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Geometry and causal flux in multi-loop Feynman diagrams
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In this review, we discuss recent developments concerning efficient calculations of multi-loop multi-leg scattering amplitudes. Inspired
by the remarkable properties of the Loop-Tree Duality (LTD), we explain how to reconstruct an integrand level representation of scattering
amplitudes which only contains physical singularities. These so-calledcausal representationscan be derived from connected binary partitions
of Feynman diagrams, properly entangled according to specific rules. We will focus on the detection of flux orientations which are compatible
with causality, describing the implementation of a quantum algorithm to identify such configurations.
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1. Introduction

The Standard Model (SM) is considered one of the most suc-
cessful theories, since many predictions were found in com-
plete agreement with the experiments. Recent technological
advances are leading to a mayor improvement in the qual-
ity of the data collected from particle accelerators, unveiling
the tiniest details of the structure of matter. The forthcoming
upgrades of LHC and the planned future colliders [1, 2] will
challenge the available theoretical results, forcing to achieve
more precise predictions.

In the context of high-energy physics, perturbation the-
ory is widely applied to extract predictions from the mod-
els. Thus, higher orders are required in order to increase
the accuracy of the theoretical results. This involves dealing
with complicated multi-leg multi-loop Feynman diagrams
and multi-particle phase-space integrals. To increase even
more the difficulty, singularities and ill-defined expressions
pop up in intermediate steps of the calculations.

To tackle these problems, regularization techniques must
be used. A frequent choice is Dimensional Regularization
(DREG) [3–5], which turns out to preserve most of the origi-
nal symmetries but at the same time introduces issues related
to theD-dimensional extension of the theory. Several reg-
ularization methods are available and novel ideas are being
proposed to regularize the expressions keeping the original
number of space-time dimensions [6,7].

Regularizing the singularities only make them explicit,
but several ingredients must be computed and added together
in order to arrive to a finite physical result. By virtue of gen-
eral theorems [8, 9], virtual and real contributions must be
simultaneously considered to ensure the cancellation of in-
frared (IR) divergences. The cancellation of additional IR
singularities due to initial-state radiation (ISR) requires the
introduction of proper counter-terms, which can be calculated
within perturbation theory and involve the collinear splitting
functions [10–13]. Also, the unrestricted loop integration

in the virtual contributions leads to ultraviolet (UV) diver-
gences, that can be removed through the renormalization pro-
cedure [14].

The purpose of this review is to explain novel technolo-
gies pointing towards a more efficient calculation of the
loop contributions. In particular, these developments are
done in the context of the Loop-Tree Duality (LTD) for-
malism [15–19]. The main advantage of this formalism is
that Feynman loop integrals in Minkowski space are trans-
formed into sums of phase-space integrals of tree-level like
objects, i.e. the so-calleddual terms, naturally defined in
Euclidean space. In this way, it is more transparent to es-
tablish a connection between the IR singularities in the real
and the virtual contributions [20], since they involve the same
kind of integration variables. The LTD is the foundation of
a disruptive method known as Four-Dimensional Unsubtrac-
tion (FDU) [21–24], that achieves a purely four-dimensional
representation of physical observables by introducing proper
kinematical mappings to combine the virtual and real contri-
butions. In this way, the cancellation of IR singularities takes
place directly at integrand level, before integration and thus
by-passing any need of using DREG (or other regularization
prescription).

The LTD approach turns out to be extremely useful to ex-
plore the causal structure of multi-loop multi-leg Feynman
amplitudes. After presenting the basis of the LTD formula-
tion, we will explain the deep connection between the ge-
ometrical interpretation of LTD and the causal structure of
scattering amplitudes in Sec. 2. In particular, we will briefly
introduce some geometric rules to select configurations lead-
ing to causal entangled thresholds, in Sec. 2.2. Due to the
fact that this involves testing the causality conditions on an
increasingly large number of potential configurations, we re-
view the basis of Grover’s search algorithm in Sec. 3. Then,
in Sec. 4, we show a concrete proof-of-concept of a quan-
tum algorithm to select those configurations compatible with
causal momentum flow. Finally, in Sec. 5, we present the
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conclusions and give an outlook of interesting future research
directions inspired by the reported results.

2. Introduction to Loop-Tree duality

The LTD formulation is based on the application of Cauchy’s
residue theorem to multi-loop multi-leg Feynman integrals. It
was first introduced at one-loop in Ref. [15], where the con-
nection to the classical Feynman Tree Theorem (FTT) was
achieved through a suitable modification of the customary
ı0 prescription. This led to the definition of the dual prop-
agators which allows to rewriteN -point one-loop integrals
as sums ofN dual terms originated from single cuts [16].
This approach was extended to deal with amplitudes at two-
loops and beyond in Ref. [17], and also to rewrite amplitudes
with higher-powers of the denominators [18]. Besides that,
LTD turns out to be particularly useful for exploring simplifi-
cations in asymptotic expansions at integrand level [25–27],
connections with the color-kinematics duality [28] and effi-
cient numerical integration strategies [29,30].

In the last years, a renewed interest on the topic attracted
the attention of several groups and motivated new discover-
ies [31–38]. A novel formulation based on the calculation of
nested residues [33,39] allows to smoothly extend the LTD to
multi-loop multi-leg amplitudes. By applying the Cauchy’s
residue theorem on the energy component, we can remove
one degree of freedom per integral, thus reducing the number
of integration variables and transforming the integration do-
main into an Euclidean space. Explicitly, given anN -point
L-loop scattering amplitude in the Feynman representation,
i.e.

A(L)
F =

∑

l

∫

`1...`L

Nl({qi}, {pj})GF (1, 2, . . . , n)

≡
∫

`1...`L

dA(L)
N , (1)

we obtain the following integrand-level representation

dA(L)
D (1, . . . , r; r + 1, . . . , n) =

∑

i∈r

Res

×
(
dA(L)

D (1, . . . , r − 1; r, . . . , n), Im(qi,0) < 0
)

, (2)

for the r-th step. The dual representation is obtained after
L iterations of Eq. (2), and the corresponding integration
over the three-momenta of theL loop variables. More de-
tails about the notation used here, as well as the associated
technical details can be found in Refs. [33,40,41].

The reformulation of LTD based on nested residues
presents some remarkable properties. In first place, after each
iteration, there are some contributions that vanish. These are
the so-calleddisplaced poles, and they are associated to un-
physical contributions originated in poles of the integrand
with opposite residues. The formal proof of their cancella-
tion was given in Ref. [39].

In second place, after theL-th iteration of Eq. (2) and
adding all the terms, further cancellations take place. Only
those contributions involving same-sign combinations of on-
shell energies remain: these are the so-calledcausal contri-
butions. This behaviour is ultimately related to the deep con-
nection between the LTD formalism and causality in quan-
tum field theories [31,33,34,42]. In fact, LTD naturally leads
to a manifestly causal integrand-level representation of any
multi-loop multi-leg scattering amplitude [33, 43–46]. After
a careful exploration of several multi-loop multi-leg topolo-
gies, we obtain

A(L)
N =

∫

~̀1,··· ,~̀L

∑

σ∈Σ

Nσ({q(+)
r,0 }, {pj,0})

xn

×
k∏

i=1

−1
λσ(i)

+ (σ ↔ σ̄) , (3)

which provides a causal representation in terms ofcausal en-
tangled thresholds. The building blocks of this representation

FIGURE 1. Compatible causal entangled threshold for a one-loop four-point function (i.e. a box). Since there are 4 vertices,k = 3 thresholds
can be simultaneously entangled. The configuration shown also exemplifies the geometrical compatibility rules described in Sec. 2.2.
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are the causal propagators,λ±j ≡ ∑
q
(+)
i,0 ± kj,0, which in-

volve positive on-shell energies and same-sign combinations
of the energies of the external particles. Also, each causal
propagator is in one-to-one correspondence with each possi-
ble physical threshold of the original amplitude. The number
of thresholds (or, equivalently, causal propagators) that are si-
multaneously entangled determines the order of the diagram,
i.e. k. The order is related to the number of off-shell lines in
the traditional LTD representation, as well as the number of
verticesk = V −1 [45]. A pictorial example of Eq. (3) for the
one-loop four-point function is given in Fig. 1. Concrete ap-
plication examples and all-order generalizations of the LTD
causal representation are given in Refs. [40,44,46,47].

2.1. Geometry, causality and causal propagators

In the previous section, we presented two equivalent repre-
sentations of the scattering amplitudes: the Feynman repre-
sentation in Eq. (1) and the causal representation in Eq. (3).
Whilst the first one is associated to Feynman graphs made of
propagators, vertices and loops, the second one can be built
from multi-edges, vertices andeloops[41,45,48]. It turns out
that the causal structure is codified in the so-called reduced
Feynman graphs, which are built from the original diagram
by merging all the propagators connecting the same vertices.
These merged propagators are the multi-edges and their as-
sociated on-shell energy is given byq

(+)
G,0 =

∑
i∈G q

(+)
i,0 , i.e.

the same-sign sum of all the on-shell energies of the lines
connecting those vertices.

From the reduced Feynman graph, we can built thevertex
matrix, V, which is equivalent to the adjacency matrix and
contains information regarding how the different vertices are
connected. It is possible to implement operations onV in
order to identify the set of connected binary partitions of ver-
tices,PC

V . Graphically,p ∈ PC
V corresponds to cutting the

graph into two connected diagrams. Moreover, we can in-
troduce the concept ofconjugated causal propagator, λ̄p, by
summing all the momenta flowing through the partitionp (or,
equivalently,pc). Since momentum conservation is enforced
in each vertex, we havēλp + λ̄pc = 0 if the external particles
fulfill momenta conservation.

The motivation to provide such definitions is that the bi-
nary partitions are associated to thresholds of the diagram.
According to Cutkosky rules [49], physical thresholds are
originated by splitting or cutting the diagram in two pieces.
Since causal propagators are in one-to-one correspondence
to the physical thresholds, they must be also related to the
binary connected partitions. In fact, we can build the set of
causal propagators starting from̄λp and replacing the multi-
edge energies by the corresponding on-shell energies. The
presence of external momenta leads to a two-fold mapping to
generate the casual propagators,i.e. there exists a transfor-
mation such that̄λp → λ±p which depends on the orientation
of the multi-edges. More details can be found in Ref. [45].

To conclude this section, let us mention two extreme
cases. Given a diagram withV vertices, the possible num-

ber of multi-edges fulfillsV ≤ M ≤ V (V − 1)/2. A
graph withM = V is minimally connected, whilst those
with M = V (V − 1)/2 are maximally connected. In Refs.
[44, 46], maximally connected graphs (MCG) are the basic
building blocks of an all-order causal representation. The ad-
vantage of MCG is that all the binary partitions are connected
(PC

V = PV ), which implies that the number of causal prop-
agators is maximal. On the opposite side, minimally con-
nected graphs (mCG) are always one eloop diagrams with
the minimal number of causal propagators. We will present
some further comments on these cases in the next sections.

2.2. Selection rules

Once the causal propagators are identified, we need to in-
troduce a set of geometrical rules to build all the possible
compatible causal entangled thresholds,Σ̄. Given a topology
with V vertices andM multi-edges, we will need to entangle
k = V − 1 causal thresholds. Then, we impose the following
criteria:

1. No uncut multi-edges: If we overlap all the causal
thresholds (as the ones shown in Fig. 1), all the internal
multi-edges must be crossed by the causal cuts.

2. Disjoint separation: If we represent each causal prop-
agator with a line cutting the multi-edges, then these
lines can not intersect each other.

3. Consistent causal flow: The multi-edges associated to
a partition must be aligned, and flow to different parti-
tions.

It is worth appreciating that, for some topologies, there will
be degenerated contributions to Eq. (3). In order to obtain
a non-degenerated subset,Σ, additional steps are required,
as carefully explained Ref. [45]. The last criteria involves
studying all the possible orientations of multi-edges,i.e. 2M

configurations. The fact that the aligned momenta must go
from one partition to a different one implies that there can
not be loops or cycles. Thus, the situation reduces to the
identification ofdirected acyclic graphs. Once all the causal
orientations are properly selected, we can dress the graphs
with the entangled thresholds selected by criteria 1-2, and
generate the set̄Σ.

3. Quantum computing and Grover’s algo-
rithm

Testing the causality conditions described in the previous sec-
tion is a very time-consuming task. When the complexity
of the diagram increases,i.e. by adding more verticesV or
multi-edgesM , the number of combinations grows very fast.
However, the criteria can be executed in parallel and enhance
the performance of the computation.

As mentioned in Sec. 2.2, we can start by looking for all
the possible directed acyclic graphs. Even if there are several
well-performing algorithms [50] for classical computers, the
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complexity of the problem scales very fast with the number
of multi-edges. Thus, in the search of more efficient strate-
gies, we tried a novel approach based on quantum algorithms
in Ref. [48]. In particular, we relied on Grover’s search al-
gorithm [51–53] to test the causal flow conditions simultane-
ously for all the configurations.

To explain the basis of the algorithm, let us consider the
spaceΩ composed byN states. A sub-spaceω with dimen-
sionr identifies thewinningstates,i.e. the ones that we want
to select. Then, we can define the two states

|q〉 =
1√
N

∑

α∈Ω

|α〉 , |w〉 =
1√
r

∑
α∈ω

|α〉 , (4)

where|q〉 (|w〉) corresponds to the uniform superposition of
all the (winning) states. We will consider|q〉 as the initial
state for running the algorithm, and introduce

Uw = Id− 2 |w〉 〈w| , Uq = 2 |q〉 〈q| − Id , (5)

which are the so-called oracle and diffusion operators, re-
spectively. Notice thatUw |x〉 = − |x〉 if |x〉 ∈ ω and leaves
the state unchanged if it belongs to the orthogonal spaceωc

(i.e. the space of non-winning states). Grover’s querying al-
gorithm relies on the repeated application of these operators,
which leads to

|q′〉 ≡ (Uw Uq)n |q〉
= sin ((2n + 1)β) |w〉+ cos ((2n + 1)β) |wc〉 , (6)

after n iterations andβ = arcsin(r/N) is the original pro-
jection of |q〉 over the winning space. In this way, ifr/N is
small enough, it is possible to amplify the probability of the
winning states w.r.t. those belonging to the orthogonal space
after a few iterations of the algorithm.

4. Quantum algorithm for causal flux identifi-
cation

Finally, we explain how to profit from the quantum paral-
lelization to efficiently identify the casual flux configura-

tions. In first place, we associate a qubit to each multi-
edge: |qi〉 = |1〉 if the flow agrees with the initial choice
and |qi〉 = |0〉 if it is reversed. In this way, our quantum
circuit will have the qubits{q0, . . . , qM−1} to describe the
flow configuration. The uniform superposition state|q〉 is
achieved through the application of Hadamard operators.

The explicit implementation of the oracle and diffusion
operators requires to use logical gates and introduce auxil-
iary qubits. This is because qubits are quantum states: they
can not be erased and re-used in the same way that we do
with classical bits. Thus, we compare the fluxes of the differ-
ent adjacent multi-edges and store the output in the auxiliary
registers{ci}. Using this information, we introduce another
logical clause to probe whether the multi-edges (codified in
the qubits{qi}) are part of a cycle or not: the result is stored
in the registry{aj}. With all these elements, we build the
marker functionf(a, q) and define Grover’s oracle.

As a practical example, we consider the identification
of all the causal-compatible flux configurations for a three-
vertex one-eloop topology (i.e. a triangle). The circuit, as
implemented inQiskit , is shown in Fig. 2a). Since the
number of solutions is roughly one half of the total states, we
include an additional qubit to achieve the amplification of the
winning states [48]. With this modification, we successfully
identify the 3 causal-compatible configurations. The corre-
sponding probability distributions are shown in Fig. 3, where
we can clearly appreciate that{|001〉 , |011〉 , |101〉} describe
directed acyclic graphs following the convention of Fig. 2b).

In general, the number of causal-compatible solutions de-
pends on the topological complexity of the diagram (i.e. the
number of vertices and eloops). For mCG diagrams, the pres-
ence of only one eloop leads to a weak constraining of the ori-
entations: in this case, the ratio of winning over total states
(r/N ) tends to 1 as the number of vertices increases. On
the other hand, MCG are extremely constrained systems and
r/N goes rapidly to 0.

FIGURE 2. a) One eloop three-vertex topology with the corresponding labelling of the multi-edges. b) Graphical representation of the
quantum circuit implemented inQiskit . The different logical gates are drawn, as well as the input ({qi}), the auxiliary ({cj} and{aj})
and output (|out0〉) registries.
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FIGURE 3. Probability distribution of the different configurations
for a one eloop topology with three vertices. We appreciate that the
algorithm successfully enhanced the probability of the three states
satisfying the casual flow condition.

5. Conclusions and outlook

The causal structure of multi-loop multi-leg scattering am-
plitudes contains all the relevant information to characterize
their physical singularities. In combination with the Loop-
Tree Duality formalism [33], causal representations lead to a
more efficient numerical integration because they only con-
tain physical singularities: instabilities due to spurious di-
vergences are avoided. Moreover, the integration domain is
transformed from a Minkowski to an Euclidean space, thus
paving the way for a natural integrand-level combination with
the real-radiation contributions.

Recently, there have been several developments to recon-
struct dual causal representations by-passing the direct calcu-
lation of nested residues [45, 46]. One of these strategies re-
lies on geometrical algorithms to detect all the possible causal
propagators and identify the set of compatible causal entan-
gled thresholds. In order to do that, we start from the re-

duced Feynman graph and associate a causal propagator to
each possible connected binary partition of vertices. If the
graph hasV vertices, we entanglek = V − 1 causal thresh-
olds in such a way that they fulfill specific selection criteria.

One of these selection criteria is related with the causal-
compatible flux, which turns out to be equivalent to the iden-
tification of acyclic graphs [48]. In this review, we elabo-
rate on the implementation of a quantum algorithm, based
on Grover’s methods, to efficiently detect acyclic directed
graphs. It constitutes the first proof-of-concept of such an al-
gorithm for bootstrapping the causal representation of Feyn-
man scattering amplitudes, and we illustrate its application
with a one eloop three-vertex topology.

It is interesting to notice that the performance of the al-
gorithm increases as the ratio of casual versus total config-
urations decreases, which occurs as the topologies become
more complicated (i.e. more vertices and more multi-edges).
Moreover, since the total number of compatible causal entan-
gled thresholds is small compared to the total possible com-
binations, we expect that a variation of this algorithm could
efficiently reconstruct the whole causal representation. This
supports the claim that the irruption of quantum technologies
could allow to overcome many of the current bottlenecks in
theoretical high-energy physics.

Acknowledgments

I would like to thank G. Rodrigo, S. Ramı́rez-Uribe, A.
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