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Ramanujan summation and the Casimir effect
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Apartado Postal 70-543, 04510 Ciudad de México, Ḿexico
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Srinivasa Ramanujan was a great self-taught Indian mathematician, who died a century ago, at the age of only 32, one year after returning
from England. Among his numerous achievements is the assignment of sensible, finite values to divergent series, which correspond to
Riemann’sζ-function with negative integer arguments. He hardly left any explanation about it, but following the few hints that he gave,
we construct a direct justification for the best known example, based on analytic continuation. As a physical application of Ramanujan
summation we discuss the Casimir effect, where this way of removing a divergent term corresponds to the renormalization of the vacuum
energy density, in particular of the photon field. This leads to the prediction of the Casimir force between conducting plates, which has now
been accurately confirmed by experiments. Finally, we review the discussion about the meaning and interpretation of the Casimir effect. This
takes us to the mystery surrounding the magnitude of Dark Energy.

Keywords:Ramanujan summation; Casimir effect; renormalization;ζ-function; dark energy.

DOI: https://doi.org/10.31349/SuplRevMexFis.3.020705

We present some remarks about Ramanujan summation,
the Riemannζ-function and its application to the Casimir ef-
fect, following the lines of our detailed review [1].

1. Ramanujan summation

Srinivasa Ramanujan was a great Indian genius of mathemat-
ics, an autodidact, who discovered numerous amazing for-
mulae. He was born in 1887 in Erode and grew up in Kum-
bakonam, two towns in Eastern Indiai.

After finishing High School he moved to Madras (today
Chennai), where he lived in extreme poverty. He was not
admitted to university, but he started to elaborate stunning
mathematical formulae, often dealing with series. Impressed

FIGURE 1. Srinivasa Ramanujan (1887–1920).

by his achievements, the prominent British mathematician
Godfrey Hardy invited him to Cambridge UK from 1914–
19. Hardy described Ramanujan’s discoveries as a “process
of mingled argument, and intuition”.

An example is the following sequence of approximations
to the numberπ,
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with an extremely fast convergence: forN = 0, 1, 2 . . . one
obtains|π − πN | = O(10−8(N+1)).

One of Ramanujan’s famous achievements, which caused
— and still causes — confusion, was the assignment of finite
values to divergent series. Here are three examples, which he
wrote down in a notebook [2], and also in the first letter that
he sent to Hardy when he still lived in Madrasii,
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This may look strange, but Hardy recognized the values of
Riemann’sζ-function. ForRe z > 1 it is given by

ζ(z) =
∞∑

n=1

1
nz

. (3)

i I thank T.R. Govindarajan for precise information; this was not accurate in Ref. [1].

ii We write=̂ for “associated with”, whereas Ramanujan shocked people by writing a straight equal sign.
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Back in the 19th century, Bernhard Riemann had performed
the analytic continuation toz ∈ CI − {1} [3]. It can be sum-
marized with the identity

ζ(z) =
(2π)z

π
sin

(πz

2

)
Γ(1− z)ζ(1− z) , (4)

which implies in particular

ζ(−k) = −Bk+1

k + 1
, k ∈ N , (5)

which coincides with Eqs. (2) for k = 0, 1, 2. Bk+1 are the
Bernoulli numbers (with the conventionB1 = 1/2).

Best known is the case ofR =̂ ζ(−1), where Ramanujan
only documented two intermediate steps [2],

E := 1− 2 + 3− 4 + 5 . . . =̂
1
4

R− E =̂ 4 + 8 + 12 + . . . =̂ 4R ⇒ R =̂ − 1
12

. (6)

This looks like uncontrolled operations on divergent series,
but the sensible results — in three cases, cf. Eqs. (2) — can-
not be by accident. Ramanujan mostly worked on a slate,
he wrote down only little on paper, which was expensive.
We can only speculate about his undocumented intermediate
steps. Here we present a reasoning, which follows the lines
of Eqs. (6) and clarifies the meaning ofR. It invokes analytic
continuation, which is the only valid justification.

Let us consider|z| < 1, and the limitz → −1, for
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The original series (on the left) only converge for|z| < 1, but
we arrive at holomorphic (complex analytic) functions, with
unique analytic continuations toCI − {1}. G(z) is the famil-
iar geometrical series, and in its derivativeG′(z) the seriesR
requiresz → 1, which is singular. We regularizeR in two
more ways, again at|z| < 1,

R1(z) = 1− 2z + 3z2 − 4z3 · · · = 1
(1 + z)2

,

R2(z) = 1 + 2z2 + 3z4 + 4z6 · · · = 1
(1− z2)2

,

with divergent limitsR1,2(z → −1). However, in the linear
combination

R1(z) + 4zR2(z) = G′(z)

the poles in the Laurent series ofz = −1 + ε cancel. We ob-
tain(1/4)+O(ε), so now the analytic continuation toz = −1
works,

R− 4R =̂
1
4

⇒ R =̂ − 1
12

. (8)

FIGURE 2. A symbolic illustration of the leading standing waves
between two Dirichlet boundaries in one spatial dimension, sepa-
rated by some distanced.

In Ref. [1] we also derivedζ(0) = −1/2 in a similar
way. For a general and systematic discussion of Ramanujan
summation we refer to Ref. [4].

Is this just mathematical entertainment? No, it applies
to quantum field theory: for a suitable system, Ramanujan
summation removes a counter-term in a physically sensible
manner, and provides renormalized results. In particular, it
predicts a force, which has now been experimentally mea-
sured, but let us begin with a toy model.

2. The 1d Casimir effect

The Casimir effect was first predicted in Ref. [5], but here we
follow the point of view which Hendrik Casimir (1909–2000)
expressed a little later [6], after a discussion with Niels Bohr.
For comprehensive overviews, we refer to Refs. [7,8].

As a toy model, we first consider a free, massless, neu-
tral scalar field in one spatial dimension,φ(t, x) ∈ R. We
impose Dirichlet boundaries atx = 0 andd, which enforce
φ(t, 0) = φ(t, d) = 0. Inside this interval, the configura-
tions can be expanded in terms of standing waves, as symbol-
ically illustrated in Fig. 2, with wave numberskn = nπ/d,
n = 1, 2, 3 . . . , and ground state energiesEn = (1/2)kn (in
natural units,~ = c = 1).

In the interval[ 0, d ] we obtain the bare (ρ) and the renor-
malized (ρr) vacuum energy density,

ρ(d) =
1
2d

∑

n≥1

kn =
π

2d2

∑

n≥1

n =̂ − π

24d2
= ρr(d) . (9)

Hence, the renormalized energy between the boundaries
amounts toEr(d) = d ρr(d). If we consider the boundary
atd as flexible, we obtain the forceFr(d) acting on it,

Fr(d) = −E′
r(d) = − π

24d2
. (10)
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We see that the boundaries areattractedto each other.
In the last step of Eq. (9) we have applied Ramanujan

summation: it amounts to subtracting thecounter-termρ(∞),
which provides therenormalizedenergy density and force.

To confirm this property, notice that forρ(∞) the sum
over the modeskn turns into an integral. Hence the renormal-
ized energy densityρr(d) emerges as the difference between
a sum and an integral, which can be expanded with the Euler-
Maclaurin formula, seee.g.Ref. [10]. Ref. [1] discusses in
detail how this leads to the result in Eq. (9) — in agreement
with Ramanujan summation, in particular withR =̂ − 1/12,
the famous result that we re-derived in Sec. 1.

The application of the Euler-Maclaurin formula requires
some regularization (with several ingredients), but the final
result confirms Eq. (5), and therefore also Eqs. (2) and (9),
for any choice of the regularization (if certain conditions are
fulfilled); this is a generic feature of renormalizationiii.

If we want to safely exclude effects from the vacuum en-
ergyoutsidethe given interval, we can assume three Dirichlet
boundaries, where only the central one (the “piston”) is flexi-
ble. This is also discussed in Ref. [1], and it justifies the form
of the renormalized force in Eq. (10).

3. 3d Casimir effect of a photon field

Let us proceed to a realistic setting in 3 spatial dimensions: it
consists of two parallel plates, which are (perfectly or at least

FIGURE 3. Set-up for the phenomenological Casimir effect be-
tween two conducting plates. For this setting, the Casimir force
was first successfully measured in an experiment in Padua [11].

well) conducting, both with areaA, separated by a short dis-
tanced ¿ √

A, as sketched in Fig. 3.

It is a good approximation to consider only the vacuum
energybetweenthe plates,E(d) = Adρ(d), obtained from
the photon ground state energy densityρ(d). In the corre-
sponding formula, we treat the momentum components par-
allel to the plates,k1, k2, as continuous, while the vertical
component is discrete, as in the 1d case of Sec. 2,

E(d) =
A

(2π)2

∫
dk1dk2

∞∑
n=0

√
k2
1 + k2

2 + (πn
d )2
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A
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∞
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(11)

(a factor of 2 accounts for the photon polarizations). In-
finitesimally short waves are not sensitive to the presence
of the plates (at finite separationd). Therefore only the
lower bound,K = 0, contributes to the differenceρr(d) =
ρ(d)− ρ(∞), which leads to

Er(d)
A

=̂− 1
6π

π3

d3
ζ(−3) = − π2

720d3
,

Fr(d) = −E′
r(d) = − π2A

240d4

' −1.3 · 10−7 N
(µm

d

)4 A

cm2
, (12)

where we applied the last Ramanujan sum of Eq. (2). To ar-
rive at a force in terms of Newton (N), we had to insert a fac-
tor ~c, which indicates that we are dealing with a relativistic
quantum effect.

Again, Ramanujan summation provides a renormalized
result, and again the force is attractive, although the signs of
ζ(−1) andζ(−3) are opposite (the lower integral bound at
K = 0 flips the sign once more).

This force was conclusively measured, first in 1997/8,
with about 5% accuracy [12, 13]. In these experiments, the
geometry was a plate and a sphere, because it is very diffi-
cult to keep two plates exactly parallel. The first successful
experiment with parallel plates, as in Fig. 3, was performed
by a collaboration in Padua, Italy [11]. They used paral-
lel silicon stripes with areaA = 1.9 × 1.2 mm, and their
separation varied fromd = 0.5 µm to 3 µm. According to
Eq. (12) this implies an attractive Casimir force of strength
Fr = −4.7 · 10−7 N to−3.7 · 10−10 N. This force could be
measured by using a fiber-optic interferometer, and monitor-
ing the shift in the resonator frequency.

iii Of course, in the case of interacting fields, renormalization takes more than subtracting a divergent term, seee.g.Ref. [9]. In general
one assigns renormalized, energy-dependent values to the fields and their couplings.
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4. Interpretation of the Casimir Effect

What kind of force is this? At first sight, it does not seem to
be part of the interactions described by the Standard Model.
However, since it refers to the photon field, this effect must
be electromagnetic,i.e. a facet of Quantum Electrodynamics
(QED)iv. What seems strange, however, is that the coupling
α did not appear in the considerations of Sec. 3. We will
come back to this puzzle in Subsec. 4.1.

The Casimir force was derived from the QED vacuum en-
ergy density, a quantity, which is not directly observable. So
does its experimental confirmation imply indirect evidence
for the physical existence of the QED vacuum energy? This
is a wide-spread point of view, which is expressede.g.in the
books [7, 8], and the review [14] even writes that the exis-
tence of the vacuum energy density of the photon field “has
been spectacularly demonstrated by the Casimir effect”.

Actually, a direct manifestation of the vacuum energy
density in the Universe does exist. Here we refer to Dark
Energy, which (essentially) corresponds to the Cosmologi-
cal Constant. It provides the most natural explanation for
the accelerated expansion of the Universe, which was ob-
served at the end of the 20th century, and which corresponds
to ρDE ≈ 2 · 10−3 eV4.

One is tempted to relate it toρ(∞), with a cutoff, most
naturally at the Planck scale,EPlanck ' 1.2 ·1028 eV, but the
density obtained is this manner ismuchlarger than the Dark
Energy density. If we truncate the momentum integral at the
Planck scale,

ρ =
1

(2π)3

∫

|k|≤EPlanck

d3k k =
1

8π2
E4

Planck , (13)

we obtain a prediction for the vacuum energy, which is about
121 orders of magnitude too large — perhaps the worst pre-
diction in the history of science — and the reason for this
fiasco is still not well understood (a pedagogical discussion
is given in the appendix of Ref. [15]).

In a world with unbroken supersymmetry, the (posi-
tive) bosonic and (negative) fermionic vacuum energy can-
cel. However, even if one still assumes supersymmetry to
exist, it has to be broken in our low-energy world, such that
this cancellation takes place only in part. One still obtains a
vacuum energy, which is at least 60 orders of magnitude too
large [16], so supersymmetry does not solve the problem.

Just for fun, let us consider the Dark Energy density,
which corresponds to the observation,ρDE, and ask what
cavity between two conducting plates it would take to obtain
the same renormalized vacuum energy density, according to
Eq. (12). Actually the sign is different, so let us consider the

absolute value. The conditionρDE = |ρr(d)| = π2/(720d4)
requires the distanced ≈ 0.3 µm, which happens to be close
to the minimal separation in the Padua experiment.

4.1. Where does the electromagnetic couplingα ap-
pear?

Now let us address the rôle of the electromagnetic coupling
α, as we promised. It was analyzed in particular by Jaffeet
al.; their point of view is summarized in Ref. [17]. They in-
sist that the original picture by Casimir and Polder [5] was the
correct one,i.e. they consider the Casimir force as a purevan
der Waals force.v Jaffe concludes that “Casimir forces can
be computed without reference to zero-point energy”, which
would mean that their observation doesnot imply the physi-
cal existence of the QED vacuum energy.

Jaffe et al. do obtain anα-dependent Casimir force,
Fr(α), with Fr(α = 0) = 0. This seems trivial, but their re-
sult atα →∞ is amazing: they derive a finite Casimir force
in this limit, which coincides withFr in Eq. (12), as obtained
from the vacuum energy consideration. This explains whyα
did not appear there, but then we are left with the question
why this result matches the observations so well. It turns out
that in an experimentally realistic setting, the exact force is
close to this approximation [17],

Fr(α À 10−5) ' Fr(α = ∞) = − π2

240d4
, (14)

which easily holds forα ' 1/137. This picture seems con-
sistent, so is the effect de-mystified?

4.2. Are there repulsive Casimir forces?

There are objections against the latter point of view, which
are expressede.g.by Lamoreaux [12]. He insists that Casimir
force and van der Waals force are conceptually different, be-
cause “the van der Waals force is always attractive, whereas
the sign of the Casimir force is geometry dependent.”

Indeed, numerous theoretical studies predict a repulsive
Casimir force for certain geometric settings [18], such as spe-
cific parallelepipeds [19]. Jaffeet al. reject the repulsive sce-
nario, and here the discussion enters subtle details [20]. Ref.
[7] approves the equivalence of van der Waals and Casimir
forces, but insists that they can still be repulsive.

A repulsive Casimir force was actually measured in 2009
[21], in agreement with a historic prediction in Ref. [22], but
for materials immersed in a fluid. Hence the physical exis-
tence ofρQED — in vacuum — remains an exciting, open
question.

iv In principle it should exist for other fields as well, but if they are massive or self-interacting, the corresponding Casimir effect in a
realistic setting tends to be strongly suppressed or over-shadowed.

v We mean the van der Waals — or London-van der Waals— force in the narrow sense: a collective, induced, (usually) attractive
multi-pole interaction between (electrically neutral) molecules or atoms.
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Since particle physics is very well described by Quantum
Field Theory, one might argue that quantum fields — and
therefore also the QED vacuum — are practically inevitable.
However, the Casimir force was also derived with a Green’s
function technique, in the framework of QED,withoutrefer-
ring to the QED vacuum energy density [23].

Of course, the question whether or notρQED exists is usu-
ally irrelevant — in general we only care about energydiffer-
ences, so an additive constant does not matter. An exception
is the expansion of the Universe, andperhaps— depending
on its interpretation — the Casimir effect.

Appendix

A. Photon in a Casimir cavity

An interesting prediction is theScharnhorst effect:it states
that in a Casimir cavity between parallel plates, the speed of
light in vacuum — for photons travelling perpendicular to the

plates — should increase [24]. The predicted effect is so tiny
that it cannot be experimentally tested — for instance for a
plate separation of 1µm the relative increase would be of
O(10−32). Still it led to a discussion if this could — in prin-
ciple — lead to a causality paradox. This issue is reviewed
and extensively discussed in Ref. [25].

We end with a simpler question: does a photon, which
passes through a Casimir cavity (for instance parallel to the
plates) change its energy, in the spirit of Bernoulli’s Principle
in fluid dynamics?
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