
Suplemento de la Revista Mexicana de Fı́sica3 0308064 (2022) 1–4

Minimal complete sets for two-pseudoscalar-meson photoproduction
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1. Introduction

The superior goal is the determination of the matrix elements
of the transition operatorT for photoproduction reactions
with two pseudoscalar mesons in the final state. Therefore,
polarization observables have to be measured and hereinafter
analysed via a partial wave analysis in order to extract elec-
tromagnetic multipolesM, which determineT [2].

However, as the polarization observables are mathemati-
cally described by a bilinear form of the complex amplitudes
ti [3–5], mathematical ambiguities arise [6]. In order to avoid
these, one has to perform a complete-experiment analysis [7].
In the case of two-pseudoscalar-meson photoproduction, this
is a highly non-trivial task as eight complex amplitudes [3]
are needed to describe this reaction.

Although the analytical approach is possible, it has not
been done yet as it is an extremly hard task. For this reason
alternative approaches should be explored, especially with re-
gard to even more challenging reactions like vector-meson
photoproduction.

2. Moravcsik’s theorem

The paper by Moravcsik was published in 1985 [8]. Since
then it has not yet attracted much attention. However, its
graph theoretical approach is appealing in several ways, com-
pared to the analytical method:

1. As it relies on simple concepts of graph theory, the the-
orem is easy to understand and implement.

2. The visualization with the help of graphs is intuitive,
yet an abstract representation of the problem.

3. It allows for an easier access of complete sets for pho-
toproduction reactions, especially the ones which are
described by more than four complex amplitudes.

The underlying assumption of the theorem is thea priori
knowledge about the moduli of theN complex amplitudes
ti as well as the real and imaginary parts of the bilinear prod-
uctst∗i tj [8,10].

Lets turn to the actual formulation of the problem using
graph theory: A graph consists of nodes connected via edges.

FIGURE 1. An example for an edge configuration of a cycle graph
with eight nodes (enumerated points) is shown. The edges indicate
whether the complex amplitudes are connected via the real (solid
line) or imaginary (dashed line) part of the corresponding bilinear
product. The respective correlation to the relative phaseφij is in-
dicated [1].

Each node corresponds to a complex amplitudeti and each
edge to the real/imaginary part of the corresponding bilinear
productt∗i tj [8]. An example is shown in Fig. 1.

A graph is said to represent a complete set of polarization
observables if it fulfils two requirements. On the one hand, it
has to be a connected graph, which is equivalent to the valid-
ity of a consistency relation between the relative phases,e.g.:
φ12 + φ23 + · · · + φn1 = 0. On the other hand, the graph
has to consist of an odd number of edges which correspond
to the imaginary part of a bilinear product. For an in depth
explanation on the underlying details the authors refer to the
main paper [1].

The following analysis focuses on cycle graphs, as these
allow to use the minimal number of bilinear products in order
to resolve the discrete mathematical ambiguities [8].
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3. Polarization observables

The photoproduction reaction of two-pseudoscalar-mesons
can be fully described by eight complex amplitudes. Hence,
one deals with 64 polarization observables. Their mathemat-
ical description was first performed by Roberts and Oed [3].
There are single-, double- and triple polarization observables
involved. Especially the measurement of the latter ones is an
experimental challenge as a recoil polarimeter is needed [1].
Such experimental difficulties are taken into account when
talking about advantageous future measurements in Sec. 6.

For the purpose of the following analysis the observ-
ablesO are rewritten in terms of bilinear productsOα =∑8

i,j=1 t∗i Γ
α
ijtj , with α ∈ [1, . . . , 64] and complex matrices

Γα. These matrices can be grouped into eight distinct sets ac-
cording to their shape. The 64Γα matrices can be expressed
as Kronecker products of Pauli and identity matrices, see Ta-
ble I.

4. Determination of complete experiments

The following procedure is based on combinatorial and nu-
merical methods. Initially one constructs all 2520 unique
graph topologies with eight nodes,i.e. the number of com-
plex amplitudes necessary to describe the reaction. Three dis-
tinct graph topologies can be seen in Fig. 2.

In a second step, all possible edge configurations, involv-
ing an odd number of edges which correspond to the imagi-
nary part of the bilinear product, are constructed for each of
the 2520 graphs. An example is shown in Fig. 1. This yields
in total 2520 · 128 = 322560 graphs, which correspond to a
complete set of observables [1].

The next step involves the mapping of the bilinear forms,
i.e. the edges of a graph, to observables via the formula
t∗j ti = (1/8)

∑64
α=1 Γα

ijOα [1]. In other words, one deter-
mines which of the 64 polarization observables are needed in
order to construct the graph under consideration. This is done
for each of the 322560 graphs. After filtering out duplicates,

5964 unique complete sets of observables of different lengths
remain.

In view of a future experimental verification, one is nat-
urally interested in complete sets of minimal length. The
current level of knowledge [9, 10] suggest that the minimal
length of a complete set of observables is equal to2N , where
N is the number of complex amplitudes in the given problem.
Thus the subsequent analysis focuses on the subgroup of 392
distinct sets of length 24, which then are reduced to length
16 while retaining the completeness. This reduction is done
via the numerical solution of polynomial systems, for details
see [1].

So far, 4185 unique truly minimal sets of length2N = 16
have been found. Of special interest are a subgroup of 69 sets
which involve only one triple polarization observable, see Ta-
ble V in Ref. [1].

In addition, an analytic derivation based on the phase-
fixing approach of Ref. [11] is shown for a specific combina-
tion of observables, see Table VII in Ref. [1].

5. Pool of measurements

It remains the task to give an advice for experimentalists con-
cerning future measurements. Therefore an extensive list of
previously performed measurements regarding the photopro-
duction of two pseudoscalar mesons has been collected in Ta-
ble IV of the paper [1]. This list includes more than 55 mea-
surements in the period of time from 1976 to 2020. Different
facilities like ELSA, MAMI, JLAB and GRAAL contributed
to these measurements. However, one has to keep in mind
that due to this large timespan especially the earlier measure-
ments with lower-performing setups suffer with regard to the
statistical quality of the data sets.

The reactionγp → π0π0p is very well suited to study
baryon resonances decaying into∆(1232)π [12]. This might
be the reason why by far most of the measurements were per-
formed for this reaction.

FIGURE 2. Three out of 2520 unique cycle graph topologies with eight nodes are shown [1].
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TABLE I. Using the well known Pauli matrices in combination with the Kronecker product, the 64 polarization observables of two-
pseudoscalar-meson photoproduction are defined. The non-zero matrix elements are indicated via gray shaded cells [1].

6. Implication for experimentalists

In consideration of the information gathered and the results
gained, the most promising set for future measurements with
regard to an unambiguous complete-experiment analysis is
presented:

{I¯, Py, Py’ ,O¯yy’ ,Oyy’ , P̄y’ , P̄y , I0,

Px, Pz, Px’ , Ps
x, P̄x , Pc

z, P̄z , P̄x’ }. (1)

Already eight of these observables were measured within the
reactionγp → π0π0p, namely I0, I¯, Px, Py, Py’ , Oyy’ (=

−Ic), Ps
x and P̄z , although the energy and angular ranges

do not have a perfect overlap between the different measure-
ments. The remaining eight observables could be measured
within three different experiments, for details see [1].

7. Conclusion

Moravcsik’s theorem,i.e. a graph theoretical approach, was
adapted in order to derive complete sets of observables for the
photoproduction reaction of two pseudoscalar mesons. In-
corporating numerical methods, 4185 unique truly minimal
sets of length2N = 16 have been found so far. 69 of these
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sets contain only one triple polarization observable. With the
help of these results and a summary on previously performed
measurements, the most promising minimal complete set for
future measurements was selected. For a more detailed treat-
ment of the topic, the authors refer to the paper [1].

In addition, a further article concerning the determination
of complete sets of observables was published recently [13].
Via an improved graphical criterion, the author argues that

in the case of two-pseudoscalar-meson photoproduction the
new procedure gives complete sets of observables of length
20, in contrast to the procedure presented in this paper which
yields 24. Hence, this would greatly shrink the numerical ef-
fort when reducing these sets to truly minimal complete sets
of length 16. To be precise, it would shrink the number of
truly minimal sets of length 16 which have to be tested for
completeness from735471 to4845 which is a factor of 151.8.
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