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Determination of complete experiments using graphs
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This work presents ideas for the determination of complete experiments using graphs, which are based on a recently published, modified form
of Moravcsik’s theorem. The lucid representation of complete experiments in terms of graphs, which is at the heart of the theorem, leads to a
fully automated procedure that can determine complete experiments for in principle any reaction,i.e. for any number of amplitudesN . For
largerN (i.e.N ≥ 4), the sets determined according to Moravcsik’s theorem turn out to be slightly overcomplete. A new type of directional
graph has been proposed recently, which can decrease the length of the complete sets of observables in some of these cases. The presented
results are relevant for reactions with larger numbers of spin-amplitudes, which are at the center of interest in forthcoming measurements,
such as single-meson electroproduction(N = 6), two-meson photoproduction(N = 8) or vector-meson photoproduction(N = 12).
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1. Introduction

The spectroscopy of baryons [1–3] is of vital importance
for our understanding of strong QCD and thus many exper-
imental programs are still ongoing at facilities around the
world [4–24]. Reactions among particles with spin are of in-
terest in baryon spectroscopy, due to the fact that resonant
intermediate states have half-integer spinJ . For such re-
actions, one encounters the ubiquitous amplitude-extraction
problems, where a set ofN spin-amplitudes (either helicity-
or transversity amplitudes) has to be extracted fromN2 mea-
surable polarization observables. These problems naturally
motivate the search for so-calledcomplete experiments(or
complete sets of observables) [25–30], which are (possibly
minimal) subsets selected from the full set ofN2 observables,
that allow for a unique extraction of the amplitudes. Con-
vincing heuristic arguments show that the absolutely mini-
mal length of a complete experiment is2N (see for instance
Ref. [31] or the introductions of references [29, 30]), for ar-
bitrary N . This work discusses methods for the selection of
complete experiments, which all use the language of graphs.

2. Amplitude-extraction problems

For a generic amplitude-extraction problem withN transver-
sity amplitudes{bi, i = 1, . . . , N}, the corresponding set of
N2 (polarization-) observables is given as [29]

Oα = cα
N∑

i,j=1

b∗i Γ̃
α
ijbj , for α = 1, . . . , N2, (1)

wherecα are (possibly) observable-dependent normalization
factors and thẽΓα represent anN ×N Clifford algebra [27].

The minimization of measurement effort motivates now
the search for the above-mentionedcomplete experiments.
However, due to the bilinear nature of the equations (1), any

complete set of observables can only maximally constrain
theN amplitudes up to one unknown overall phase. In other
words, one can only determine moduli and relative phases
(Fig. 1 illustrates this fact forN = 2). The unknown overall
phase can depend on the full reaction kinematics.

Equation (1) can be inverted in an effective lineariza-
tion [29]:

b∗i bj =
1
Ñ

N2∑
α=1

(
Γ̃α

ij

)∗(Oα

cα

)
. (2)

A suitable choice for the indices(i, j) gives access to moduli
and relative phases of the amplitudes. However, in this ap-
proach, the length of the complete sets of observables implied
by the right-hand-side of Eq. (2) turns out to be far above the
absolutely minimal number2N .

An alternative method, pioneered by Moravcsik [32], is
to consider directly the basis of bilinear products

b∗j bi, for i, j = 1, . . . , N, (3)

and to consider combinations of real-and imaginary part of
such products individually (see further details in Sec. 4).

For any algebraic solution-Ansatz, the initial standard-
assumption states that the moduli|b1| , |b2| , . . . , |bN | are al-
readyknownfrom a certain subset of ‘diagonal’ observables.
Then, a suitable minimal set ofrelative phasesφij := φi−φj

(for bj = |bj | eiφj ) has to be determined. Deriving a gen-
eral solution-theory for arbitraryN is very difficult in the
Oα-basis, but in theb∗j bi-basis a standard solution exists:
Moravcsik’s theorem [29, 32]. In the following, we outline
the road to this theorem.

3. Ambiguities and consistency relations

The real part of a general bilinear productb∗j bi is written as
Re

[
b∗j bi

]
= |bi| |bj |Re

[
eiφij

]
= |bi| |bj | cos φij . Applying
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FIGURE 1. The basic amplitude-extraction problem defined in Sec. 2 is illustrated for the simple case ofN = 2 amplitudes. A complete
experiment can fix all the amplitudes uniquely in case a phase-convention is imposed (left), however the real solution has one unknown
overall phaseφ(W, θ) which cannot be determined by the complete experiment (right).

FIGURE 2. The basic discrete ambiguities discussed in Sec. 3 are illustrated. These are the ‘cosine-type’ ambiguity resulting from Re
[
b∗j bi

]
(left), as well as the ‘sine-type’ ambiguity stemming from Im

[
b∗j bi

]
(right).

thearccos function, we see that the relative phaseφij is fixed
up to the discrete phase-ambiguity [28,29]

φij −→ φ±ij =

{
+αij ,

−αij ,
(4)

whereαij ∈ [0, π] is determined uniquely fromRe
[
b∗j bi

]
and the known moduli. We call the discrete ambiguity result-
ing from the real part a ‘cosine-type’ ambiguity and illustrate
it in Fig. 2, on the left. Such a type of discrete ambiguity is
sometimes also called aquadrant ambiguity.

Similarly, the imaginary part readsIm
[
b∗j bi

]
=

|bi| |bj | sinφij , which implies the discrete ambiguity [28,29]

φij −→ φ±ij =

{
+αij ,

π − αij ,
(5)

with a uniquely specifiedαij ∈ [−π/2, π/2]. This ambiguity
is also of the quadrant type. We call it ‘sine-type’ ambiguity
and illustrate it in Fig. 2, on the right.

For a general problem withN amplitudes, the number of
ambiguous solutions implied by Eqs. (4) and (5) grows ex-
ponentially withN . The question thus arises whether one
can impose additional constraints in order to reduce the num-
ber of ambiguous solutions. Such constraints can indeed be

found in so-calledconsistency relations[27–29,32]. The lat-
ter are quite natural constraints for the relative phases of an
arrangement ofN amplitudes in the complex plane and we
illustrate them geometrically in Fig. 3. On the left of Fig. 3,
we show an example forN = 4 amplitudes and for this,
the consistency relation corresponding to the figure reads:
φ12 + φ23 + φ34 + φ41 = 0 (up to addition of multiples
of 2π). In the general case (cf. right-hand-side of Fig. 3), a
generic consistency relation reads [29,30,32]

φ1i + φij + . . . + φpq + φq1 = 0. (6)

Moravcsik’s theorem [29,32], which will be discussed in the
next section, is now simply a systematic study of a combina-
tion of the discrete ambiguities (4) and (5) with consistency
relations. One wishes to determine when the different cases
for a consistency relation implied by the ambiguities,i.e.

φ±1i + φ±ij + . . . + φ±pq + φ±q1 = 0, (7)

are (linearly) independent of each other. In case full in-
dependence of all relations is achieved, the solution of the
amplitude-extraction problem becomes unique.
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FIGURE 3. The consistency relations discussed in Sec. 3 are illustrated forN = 4 amplitudes (left) and for the case of arbitraryN (right).

FIGURE 4. For photoproduction (N = 4 amplitudes, see Sec. 5), the three relevant start-topologies are shown (figures from Ref. [29]).

4. The modified form of Moravcsik’s theorem

The original theorem developed by Moravcsik [32] has been
reexamined and slightly modified recently [29]. The theorem
is formulated in the following ‘geometrical analog’ [32]:

We represent every amplitudeb1, . . . , bN by
apointand every productb∗j bi, or rel.-phaseφij ,
by a line connecting points‘ i’ and ‘j’. Further-
more, we represent every real part Re

[
b∗j bi

] ∝
cos φij by asolid lineand every imaginary part
Im

[
b∗j bi

] ∝ sin φij by adashed line.

The thus constructed graph isfully complete(i.e. the solution
of the amplitude-extraction problem is unique) if it satisfies:

(i) The graph is fullyconnectedand all points have to have
order two(i.e. are attached to two lines). In this case,
all continuous ambiguities are resolvedi and the exis-
tence of aconsistency relationis ensured.

The graphs required here are what Moravcsik calls
the ‘most economical’ [32] possibility and thus in
some sense a convenience. The number of relevant
graph-topologies of this type is(N − 1)!/2, for arbi-
traryN ≥ 3.

(ii) The graph has to have anoddnumber of dashed lines,
as well asany number of solid lines. In this case, all
discrete ambiguities are resolved as well.

This theorem is proven in all generality in Appendix A of
Ref. [29]. In the following, we apply it to some examples.

5. Applications: photo- and electroproduction

For single-meson photoproduction,N = 4 amplitudes are
accompanied byN2 = 16 observables [27] (definitions for
the observables are collected in Table I). The16 observ-
ables can be subdivided into4 shape-classes: one class con-
tains the four ‘diagonal’ observables

{
σ0, Σ̌, Ť , P̌

}
, which

uniquely fix the moduli|b1| , . . . , |b4|, and furthermore there
exist the three non-diagonal shape-classes of beam-target
(BT ), beam-recoil (BR) and target-recoil (T R-) observ-
ables, which show a very similar mathematical structure. In
order to apply Moravcsik’s theorem (Sec.4.), the latter three
shape-classes need to be further decoupled by defining [29]:

Õn
1± :=

1
2

(On
1+ ±On

1−
)

, Õn
2± :=

1
2

(On
2+ ±On

2−
)
, (8)
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FIGURE 5. One example for the fully complete graphs according to the modified form of Moravcsik’s theorem (cf. Sec. 4), which can be
derived from topology1 in Fig. 4, is shown. The implied cosines and sines of relative phases are indicated as well.

TABLE I. The16 polarization observables in pseudoscalar meson photoproduction (cf. Ref. [27]) are written here in terms of transversity-
amplitudesb1, . . . , b4. The non-diagonal observables are given in the symbolic notationOn

ν± by Nakayama (cf. Ref. [28]), as well as in the
more commonly used notation (rightmost names). The subdivision into4 shape-classes, with corresponding relative-phases, is indicated.

Observable Relative-phases Shape-class

σ0 = 1
2

(|b1|2 + |b2|2 + |b3|2 + |b4|2
)

−Σ̌ = 1
2

(|b1|2 + |b2|2 − |b3|2 − |b4|2
) S = D

−Ť = 1
2

(− |b1|2 + |b2|2 + |b3|2 − |b4|2
)

P̌ = 1
2

(− |b1|2 + |b2|2 − |b3|2 + |b4|2
)

Oa
1+ = |b1| |b3| sin φ13 + |b2| |b4| sin φ24 = Im [b∗3b1 + b∗4b2] = −Ǧ

Oa
1− = |b1| |b3| sin φ13 − |b2| |b4| sin φ24 = Im [b∗3b1 − b∗4b2] = F̌ {φ13, φ24} a = BT = PR

Oa
2+ = |b1| |b3| cos φ13 + |b2| |b4| cos φ24 = Re [b∗3b1 + b∗4b2] = −Ě

Oa
2− = |b1| |b3| cos φ13 − |b2| |b4| cos φ24 = Re [b∗3b1 − b∗4b2] = Ȟ

Ob
1+ = |b1| |b4| sin φ14 + |b2| |b3| sin φ23 = Im [b∗4b1 + b∗3b2] = Ǒz′

Ob
1− = |b1| |b4| sin φ14 − |b2| |b3| sin φ23 = Im [b∗4b1 − b∗3b2] = −Čx′ {φ14, φ23} b = BR = AD

Ob
2+ = |b1| |b4| cos φ14 + |b2| |b3| cos φ23 = Re [b∗4b1 + b∗3b2] = −Čz′

Ob
2− = |b1| |b4| cos φ14 − |b2| |b3| cos φ23 = Re [b∗4b1 − b∗3b2] = −Ǒx′

Oc
1+ = |b1| |b2| sin φ12 + |b3| |b4| sin φ34 = Im [b∗2b1 + b∗4b3] = −Ľx′

Oc
1− = |b1| |b2| sin φ12 − |b3| |b4| sin φ34 = Im [b∗2b1 − b∗4b3] = −Ťz′ {φ12, φ34} c = T R = PL

Oc
2+ = |b1| |b2| cos φ12 + |b3| |b4| cos φ34 = Re [b∗2b1 + b∗4b3] = −Ľz′

Oc
2− = |b1| |b2| cos φ12 − |b3| |b4| cos φ34 = Re [b∗2b1 − b∗4b3] = Ťx′

for n = a, b, c. One can isolate, for example:Im [b∗4b2] =
|b2| |b4| sin φ24 = Õa

1− = (1/2)
(Oa

1+ −Oa
1−

)
=

(1/2)
(−Ǧ− F̌

)
. For N = 4, one has to con-

sider (N − 1)!/2 = 3 connected graph-topologies
(cf. Fig. 4). One example for a fully complete graph derived
from the first topology is shown in Fig. 5, where the corre-
sponding sines and cosines of relative phases are shown as
well. Combining the definitions (8) with Table I, one can see
quickly that the graph in Fig. 5 corresponds to the observable-
set

{
Ě, Ȟ, Ľx′ , Ťz′ , Ľz′ , Ťx′

}
, which forms a complete set

of 10 when combined with the four ‘diagonal’ observables.
Investigating further all possible graphs with an odd number
of dashed lines derived from each of the3 start-topologies,12

complete sets composed of10 observables were found in
Ref. [29], each containing two observables more than the ab-
solutely minimal number of2N = 8.

For electroproduction (N = 6) [33], the N2 =
36 observables can be subdivided into10 shape-classes
and 6 ‘diagonal’ observables fix the moduli|b1| , . . . , |b6|.
When applying Moravcsik’s theorem (Sec. 4) to each of
the (N − 1)!/2 = 60 relevant graph-topologies (see fig-
ures in Ref. [29]), one obtains776 complete sets in total,
with a minimum length of13 observables [29]. This is still
one observable more than the absolutely minimal number
of 2N = 12.
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FIGURE 6. One example for the fully complete graphs according to the new criterion using graphs with directional information (cf. Sec. 6
and Ref. [30]), which can be derived for single-meson photoproduction (N = 4 amplitudes), is depicted. The implied complete set with
2N = 8 observables is indicated as well.

FIGURE 7. Left: An example-graph for two-meson photoproduction (N = 8 amplitudes) is shown (figure taken from Ref. [35]), which is
fully complete according to the modified form of Moravcsik’s theorem (cf. Sec. 4). Right: A fully connected example-topology is shown for
the problem of vector-meson photoproduction (N = 12 amplitudes).

6. New ‘directional’ graphs

In order to reduce the mismatch between the results of
Moravcsik’s theorem and the absolutely minimal length
of 2N observables in a complete set (cf. Sec. 5), new graphs
have been proposed in Ref. [30], which contain additional di-
rectional information. The new completeness criterion for
these graphs makes heavy use of the repeating mathemat-
ical structure of non-diagonal ‘shape-classes of4’ (cf. Ta-
ble I). One example for a ‘directional’ graph for photopro-
duction (N = 4), as well as a corresponding complete set, is
shown in Fig. 6. The new graphs contain [30]:

- Single-lined arrows, which have the same meaning as
in Moravcsik’s theorem (Sec. 4).

- Double-lined arrows denoting ‘crossed’ selections of
observable-pairs,i.e.On

1± ⊕ On
2± (e.g.:

(On
1+,On

2+

)
).

- An ‘outer’ direction which is in direct correspondence
to a directional convention for indices appearing in the
consistency relation. For the graph in Fig. 6, the con-
sistency relation reads:φ12 + φ24 + φ43 + φ31 = 0.

- The direction of smaller ‘inner’ arrows inside of
double-lined arrows, which specifies the sign of ‘ζ-
angles’ appearing in the formulas for discrete phase-
ambiguities (see [30]). Theζ-angles are important for
removing dependencies among consistency relations.

⇒ The graph in Fig. 6, for example, is complete because
the ‘inner’ arrows both point opposite to the bigger
double-lined arrows (cf. explanations in Ref. [30]).

Using these new graphs,60 known complete sets of mini-
mal length2N have been re-derived for photoproduction and
1216 new such sets have been found for electroproduction
(see Ref. [30]). Reactions withN > 6 amplitudes likely re-
quire new and more involved algebraic derivations [30].

7. Problems withN > 6 amplitudes

The graphical methods discussed up to this point show their
real utility once applied to problems with larger numbers of
amplitudes, for instanceN > 6. The connectedness of the
graphs automatically removes continuous ambiguities and it

Supl. Rev. Mex. Fis.3 0308065
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ensures the possibility to write down a consistency relation,
two tasks which can become rather awkward when done ‘by
hand’ for problems with higherN .

For two-meson photoproduction (N = 8) [34], the se-
lection of complete sets from the full set ofN2 = 64 ob-
servables proceeds via(N − 1)!/2 = 2520 connected start-
topologies. One example for a fully complete graph accord-
ing to Moravcsik (Sec. 4) is shown in Fig. 7, on the left. In
Ref. [35], it was found that the Moravcsik-complete sets for
this problem contain at least24 observables. Numerical as
well as algebraic methods were than applied to reduce these
sets to the minimal length of2N = 16. For more details on
applications to two-meson photoproduction, see the contribu-
tion [36] to this conference.

For vector-meson photoproduction (N = 12) [37], one
examplary connected start-topology is shown in Fig. 7,
on the right. The graphical solution to this problem can

be automated on a computer, even though the number
of (N − 1)!/2 = 19958400 connected start-topologies may
look a bit intimidating. Vector-meson photoproduction is a
possible future option for applications of the methods pre-
sented here.

8. Conclusions and Outlook

Graphical methods for the determination of complete experi-
ments have been discussed. These methods have reproduced
already known results for reactions with relatively few spin
amplitudes,e.g. single-meson photoproduction (N = 4 am-
plitudes). The real power of such graphical methods lies in
their capability to derive complete sets for more complicated
reactions,i.e. with higher numbers ofN > 6 spin ampli-
tudes, where these methods should be applied in order to help
plan future measurements in baryon spectroscopy.

i. This means that the connectedness requirement forbids com-
binations of relative-phases corresponding to multiple discon-
nected sub-sets of amplitudes in the complex plane, which can
rotate freely relative to each other.
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