theoretical resonance. f, assuming the radiug is known. As anexample, we

Tma-x---—>1.0

12

Transmittance
o
W
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1.0 ing through the coupling region will also be very small. Be-
sides the time that the WGM takes to perform one round trip
(7) will be also extremely small for typical microresonators.
Therefore, the ratio between the increment of WGM ampli-
tude per round trip and thecan be model as the derivative of
0.6 L | the WGM amplitude with respect the time. Moreover, at fre-
guencies very close to the frequency of resonance, the phase
change per round trip at frequencies slightly out of resonance
0.4 1 will also be very small (being exactly zero at resonance). Fol-
lowing Ref. [13], we can write a differential equation for the
evolution of theE,..,, amplitude with time:

08

Transmittance

0.2 F .
dEccw . :
Y = (ko + k1 + j6w) Eeer + jﬂEi. (12)
0.0 1 1 1 1 1 dt T
0 1 2 3 4 5 6 . . .
A, (pm) In this equation, accounts for the WGM losses in a

_ _ _ round trip,x, accounts for the losses between WGM ports in
FIGURE 3. Experimental transmittance versisbeingo an ar- the coupling regionjéw accounts for the phase change per
bitrary wavelength of reference. The theory matches perfectly thisround trip due to a detunindw, andd accounts the power
spectrum withzy = 0.004050 and f = 0.9999719. coupled into the resonator from the input wave. Each term of
his equation is closely related to the parameters of the BPM.

include in Fig. 3 the experimental transmission spectrum of L .
9 P P aking into account Eq. (2), we find:

WGM resonanceX = 1529.3 nm) of a cylindrical resonator
that has a radius of 5pm. The experimental characteristic

Losses and phase change per round trip:
parameters areAX = 0.056 pm andP; yin/Pi max = 0.30. P gep P

Then, we can work out the values of the parameters= AFBccw fe=7% — 1E L a=pn +jqu
0.004050 and f = 0.9999719. The theoretical curve calcu- r T cow = T Heews
lated with these values for the coupling coefficient and overall 1—f &

transmission factor matches perfectly the experimental curve — Ko = ——, and dw = p (13)

with no significant difference.

Once the parameters and f have been adjusted for a wheree™7¢ = 1 — j¢, andof = ¢, beingf = 1. Besides
specific resonance, one can exploit the theoretical model tave have written the phase in terms of the optical frequency:
investigate other properties of the resonator as, for example; = wr = (wy +dw)T = JwT; beingwyr an integer multiple
the amplitude of the WGM propagating in the resonator (se®f 27, sincewy is the frequency of resonance.

Eq. (3)). From Eg. (11) we can identify an interesting situa-  According to Eq. (1), when the WGM arrives at the cou-
tion: if /1 — n2 = f, thenP; at resonance is zero. The cou- pling region ¢’ in Fig. 1) and re-couples into the mi-
pling coefficient that accomplishes this condition is hamedcroresonator¥...,), the transfer of power determines:

the critical coupling;.. In the example of Fig. 3, for an over-

all transmission factof = 0.9999719, the critical coupling Transfer of power in the coupler:

is . = 0.00750. In the experiment reported in Fig. 3, the 5

resonator is under coupled & 7.), and it should be possi- ALecw _ V1=1° = 1Eccw

ble to increase the coupling up to the point of reaching the T T

critical coupling, for example, by decreasing the separation 1—/1-n2 _n?

between the microfiber and the resonator o decreasing the ra- — = T = oy (14)

dius of the microfiber, in order to increase the amplitude of . . o
the evanescent field. In the case of an over-coupled resonance Finally, every round trip the contribution to the WGM
(n > 7.), we should look for a way of reducing the coupling 2MPlitude from the input wave (see Eq. (1)) is:

coefficient. Coupling to the WGM from the input wave:

AECCU} j
3. The energy balance model (EBM) Sleew g, (15)

T T

In order to introduce the EBM, after the analysis of the sys-  Equations (13-15) give the relationship between the BPM
tem using the WPM, we need to have in mind that kigtes-  and the EBM. We can go one step further, solving Eqg. (12) in
onators will have an overall transmission factor f extremelythe stationary regime:

close to one, so the difference betwegf),,, and E...,, will )

be very small, and a coupling coefficient also very small dBecw _ 0 FE..  — /T E;.  (16)

(n < 1). Similarly, the changes of the amplitudes when go- dt U Ko+ k1t jow

Supl. Rev. Mex.is. 2 (1) 81-86



84 E. RIVERA-FEREZ, A. DEZ, J. L. CRUZ, E. SILVESTRE, AND M. V. ANDEES

This equation is equivalent to Eg. (3). One can obtain the
amplitude of the transmitted wave, —and the transmittance
T = P,/ P; —using Eq. (1). Since the EBM is specifically de-
veloped for high) resonators and the vicinity of resonance, ,
we can neglect all second-order terms (having in mind that Ecaw Eccw

the coefficients:o, k17, dw 7 andn are small): W Sy, & A

2 i =——
E, = 0 S

3 E’ia
Ko + K1 + jow

/ Microresonator

FIGURE 4. Scheme of the experimental setup including the

4roki /(Ko —i—m)2 clockwise WGM generated by the coupling between counter-
T T T+ (0w/[ro + k)2 (17)  propagating waves.
We can observe that at resonanée & 0), if ko = k1 We model the distributed coupling along the surface of

thenT = 0. This result gives the critical coupling condition, the microresonatc_)r as a distributed four ports coupler, s;_imi-

discussed in Sec. 2, in termg andx;. The over-coupling lar to Eq. (1), WhICh connects the _reflected_ aind transmitted

and under coupling situations will correspondkio> x, and ~ WGM waves with an overall coupling coefficiept Thus,

Ko > k1, respectively. The linewidth of the resonance, as itEd- (12) has to be modified to include the contributioryof

is defined in Fig. 2, isAw, 5 = 2(ko + 1), iN agreement and a new equation fdt..,, appears (see Fig. 4):

with Eq. (8). dE...
To conclude this section it is worthwhile to discuss briefly — g¢

the main advantages of each one of these two models. On;, B

the one hand, the BPM can be applied to lI@wesonators .= —(ko + K1 + Jj0w) Ecw + j9Eccuw- (19)

and gives the transmittance both in the vicinity of the res- . . _ ) .

onance and far away from it. In fact, the BPM describes _11US, in the stationary regime, we can obtain the ampli-

the whole transmission spectrum and the free spectral rang{HdeS of the counter-propagating wavés,., and E..,, and

(FSR) of a given family of resonances, provided we writet"€ fransmitted and reflected powers, using Eq. (1):

= _(HO + R1 +j6w)Eccw +j§EZ +.79Ecw (18)

the phase difference as a function of the wavelength, being (k2 4+ g2 — 2k1K + 6w?) + (2K00w)?

the FSR determined by the periodicity of the cosine func- - (2k19)2 + (0w2 + K2 — g2)2 (20)
tion (see Egs. (5) and (9)). On the other hand, the EBM can

be applied only in the vicinity of a single resonance with a _ (2k19)° 1)
high @ factor. The main advantage that we can point out for (2619)% + (0w? + K2 — ¢g2)2

the EBM model is thg simplicity with which we can describc—? wherex = ko + #1. In an ideal system with no losses
realistic resonators in which a bunch of physical effgcts Sje, ko =0- we can verify thatR -+ T—1. Besides,

used to be present simultaneously. For example, different
losses mechanism as material absorption, radiation, scatter

ing, and coupling losses can be described correctly adding 100 ' ' ' ' ’
differentx; coefficients. In particular, we have found that the
EBM is very powerful for the description of the physical ef- _ 8o} -
fects produced by surface roughness and another mechanisr§
that could couple clockwise and counterclockwise WGM. We &
dedicate the next section to the analysis of a resonator with E 6or ]
coupled counter-propagating WGM. E
2 40} .
£
4. Reflected wave from a WGM resonator 2 5
Here we want to model a resonator with coupled counter-
propagating WGM, which is a realistic case since surface 0 i i . L i ;
roughness produces a distributed coupling. Several years ag 0 2 4 6 8 10 12
we reported an analysis of the reflected power in a WGM A=A, (pm)

resonator using a BPM [16]. Such an approach was rathell—:l(wRE 5. Experimental transmittance and reflectance versus

c_umberson_m a_nd Im_“ted' M_oreover, it required the assuinp;\’ being Ao an arbitrary wavelength of reference. The theory
tion of placing in a single point of the resonator an effective jyatches perfectly this spectrum witheg = 1.97 x 107 571,

reflection coefficient and add up the series of successive rg;; — 1.82x107s™*, andg = 1.52x 107 s™*, or the equivalent pa-
flected and transmitted waves. Here we will apply the EBM,rameters;f = 0.9999673,n = 7.77x 10~° andr = 2.52x 107°,
following again the development presented in [13]. beingr = gr.
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an analysis of the denominator shows that i «, then the at resonance and a linewidth of 0.10 pm. From Eg. (22) we
resonance splits into two peaks determinedby = g2 —x2.  obtaink/g = 2.43, k1/g = 1.20, ko/g = 1.23, and from

In our experiments, we have not observed such a splitting, sBq. (23) we obtaiy = 1.52x 107 s~!. Thus,x = 3.69 x 107

we assume that > g. At resonanceie., dw = 0-, we find: s k1 =1.82x107 s, ko = 1.97 x 107 s~1. Taking into
account that the round trip time is= 1.66 ps, we can ob-
tain the parameterst = 0.9999673, n = 7.77 x 10~3 and

r = 2.52 x 107°, beingr = g7, an equivalent reflection

2K19

R:<M>2’

when there is no splitting, using Eq. (21):

T—(1—f%““>2—(1—”¢éy (22)
- Ktg?) g

We can also work out the linewidth of the resonante

5.

coefficient between counter propagating WGM.

Conclusion

The comparison of BPM and EBM gives an interesting in-

sight into WGM optical resonators. The theoretical results

Aw = /2Rt T gt + g2 — 2.

(23)

provide good matching with experiments.
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