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Quarkoniumlike mesons in the diabatic approach
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The Born-Oppenheimer approximation provides a description of heavy-quark mesons firmly based on quenched Lattice QCD. The diabatic
framework extends this description through the incorporation of unquenched Lattice QCD data on string breaking. This allows for a unified
description of conventional quarkonium, made ofQQ̄, and unconventional quarkoniumlike mesons, containing meson-meson components
as well. A successful description of the charmoniumlike and bottomoniumlike spectra comes out.
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1. Introduction

A new era in heavy-quark meson spectroscopy begun with
the discovery of theX(3872) [1]. In fact, this was among the
first states whose mass and decay properties clearly defied
expectations from potential quark models, which had been so
successful until then [2–4]. Soon enough, theX(3872) was
joined by many other resonances (e.g.:ψ(4260), ψ(4360),
X(3915), see [5]) which escape the quarkonium description
(QQ̄, with Q a heavy quark), thus forming the spectrum of
so-calledXY Z states. The understanding of these unconven-
tional mesons, possibly with a solid theoretical basis on quan-
tum chromodynamics (QCD), is presently one of the greatest
challenges in hadronic physics.

As a matter of fact, the masses of the unconventional
states are generally located close below or above the lowest
open-flavor meson-meson threshold coupling to them, which
suggests that any theoretical description of them should in-
clude open-flavor meson-meson components. Potential quark
models (see, for example, [2, 3, 6, 7]) partly take this into ac-
count through meson loops. In some of these models [2, 3],
the coupling between the valenceQQ̄ states and the meson-
meson continuum is derived from theQQ̄ binding potentials,
while others [6, 7] use quark pair creations models such as
3P0. Anyhow, these loop contributions do not seem effec-
tive at describing the rich spectrum of unconventional states.
In alternative, other phenomenological descriptions includ-
ing meson-meson components, like, for example, in the form
of meson molecules, tetraquarks, and hadroquarkonium (see
[8–11] and references therein), have been attempted. It must
be noted though that all these models, including the afore-
mentioned quark models with meson loops, lack a direct con-
nection with QCD.

An ab initio description of heavy-quark mesons from Lat-
tice QCD has been developed using a Born-Oppenheimer
(BO) approximation [12, 13], which can also be connected
with an effective field theoretical description (see, for in-
stance, [14]). The single-channel BO approximation is based
on the heavy-quark mass being much larger than the QCD

energy scaleΛQCD, so that heavy-quark meson states cor-
respond to the solutions of a Schrödinger equation forQQ̄
with effective potentials derived from Lattice QCD. These
potentials correspond to the energy of stationary states of
light fields (light quark flavors and gluons) with static color
sources. Conventional quarkonium states thus correspond
to the solutions of the ground state potential, calculated in
quenched Lattice QCD (i.e., neglecting sea quarks), which
has a Cornell-like shape familiar from quark models [15].
Quarkonium hybrids (a quark-antiquark pair in presence of
an excited gluon field, sometimes referred to as aQQ̄g state
with g a constituent gluon) are the solutions of the excited-
state potentials calculated in quenched Lattice QCD [12].
However, the single-channel BO approximation is not as ef-
fective when meson-meson components start to play some
role. In fact, unquenched (including sea quarks) Lattice QCD
calculations of the static energy levels [16, 17] show that as
the QQ̄ potential approaches the mass of a meson-meson
threshold, a mixing between the two configurations takes
place. This mixing, due to string breaking from creation of
sea quark pairs, breaks the single-channel BO approximation.
Therefore, the single-channel BO approximation is valid only
for energies far below any meson-meson threshold, which
limits considerably its utility for the description of the un-
conventional states.

In this talk we go beyond the single-channel BO approx-
imation by adapting the diabatic approach, first developed in
molecular physics (see, for example, [18]), to the descrip-
tion of quarkonium(-like) mesons in terms ofQQ̄ and open-
flavor meson-meson components. In this way we establish
a coherent and unified theoretical framework, firmly based
on QCD, for the description of both conventional and un-
conventional states [19–21]. These contents are structured
as follows. First, in Sec. 2, we revisit the single-channel BO
approximation in its application to quarkoniumlike mesons.
Then, in Sec. 3, we introduce the diabatic formalism and con-
nect it to lattice data. In Sec. 4, we recollect the results of a
diabatic study of the charmoniumlike and bottomoniumlike
spectra. Finally, in Sec. 5, we summarize our conclusions.
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2. Born-Oppenheimer approximation

The BO approximation was originally derived for the descrip-
tion of molecules [22], but more recently it has been also ap-
plied to the description of heavy-quark meson systems from
Lattice QCD [12,13]. As the heavy quarks have a mass much
larger thanΛQCD, on the contrary of the light fields (this is,
gluons and light quark flavors), it is assumed that the Hamil-
tonian of the heavy-quark system can be separated as

H = KQQ̄ + H lf
QQ̄, (1)

whereKQQ̄ is the heavy quark-antiquark (QQ̄) kinetic en-
ergy operator and the residual HamiltonianH lf

QQ̄
includes

the light-field Hamiltonian and theQQ̄–light-field interac-
tion, but contains no dependence on theQQ̄ momentump.
A quarkoniumlike meson state|ψ〉, containing information
on theQQ̄ as well as the light fields, then corresponds to a
solution of

H |ψ〉 = E |ψ〉 , (2)

whereE is its energy.
The first step in the construction of the BO approximation

consists in integrating the light fields for staticQQ̄, which
corresponds to ignoring the kinetic energy termKQQ̄. This
static limit is justified as long as the time scale for the evo-
lution of theQQ̄ (proportional to their reduced mass) is so
much larger than so that of the light fields, that the dynamics
of the latter can be solved as if the former were not moving
at all. In this limit the quark-antiquark relative positionr is
fixed, and thus ceases to be a dynamical variable. Conse-
quently,H lf

QQ̄
depends only parametrically onr, and can be

therefore relabeled asH lf
static(r). Integrating the light fields

in the static limit then corresponds to solving, for any fixed
value ofr, the eigenvalue problem

(H lf
static(r)− Vi(r)) |ζi(r)〉 = 0, (3)

where |ζi(r)〉 is the light-field eigenstate,Vi(r) its eigen-
value, andi some quantum numbers labeling the eigenstate.
Notice that, altogether, the eigenstates{|ζi(r)〉}i form an or-
thonormal basis set for the Hilbert space of light-field config-
urations

〈ζi(r)|ζj(r)〉 = δij , (4)

for anyr. Then an eigenvalueVi(r) corresponds to the static
energy of a stationary light-field configuration|ζi(r)〉, with a
QQ̄ pair fixed at relative positionr, which can be calculated
ab initio in Lattice QCD.

The ground state of the light fields in quenched (neglect-
ing sea quarks) Lattice QCD is associated with a quarkonium
QQ̄ configuration [15]. Its energy follows the behavior of
a Cornell (funnel) potential, as pictured in Fig. 1. However,
unquenched (including sea quarks) Lattice QCD calculations
have shown that this correspondence is valid only for small
QQ̄ distances [16, 17]. In fact, when increasing theQQ̄ dis-
tancer = |r|, a significant mixing between theQQ̄ configu-
ration and meson-meson ones takes place in the ground state

FIGURE 1. Radial dependence of the ground (solid line) and first
excited (dashed line) quenched static energies,Ṽi(r).

FIGURE 2. Radial dependence of the ground and first excited un-
quenched static energies,Vi(r), normalized with respect to the
threshold massT , near the avoided crossing (solid lines). The
quenched ground state energy (dashed line) and the meson-meson
threshold (dotted line) are also drawn for comparison.

because of string breaking. If for example we considerQQ̄ in
presence of only one threshold, the unquenched ground state
energy changes progressively from the one of aQQ̄ config-
uration to that of the meson-meson one. At the same time,
an excited state appears with the opposite behavior, this is,
its energy changes from meson-meson toQQ̄ asr increases.
In this manner, the ground and excited energy levels avoid
the crossing of the pureQQ̄ energy with the meson-meson
threshold (which would happen if string breaking were not
present). In Fig. 2 we have pictured this situation, whereas a
representation ofQQ̄ interacting with two thresholds can be
found in Ref. [16,17].

As second step in building the BO approximation, the
QQ̄ motion is solved by reintroducingKQQ̄ and using the
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adiabatic expansion

|ψ〉 =
∑

j

∫
dr′ψj(r′) |r′〉 |ζj(r′)〉 , (5)

where|r′〉 is theQQ̄ relative position eigenstate,ψj(r′) are
the expansion coefficients, and we have omitted spin degrees
of freedom, for simplicity. Notice that the light-field basis
used in this expansion is calculated at the same relative po-
sition r′ as theQQ̄, which is the most natural choice in the
idealized situation where the light fields adjust immediately
to theQQ̄ motion, hence the qualifier “adiabatic” . Because
of this, the kinetic energy operatorKQQ̄ acts also on the
light-field states, so deriving an equation involving the ex-
pansion coefficients requires some simple but lengthy ma-
nipulations. Eventually, Eq. (2) can be rewritten as (see, for
example, [18])

∑

j

[
− ~2

2µQQ̄

((∇ + τ (r))2)ij

+ (Vi(r)− E)δij

]
ψj(r) = 0, (6)

whereµQQ̄ is the reducedQQ̄ mass and

τij(r) ≡ 〈ζi(r)|∇ζj(r)〉 , (7)

are the so-calledNon-Adiabatic Coupling Terms(NACTs),
which reflect the non-trivial interaction between theQQ̄ mo-
tion and the light-field eigenstates. Now the expansion coeffi-
cientsψj(r) can be recognized as the components of a multi-
channel adiabatic wave function, governed by a Schrödinger-
like equation where the static energiesVi(r) act as effective
potentials. However, the presence of these NACTs, mixing
different channels through the kinetic energy term, compli-
cates extraordinarily the solution of Eq. (6). That is why it is
customary to neglect the NACTs,

τji(r) ≈ 0, (8)

so that one is left with the set of decoupled single-channel
equations

[
− ~2

2µQQ̄

∇2 + (Vi(r)− E)
]

ψi(r) = 0. (9)

Equations (3), (5), (8), and (9) constitute the core of the BO
approximation, in its usual single-channel realization. Re-
garding its usefulness, unquenched lattice calculations indi-
cate that the NACTs are only negligible when noQQ̄ and
meson-meson configuration mixing takes place within the
light-field eigenstates (see the next section). This is a serious
drawback for the application of the single-channel BO ap-
proximation to the description of heavy-quark mesons, whose
masses are usually located close below, or above, the lowest
open-flavor meson-meson threshold, where a significant mix-
ing induced by string breaking may be present.

3. Diabatic approach

To overcome the limitations of the single-channel BO ap-
proximation, we make use of thediabatic formalism. In this
framework, instead of using light field eigenstates associated
with a mixing of QQ̄ and meson-meson configurations, we
expand the wave function in terms of pureQQ̄ and pure
meson-meson components. More precisely, we use the di-
abatic expansion

|ψ〉 =
∑

j

∫
dr′ψ̃j(r′, r0) |r′〉 |ζj(r0)〉 , (10)

where the light-field basis is calculated at a fixed quark-
antiquark relative positionr0, chosen so that string breaking
effects are negligible. To make this clear, let us particular-
ize for the case of a heavy-quark system involvingQQ̄ and
one meson-meson (M1M̄2) configurations. Then we have
|ζ0(r0)〉 ≡ |ζQQ̄〉 and |ζ1(r0)〉 ≡ |ζM1M̄2

〉, with the sub-
scripts indicating the configurations associated to the light-
field eigenstates, and we can relabel the diabatic wave func-
tion components as̃ψ0(r′, r0) ≡ ψQQ̄(r′) andψ̃1(r′, r0) ≡
ψM1M̄2

(r′). Substituting (10), and after some straightfor-
ward manipulations, Eq. (2) can be rewritten as

(K + V(r))Ψ(r) = EΨ(r), (11)

whereK is the kinetic energy matrix

K ≡
(− ~2

2µQQ̄
∇2 0

0 − ~2
2µM1M̄2

∇2

)
, (12)

µM1M̄2
is the reduced meson-meson mass (notice that this

has been easily implemented instead ofµQQ̄ due to the pure
M1M̄2 character of the corresponding wave function compo-
nent),V(r) is the so-calledDiabatic Potential Matrix(DPM)

V(r) ≡
(

VQQ̄(r) Vmix(r)
Vmix(r) VM1M̄2

(r),

)
, (13)

with

VQQ̄(r) ≡ 〈ζQQ̄|H lf
static(r) |ζQQ̄〉 , (14a)

VM1M̄2
(r) ≡ 〈ζM1M̄2

|H lf
static(r) |ζM1M̄2

〉 , (14b)

Vmix(r) ≡ 〈ζQQ̄|H lf
static(r) |ζM1M̄2

〉 , (14c)

andΨ(r) is a column vector notation for the wave function:

Ψ(r) ≡
(

ψQQ̄(r)
ψM1M̄2

(r)

)
. (15)

It can be shown that the diabatic Schrödinger equation (11)
and the multichannel Schrödinger-like equation (6), particu-
larized to the same case, are completely equivalent [18]. Here
it shall suffice to mention that, as a consequence of this equiv-
alence, the change of basis matrixA

( |ζQQ̄〉
|ζM1M̄2

〉
)
≡

(|ζ0(r0)〉
|ζ1(r0)〉

)
= A(r, r0)

(|ζ0(r)〉
|ζ1(r)〉

)
, (16)
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transforming the diabatic wave function into the adiabatic
one,

ψi(r) =
∑

j

Aij(r, r0)ψ̃j(r, r0), (17)

satisfies

A†(r, r0)
(

V0(r) 0
0 V1(r)

)
A(r, r0) = V(r). (18)

Equation (18) tells us thatA diagonalizes the DPM,
and that the eigenvalues of the DPM are nothing butV0(r)
andV1(r), this is, the energies of the ground and first ex-
cited light-field states|ζ0(r)〉 and |ζ1(r)〉 calculated in un-
quenched Lattice QCD (see Fig. 2). So, the NACTs that break
the single-channel BO approximation (Eq. (6)), when there is
a significant configuration mixing, are incorporated in the di-
abatic approach (Eq. (11)) through the DPM.

As we show next, the DPM can be completely obtained
from lattice data. This connection, together with Eqs. (3),
(10), and (11), defines the diabatic approach in QCD. Specif-
ically, from (14a) and (14b) the diagonal elements of the
DPM are the static energies of light-field states associated
with pureQQ̄ and meson-meson configurations respectively.
From quenched Lattice QCD one has

VQQ̄(r) = VC(r), (19)

where VC(r) is a Cornell-like potential [15]. As for
VM1M̄2

(r), one has, up to one particle exchange interactions
that we neglect here,

VM1M̄2
(r) = TM1M̄2

, (20)

whereTM1M̄2
is the threshold mass.

Regarding the off-diagonal element, the mixing potential
Vmix(r) defined by (14c), it can be easily related to the eigen-
valuesV0(r) andV1(r) of the DPM, obtained as the solutions
of

det (V(r)− Vi(r)I) = 0, (21)

with I the identity matrix andi = 0, 1. Then, from (21), the
radial part of the mixing is expressed as

|Vmix(r)|=

√
(V1(r)−V0(r))

2− (
VC(r)−TM1M̄2

)2

2
. (22)

As for the spin-angular part, it can be treated through a
partial-wave analysis which is beyond the simplified notation
we use here, see [23].

Hence, in the diabatic approach theQQ̄-M1M̄2 config-
uration mixing problem is solved through the multichannel
Schr̈odinger equation (11) with a potential matrix incorpo-
rating the QCD dynamics from lattice calculations.

In practical calculations, it may be convenient to interpo-
late the data points on|Vmix(r)|, obtained by inserting lattice
calculations ofV0(r) andV1(r) into Eq. (22), with a contin-
uous function. In order to yield a good fit to lattice data, this
function must obviously incorporate their macroscopic fea-
tures. Concretely, Eq. (22), with the energy levels of Fig. 2,
seems to indicate that the mixing potential should be approx-
imately maximum near the avoided crossing, while it should

vanish away from it. A simple parametrization meeting this
requirements is a Gaussian one

|Vmix(r)| = ∆
2

exp
[
− (VC(r)− TMM̄ )2

2Λ2

]
, (23)

where from Eq. (22) one can see that∆ is equal to the energy
gap between the ground and excited light-field energy lev-
els at the avoided crossing, whileΛ regulates the size of the
region where a significant mixing betweenQQ̄ andM1M̄2

takes place (see [19] for a more detailed discussion). For
bottomoniumlike mesons, the values of these parameters can
be obtained by fitting lattice data [16]. As for the charmo-
niumlike case, where lattice data is unavailable, one may fix
the parameters from phenomenology, under the reasonable
assumption that the same functional form may be applied.

Moreover, by expressing the radial change of basis matrix
A(r) in terms of theQQ̄-M1M̄2 mixing angleθ:

A(r) ≡
(

cos θ(r) − sin θ(r)
sin θ(r) cos θ(r)

)
(24)

and using (18), we have

θ(r) =
1
2

arctan
(

2Vmix(r)
TM1M̄2

− VC(r)

)
. (25)

Then, from (7) we can calculate the radial NACTs:

τ00(r) = τ11(r) = 0, (26a)

τ01(r) = −τ10(r), (26b)

where

τ01(r) = r̂
dθ

dr
. (27)

Therefore the NACTs can be neglected only for values
of r whereθ is constant. From Eq. (23), one can see that
this happens only forr far from the avoided crossing. There,
one hasθ equal to either0 or π/2, which corresponds to a
light-field eigenstate made of pureQQ̄ or meson-meson, re-
spectively.

For the sake of clarity, let us emphasize that the mul-
tichannel Eq. (6) is completely equivalent to the diabatic
Schr̈odinger Eq. (11), if the NACTs are correctly taken into
account. Vice versa, it is trivial to show that if the NACTs
vanish, then the DPM becomes a diagonal matrix contain-
ing the quenched static potentials, and therefore Eq. (11) be-
comes the set of single-channel Schrödinger equations (9).

The diabatic formalism can be straightforwardly gener-
alized to the case ofN meson-meson thresholds through a
kinetic energy matrix (null matrix elements are omitted)

K=




− ~2
2µQQ̄

∇2

− ~2
2µ

(1)
MM̄

∇2

.. .

− ~2
2µ

(N)
MM̄

∇2




, (28)
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FIGURE 3. Spectrum of bottomoniumlike (left) and charmoniumlike (right) meson states. Thick solid lines stand for states calculated in the
diabatic approach, thick dashed lines stand for well-established experimental candidates, and long thin horizontal lines stand for open-flavor
meson-meson thresholds.

whereµ
(i)

MM̄
with i = 1, . . . , N is theith meson-meson com-

ponent reduced mass, and a generalized DPM containing the
interaction. For the sake of simplicity, and in line with Lat-
tice QCD studies of string breaking [17], one usually neglects
some interactions between channels. Specifically, one may
assume, as long as we are dealing with relatively narrow,
well-separated thresholds, that interactions between different
meson-meson components are negligible. Then, the DPM
can be written as

V(r) =




VC(r) V
(1)

mix (r) . . . V
(N)

mix (r)
V

(1)
mix (r) T

(1)

MM̄
...

.. .

V
(N)

mix (r) T
(N)

MM̄




, (29)

whereVC(r) is the Cornell potential,T (i)

MM̄
the mass of the

ith threshold andV (i)
mix(r) the mixing potential between the

QQ̄ and theith meson-meson components.
For practical calculations, one should also realize that a

meson-meson component does not intervene in the compo-
sition of a bound state with a mass far below its threshold.
Hence, finding the spectrum of someJPC heavy-quark me-
son family consists in solving a multichannel Schrödinger
equation involving only theQQ̄ and those “close” meson-
meson channels coupling with the specificJPC quantum
numbers.

4. Results

The diabatic framework can be an effective tool for a uni-
fied study of the quarkoniumlike meson spectrum, since it
treats theQQ̄ interaction, responsible for the spectrum of
conventional quarkonium states, on equal grounds with the

QQ̄–meson-meson mixing one, responsible for the appear-
ance of some unconventional states and the OZI-allowed de-
cays of states above an open-flavor meson-meson threshold.
To show this more clearly, we recollect here the results of a
diabatic study of the bottomoniumlike [21] and charmonium-
like [19, 20] spectra. Let us note that the parameters used in
the diabatic potential matrix are obtained from a mixture of
lattice data and phenomenology. More precisely, the param-
eters of the Cornell-like potentialVC(r) are taken from phe-
nomenology, the threshold masses are obtained from the sum
of the corresponding experimental meson masses [5], and the
parameters of the mixing potential are inferred from lattice
calculations in the bottomoniumlike case [21], or fitted using
the mass ofX(3872) in the charmoniumlike case [19].

The calculated spectra of bottomoniumlike and charmo-
niumlike mesons are illustrated in Fig. 3, and the OZI-
allowed strong decay widths of states above threshold are
reported in Tables I and II. From these results we see that
the diabatic quarkoniumlike meson spectrum is composed of
conventional quarkonium states plus a certain number of un-
conventional ones lying close to some open-flavor meson-

TABLE I. Calculated masses and OZI-allowed strong decay widths
of bottomoniumlike states above threshold, in MeV.

JPC M ΓBB̄ ΓBB̄∗ ΓB∗B̄∗ ΓBsB̄s
ΓTheor

total

0++ 10785.8 1.6 5.3 0.7 7.6

1++ 10778.9 0.2 1.7 1.9

2++ 10588.4 4.3 4.3

2++ 10782.3 5.4 1.5 21.0 10.4 38.3

1−− 10599.8 21.9 21.9

1−− 10697.0 2.0 1.0 38.0 41.0

Supl. Rev. Mex. Fis.3 0308033
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FIGURE 4. Diabatic radial wave function ofX(3872). Solid and
dashed line stand for thecc̄ andDD̄∗ component, respectively.

TABLE II. Calculated masses and OZI-allowed strong decay widths
of charmoniumlike states above threshold, in MeV.

JPC M ΓDD̄ ΓDD̄∗ ΓDsD̄s
ΓTheor

total

0++ 3920.9 0.6 0.6

2++ 3881.1 49.5 0.4 49.9

2++ 4003.9 4.8 6.3 3.5 14.5

1−− 3771.7 20.2 20.2

meson threshold. As for the calculated widths of states above
threshold, they can be compared with those of the few well-
established experimental candidates. So in the bottomoni-
umlike case, theΥ(4S) with a total experimental width of
20.5 ± 2.5 MeV is perfectly compatible, within errors, with
the diabatic1− state at around10.6 GeV with a total cal-
culated width of21.9 MeV. In the charmoniumlike case, on
the other hand, there are two experimental candidates, the
ψ(3770) and theχc2(3930), respectively for the1− diabatic
state near3.77 GeV and the2++ one around3.88 GeV. The
calculated widths are in this case fairly close (only about30%
off) the experimental values of27.2± 1.0 MeV for ψ(3770)
and35.2 ± 2.2 MeV for χc2(3930). The overall reasonable
description of both the spectrum and decay widths gives fur-

ther support to the mixing potential being the main mecha-
nism driving the appearance of unconventional quarkonium-
like states as well as the OZI-allowed decay of states above
threshold.

It is particularly interesting to detail the diabatic descrip-
tion of X(3872) obtained from this study. As can be checked
in Fig. 4, the diabaticX(3872) is made, at short distances, of
both cc̄ andDD̄∗ components in comparable amounts. But
then, for bigger distances, the confinedcc̄ component van-
ishes more quickly than the loosely boundDD̄∗ one, so that
the molecular configuration dominates the overall composi-
tion ofX(3872) (97% totalDD̄∗ probability vs. 3%cc̄). This
makes theX(3872) mostly aDD̄∗ molecule, with a calcu-
lated mean root-mean-square radius of near11 fm, where the
binding is provided by theDD̄∗ mixing with the confinedcc̄
component.

5. Summary

The diabatic formalism can be used to describe heavy-quark
mesons beyond the limitations of the single-channel approxi-
mation commonly used in BO. This allows for a general treat-
ment of quarkoniumlike meson states, including those for
which mixing between quark-antiquark and meson-meson
configurations plays a significant role. The diabatic dynam-
ics, directly connected to lattice data, can give account of
the mass spectrum and OZI-decay widths of heavy-quark
mesons, as shown through a calculation of the bottomo-
niumlike and charmoniumlike meson spectra and proper-
ties. This makes the diabatic approach in QCD a useful
theoretical framework for the unified description of conven-
tional quarkonium and unconventional quarkoniumlike me-
son states.
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21. R. Bruschini and P. González, Diabatic description of bottomo-
niumlike mesons,Phys. Rev. D103 (2021) 114016,https:
//dx.doi.org/10.1103/PhysRevD.103.114016 .

22. M. Born and R. Oppenheimer, ForeignlanguagegermanZur
quantentheorie der molekeln,Ann. Phys. 389 (1927)
457, https://dx.doi.org/10.1002/andp.
19273892002 .
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