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Analysis of whispering gallery modes resonators:
wave propagation and energy balance models
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Electromagnetic whispering gallery modes (WGM) are surface waves guided by the curvature of an interface. Microspheres, microdisks,
and microcylinders –for example, standard optical fibers– are high quality microresonators for the WGM. In fact, they can be regarded as
compact and small ring resonators. Here, we present a comparison between wave propagation and energy balance models, establishing the
equivalence and discussing the basic characteristics of these two complementary approaches.
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1. Introduction

Microresonators based on WGM exhibit highQ factors,
probably the highest ever reported, which makes them par-
ticularly attractive for different applications as narrowband
spectral filtering [1], single-frequency lasers [2], generation
of frequency combs [3], and sensing [4]. In particular, az-
imuthal WGM resonances of optical fibers have been demon-
strated to be useful for the characterization of optical fibers:
thermal effects in active fibers [5], fiber diameter fluctuations
[6,7], UV-induced losses [8], and Pockels’ coefficients [9].

Different approaches have been developed for the theo-
retical analysis of WGM resonators. On the one hand, WGM
resonators can be regarded as compact and small interferome-
ters and can be described in terms of the amplitude and phase
of the electromagnetic waves that propagate in the device. On
the other hand, being a resonator, one can formulate a differ-
ential equation that describes the energy balance between the
WGM and the input and output waves. We will refer to the
first one as a wave propagation model (WPM) and the second
as an energy balance model (EBM).

The WPM is closely related to the approach that is com-
monly used for the description of fiber interferometers as the
analysis developed by Evgeny Kuzin for the fiber Sagnac in-
terferometer [10]. The same approach has been used for the
study of the Mach-Zehnder interferometers [11] and ring res-
onators [12]. A microresonator coupled to an optical fiber via
the evanescent fields of microfiber can be regarded as a tiny
optical fiber ring resonator. The EBM [13,14] is analogous
to the laser models based on time dependent rate equation
where the spatial variation of the fields is not included [15].
Here, we will establish the equivalence between WPM and
EBM and a comparison with experimental data will be also
discussed.

2. The wave propagation model (WPM)

Figure 1 illustrates the system that we are going to study, and
it also includes two scanning electron microscope (SEM) im-
ages of representative WGM resonators. In principle, we as-
sume that the cross-section of the microresonator is a perfect
circle that is coupled to a microfiber via evanescent fields.
The input wave with amplitudeEi will be, in most cases, the
fundamental mode of a microfiber. The coupling between
the input wave and the resonator is modeled with a four ports
coupler defined by the matrix:

(
Et

Eccw

)
=

( √
1− η2 jη

jη
√

1− η2

)(
Ei

E′
ccw

)
, (1)

whereEt is the amplitude of the transmitted wave in the
microfiber,Eccw is the amplitude of the counter-clockwise
WGM at the coupling point,E′

ccw is the amplitude of the
WGM at the entrance of the coupling region –i.e., E′

ccw

is Eccw after propagating one trip along the surface of the
microresonator–,η is the coupling coefficient andj ≡ √−1.

The relationship betweenE′
ccw andEccw is determined

by an overall transmission factorf(f < 1) and a phaseφ de-

FIGURE 1. a) Scheme of the experimental setup. b) SEM images
of two WGM resonators: a microcapillary and a microsphere.
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termined by the phase velocity of the WGM and the perime-
ter of the microresonator cross-section:

E′
ccw = fe−jφEccw. (2)

Combining Eqs. (1) and (2), we obtain the amplitudes of
the WGM and the transmitted wave as a function of the input
wave:

Eccw =

(
jη

1−
√

1− η2fe−jφ

)
, (3)

Et =

( √
1− η2 − fe−jφ

1−
√

1− η2fe−jφ

)
. (4)

Finally, we can obtain transmitted powerPt versus the in-
put powerPi computing the amplitude squared of the waves:

Pt=

(
1− η2(1− f2)

1 + (1− η2)f2 − 2
√

1− η2f cos(φ)

)
Pi. (5)

Figure 2 gives a theoretical example: the transmittance
Pt/P i versus the phaseφ, computed forη = 0.26899 and
f = 0.95542. We observe that whenφ = 0, i.e., when
the WGM adds in phase every round trip, a resonance ap-
pears. Figure 2 includes some lines and labels to illustrate
the definition of some of the most characteristics param-
eters: the maximum transmittance level (Tmax), the min-
imum at resonance (Tmin), and the linewidth measured at
T1/2 = (Tmax + Tmin)/2 (∆φ in Fig. 2).

FIGURE 2. Transmittance versusφ for a theoretical resonance.

The characteristic parametersTmax, Tmin, and∆φ can be
calculated from Eq. (5):

at φ = 0 :

Tmin =

(
1− η2(1− f2)

(1−
√

1− η2f)2

)
, (6)

at φ = 0 :

Tmax =

(
1− η2(1− f2)

(1 +
√

1− η2f)2

)
, (7)

∆φ = 2 cos−1

(
2
√

1− η2f

1 + (1− η2)f2

)

∼= 2
1−

√
1− η2f√√

1− η2f
, (8)

where the approximation in Eq. (8) applies for highQ reso-
nances.

From a practical point of view, the transmittance is mea-
sured versus wavelength (λ), so it is useful to write the rela-
tion betweenφ andλ:

φ =
2π

λ
nm2πa, (9)

wherenm is the WGM index anda the microresonator ra-
dius. The WGM index is the modal index that is determined
by the phase velocity of the surface wave that defines the
WGM and propagates along with the interface of the res-
onator. The actual value ofnm can be obtained by solving
Maxwell equations for the specific geometry of the resonator
and is slightly lower than the refractive index of the resonator
material. For example, in a cylindrical resonator as the one
reported in Fig. 3 made of silica,nm = 1.398. Thus, for
a highQ resonator, the linewidth in terms of wavelength is
given by the expression:

∆λ ∼= 2
1−

√
1− η2f

(
2π
λ

)2
nma

√√
1− η2f

. (10)

Besides from an experimental point of view, if we mea-
sure the transmitted power without normalization, we can
quite easily obtain the experimental value for the ratio
Pt,min/Pt,max. Therefore, it is useful to have the theoreti-
cal expression for that ratio:

Pt,min

Pt,max

∼=
(

(
√

1− η2 − f)(1 +
√

1− η2f)

(
√

1− η2 + f)(1−
√

1− η2)

)2

. (11)

In a typical experiment, after measuring the transmis-
sion spectrum around a resonance, we can work out the ex-
perimental values for∆λ andPt,min/Pt,max. Then, using
Eqs. (10) and (11) we can compute the actual values ofη and
f , assuming the radiusa is known. As an example, we
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FIGURE 3. Experimental transmittance versusλ, beingλ0 an ar-
bitrary wavelength of reference. The theory matches perfectly this
spectrum with:η = 0.004050 andf = 0.9999719.

include in Fig. 3 the experimental transmission spectrum of a
WGM resonance (λ = 1529.3 nm) of a cylindrical resonator
that has a radius of 55µm. The experimental characteristic
parameters are:∆λ = 0.056 pm andPt,min/Pt,max = 0.30.
Then, we can work out the values of the parameters:η =
0.004050 andf = 0.9999719. The theoretical curve calcu-
lated with these values for the coupling coefficient and overall
transmission factor matches perfectly the experimental curve
with no significant difference.

Once the parametersη and f have been adjusted for a
specific resonance, one can exploit the theoretical model to
investigate other properties of the resonator as, for example,
the amplitude of the WGM propagating in the resonator (see
Eq. (3)). From Eq. (11) we can identify an interesting situa-
tion: if

√
1− η2 = f , thenPt at resonance is zero. The cou-

pling coefficient that accomplishes this condition is named
the critical couplingηc. In the example of Fig. 3, for an over-
all transmission factorf = 0.9999719, the critical coupling
is ηc = 0.00750. In the experiment reported in Fig. 3, the
resonator is under coupled (η < ηc), and it should be possi-
ble to increase the coupling up to the point of reaching the
critical coupling, for example, by decreasing the separation
between the microfiber and the resonator o decreasing the ra-
dius of the microfiber, in order to increase the amplitude of
the evanescent field. In the case of an over-coupled resonance
(η > ηc), we should look for a way of reducing the coupling
coefficient.

3. The energy balance model (EBM)

In order to introduce the EBM, after the analysis of the sys-
tem using the WPM, we need to have in mind that highQ res-
onators will have an overall transmission factor f extremely
close to one, so the difference betweenE′

ccw andEccw will
be very small, and a coupling coefficient also very small
(η ¿ 1 ). Similarly, the changes of the amplitudes when go-

ing through the coupling region will also be very small. Be-
sides the time that the WGM takes to perform one round trip
(τ ) will be also extremely small for typical microresonators.
Therefore, the ratio between the increment of WGM ampli-
tude per round trip and theτ can be model as the derivative of
the WGM amplitude with respect the time. Moreover, at fre-
quencies very close to the frequency of resonance, the phase
change per round trip at frequencies slightly out of resonance
will also be very small (being exactly zero at resonance). Fol-
lowing Ref. [13], we can write a differential equation for the
evolution of theEccw amplitude with time:

dEccw

dt
= −(κ0 + κ1 + jδω)Eccw + j

η

τ
Ei. (12)

In this equation,κ0 accounts for the WGM losses in a
round trip,κ1 accounts for the losses between WGM ports in
the coupling region,jδω accounts for the phase change per
round trip due to a detuningδω, andδ accounts the power
coupled into the resonator from the input wave. Each term of
this equation is closely related to the parameters of the BPM.
Taking into account Eq. (2), we find:

Losses and phase change per round trip:

∆Eccw

τ
=

fe−jφ − 1
τ

Eccw
∼= − (1− f) + jφ

τ
Eccw,

→ κ0 =
1− f

τ
, and δω =

φ

τ
, (13)

wheree−jφ ∼= 1 − jφ, andφf ∼= φ, beingf ∼= 1. Besides
we have written the phase in terms of the optical frequency:
φ = ωτ = (ω0 +δω)τ = δωτ ; beingω0τ an integer multiple
of 2π, sinceω0 is the frequency of resonance.

According to Eq. (1), when the WGM arrives at the cou-
pling region (E′

ccw in Fig. 1) and re-couples into the mi-
croresonator (Eccw), the transfer of power determinesκ1:

Transfer of power in the coupler:

∆Eccw

τ
=

√
1− η2 − 1

τ
Eccw

→ κ1 =
1−

√
1− η2

τ
∼= η2

2τ
. (14)

Finally, every round trip the contribution to the WGM
amplitude from the input wave (see Eq. (1)) is:

Coupling to the WGM from the input wave:

∆Eccw

τ
=

jη

τ
Eccw. (15)

Equations (13-15) give the relationship between the BPM
and the EBM. We can go one step further, solving Eq. (12) in
the stationary regime:

dEccw

dt
= 0 → Eccw =

jη/τ

κ0 + κ1 + jδω
Ei. (16)
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This equation is equivalent to Eq. (3). One can obtain the
amplitude of the transmitted waveEt –and the transmittance
T = Pt/Pi –using Eq. (1). Since the EBM is specifically de-
veloped for highQ resonators and the vicinity of resonance,
we can neglect all second-order terms (having in mind that
the coefficientsκ0τ, κ1τ , δω τ andη are small):

Et =
[
1− 2κ1

κ0 + κ1 + jδω

]
Ei,

T = 1− 4κ0κ1/(κ0 + κ1)2

1 + (δω/[κ0 + κ1])2
. (17)

We can observe that at resonance (δω = 0), if κ0 = κ1,
thenT = 0. This result gives the critical coupling condition,
discussed in Sec. 2, in termsκ0 andκ1. The over-coupling
and under coupling situations will correspond toκ1 > κ0 and
κ0 > κ1, respectively. The linewidth of the resonance, as it
is defined in Fig. 2, is∆ω1/2 = 2(κ0 + κ1), in agreement
with Eq. (8).

To conclude this section it is worthwhile to discuss briefly
the main advantages of each one of these two models. On
the one hand, the BPM can be applied to lowQ resonators
and gives the transmittance both in the vicinity of the res-
onance and far away from it. In fact, the BPM describes
the whole transmission spectrum and the free spectral range
(FSR) of a given family of resonances, provided we write
the phase difference as a function of the wavelength, being
the FSR determined by the periodicity of the cosine func-
tion (see Eqs. (5) and (9)). On the other hand, the EBM can
be applied only in the vicinity of a single resonance with a
high Q factor. The main advantage that we can point out for
the EBM model is the simplicity with which we can describe
realistic resonators in which a bunch of physical effects is
used to be present simultaneously. For example, different
losses mechanism as material absorption, radiation, scatter-
ing, and coupling losses can be described correctly adding
differentκi coefficients. In particular, we have found that the
EBM is very powerful for the description of the physical ef-
fects produced by surface roughness and another mechanism
that could couple clockwise and counterclockwise WGM. We
dedicate the next section to the analysis of a resonator with
coupled counter-propagating WGM.

4. Reflected wave from a WGM resonator

Here we want to model a resonator with coupled counter-
propagating WGM, which is a realistic case since surface
roughness produces a distributed coupling. Several years ago
we reported an analysis of the reflected power in a WGM
resonator using a BPM [16]. Such an approach was rather
cumbersome and limited. Moreover, it required the assump-
tion of placing in a single point of the resonator an effective
reflection coefficient and add up the series of successive re-
flected and transmitted waves. Here we will apply the EBM,
following again the development presented in [13].

FIGURE 4. Scheme of the experimental setup including the
clockwise WGM generated by the coupling between counter-
propagating waves.

We model the distributed coupling along the surface of
the microresonator as a distributed four ports coupler, simi-
lar to Eq. (1), which connects the reflected and transmitted
WGM waves with an overall coupling coefficientg. Thus,
Eq. (12) has to be modified to include the contribution ofg
and a new equation forEcw appears (see Fig. 4):

dEccw

dt
= −(κ0 + κ1 + jδω)Eccw + j

η

τ
Ei + jgEcw (18)

dEccw

dt
= −(κ0 + κ1 + jδω)Ecw + jgEccw. (19)

Thus, in the stationary regime, we can obtain the ampli-
tudes of the counter-propagating waves,Eccw andEcw, and
the transmitted and reflected powers, using Eq. (1):

T =
(κ2 + g2 − 2κ1κ + δω2) + (2κ0δω)2

(2κ1g)2 + (δω2 + κ2 − g2)2
, (20)

R =
(2κ1g)2

(2κ1g)2 + (δω2 + κ2 − g2)2
(21)

whereκ = κ0 + κ1. In an ideal system with no losses
-i.e., κ0 = 0- we can verify thatR + T=1. Besides,

FIGURE 5. Experimental transmittance and reflectance versus
λ, being λ0 an arbitrary wavelength of reference. The theory
matches perfectly this spectrum with:κ0 = 1.97 × 107 s−1,
κ1 = 1.82×107 s−1, andg = 1.52×107 s−1, or the equivalent pa-
rameters:f = 0.9999673, η = 7.77×10−3 andr = 2.52×10−5,
beingr = gτ .
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an analysis of the denominator shows that ifg > κ, then the
resonance splits into two peaks determined byδω2 = g2−κ2.
In our experiments, we have not observed such a splitting, so
we assume thatκ > g. At resonance -i.e., δω = 0-, we find:

R =
(

2κ1g

(κ2 + g2)

)2

,

T =
(

1− 2κ1κ

κ2 + g2

)2

=
(

1− κ

g

√
R

)2

. (22)

We can also work out the linewidth of the resonance (∆ω)
when there is no splitting, using Eq. (21):

∆ω =
√

2
√

κ4 + g4 + g2 − κ2. (23)

These equations permit an easy comparison with exper-
imental data. Figure 5 gives an experimental example that
corresponds to a resonance of a silica cylinder of 55µm ra-
dius, centered at 1529 nm, withR = 0.10 andT = 0.48

at resonance and a linewidth of 0.10 pm. From Eq. (22) we
obtainκ/g = 2.43, κ1/g = 1.20, κ0/g = 1.23, and from
Eq. (23) we obtaing = 1.52×107 s−1. Thus,κ = 3.69×107

s−1, κ1 = 1.82× 107 s−1, κ0 = 1.97× 107 s−1. Taking into
account that the round trip time isτ = 1.66 ps, we can ob-
tain the parameters:f = 0.9999673, η = 7.77 × 10−3 and
r = 2.52 × 10−5, beingr = gτ , an equivalent reflection
coefficient between counter propagating WGM.

5. Conclusion

The comparison of BPM and EBM gives an interesting in-
sight into WGM optical resonators. The theoretical results
provide good matching with experiments.
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