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A general outlook is presented on the study of multiloop topologies appearing for the first time at four loops. A unified description and
representation of this family is provided, the so-called N4MLT universal topology. Based on the Loop-Tree Duality framework, we discuss
the dual opening of this family and expose the relevance of a causal representation. We explore an alternative procedure for the search of
causal singular configurations of selected N4MLT Feynman diagrams through the application of a modified Grover’s quantum algorithm.
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1. Introduction

Precision modelling in particle physics is strongly supported
by perturbative Quantum Field Theory, hence the importance
of progressing towards higher perturbative orders. One of
the most relevant difficulties in the topic is the description
of quantum fluctuations at high-energy scattering processes.
Taking into account that computation of multiloop scatter-
ing amplitudes requires an appropriate treatment of loop di-
agrams, we based the multiloop topology analysis on the
Loop-Tree Duality (LTD) formalism [1–7].

The LTD is an innovative technique that opens any loop
diagram into a sum of connected trees having as main prop-
erty the integrand-level distinction between physical and
nonphysical singularities [8, 9]. Since the introduction of
this formalism, a great effort has been dedicated to under-
stand it in depth, and many interesting features have been
found [10–18]. Two important applications were addressed
through the LTD: local renormalization strategies [19,20] and
the cross-section computation in four space-time dimensions
at integrand level through the Four Dimensional Unsubtrac-
tion [21–24].

Recently, a significant development was presented, a
manifestly causal LTD reformulation to all orders [25]. The
strategy adopted was based on the application of nested
residues [26] which allows to find more compact and man-
ifestly causal dual expressions. The analysis considered a
selected set of multiloop topologies, those appearing for the
first time at one loop, two loops (MLT) and three loops
(NMLT and N2MLT). Since then, LTD has undergone a re-
markable and exciting evolution [27–33].

This paper presents an overview of the study of multi-
loop topologies that first appear at four loops (N4MLT) [32],
including a unified representation, the dual opening and the
causal representation. Related to the causal LTD representa-

tion, we explore the application of a modified Grover’s quan-
tum algorithm [33] to solve the problems associated to the
identification of singular causal configurations of the N4MLT
topologies.

2. Loop-Tree Duality

A general scattering amplitude withP external legs is written
in accordance with Refs. [32,33] as

A(L)
F =

∫

`1,...,`L

N ({`s}L, {pj}P )
n∏

i=0

GF (qi) , (1)

where the integration measure in dimensional regulariza-
tion [34,35] is denoted as

∫

`s

= −ıµ4−d

∫
dd`s

(2π)d
,

with d the number of space-time dimensions.
At one loop, the LTD representation is obtained applying

the Cauchy’s residue theorem to Eq. (1),i.e., integrating over
one component of theL loop momenta. Having a multiloop
scattering amplitude scenario, the LTD representation is cal-
culated based on the evaluation of nested residues [25,26],

A(L)
D (1, . . . , r; r + 1, . . . , n) = −2πı

∑

ir∈r

Res(A(L)
D

× (1, . . . , r − 1; r, . . . , n), Im(η · qir ) < 0) , (2)

where the arguments to the left of the semicolon represent the
sets containing an on-shell propagator and the ones located to
the right are those with all the propagators off-shell. The fu-
turelike vectorη indicates the loop momenta component to
be integrated, in our case the selection isηµ = (1,0).
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FIGURE 1. Representative diagrams of the N4MLT family. From
left to right the diagrams correspond to thet, s andu channels.

Integrating over the energy component gives the advantage
of working in the Euclidean integration domain of the loop
three-momenta space instead of a Minkowky space.

3. N4MLT topology

The loop topologies appearing for the first time at four loops
correspond to the N3MLT and N4MLT topologies, represent-

ing those withL + 4 andL + 5 sets of propagators respec-
tively. The N4MLT family naturally includes the N3MLT,
and it can be fully studied through three main topologies de-
picted in Fig. 1.

3.1. Universal topology

The topologies shown in Fig. 1 are interpreted as thet-, s- and
u-kinematic channels, enabling to provide a unified descrip-
tion. Given the similarities among the three main topologies
and with the purpose to obtain a general expression, a current
J is defined asJ ≡ 23 ∪ 34 ∪ 24. This statement allows to
merge the three representative topologies into a single one,
the N4MLT universal topologywritten as

A(L)
N4MLT = A(L)

F (1, . . . , L + 1, 12, 123, 234, J) . (3)

The nested residues evaluation of Eq. (3) gives the dual
opening depicted in Fig. 2, and stands as

A(L)
N4MLT(1, . . . , L + 1, 12, 123, 234, J) = A(4)

N4MLT(1, 2, 3, 4, 12, 123, 234, J)⊗A(L−4)
MLT (5, . . . , n)

+A(3)
N2MLT(1 ∪ 234, 2, 3, 4 ∪ 123, 12, J)⊗A(L−3)

MLT (5, . . . , n) , (4)

where the bar indicates the change on the original momentum
flow.

The computation of A(L−4)
MLT (5, . . . , n) and

A(L−3)
MLT (5, . . . , n) in Eq. (4) is according to Ref. [25]. The

termsA(4)
N4MLT andA(3)

N2MLT are opened following a factor-
ization identity described in terms of known subtopologies;
this takes into account all feasible arrangements with four
and three on-shell conditions, respectively.

The LTD representation of the N4MLT topologies are
obtained through the factorized dual expression shown in
Eq. (4). The analytical expressions are provided in Ref. [32],
as it was expected, they satisfy the condition of the absence
of disconnected trees.

FIGURE 2. Illustrative representation of the N4MLT universal
topology dual opening. Only the cut on the last MLT subtopology
is indicated.

3.2. Causal representation

The fundamental distinction between the direct and causal
LTD representations is the presence or absence of noncausal
singularities. The interest in this topic is motivated by the
advantage of working with a causal representation. To ex-
hibit the impact of it, an analysis of a N3MLT diagram is
presented.

In Fig. 3 is shown the integrand of the direct LTD repre-
sentation of a N3MLT diagram as a function ofq(+)

12,0 and

FIGURE 3. Singular behaviour at integrand level of the direct LTD
representation of the N3MLT vacuum diagram.
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FIGURE 4. Numerical performance of direct (left) and causal
(right) N3MLT integrand.

q
(+)
123,0. We can observe the white lines standing for the loca-

tion of noncausal singularities.
For a better understanding of the noncausal thresholds in

Fig. 3, one of the singularities is analized through a compara-
tive between the direct and causal representations. To obtain
the causal representation of the N3MLT vacuum diagram the
procedure exposed in Ref. [28] is followed, having as a key
strategy the search of causal compatibility among four entan-
gled thresholds.

The analysis of the singularity arising from the N3MLT
vacuum diagram is realized by taking the on-shell energy
q
(+)
123,0 as fixed and scanning overq(+)

12,0; the evaluations of
direct and causal N3MLT integrands are illustrated in Fig. 4.
As we can notice, the right plot shows a desirable numerical
stability; the left plot exhibits numerical instabilities coming
from noncausal singularities.

Going forward to the causal representations of the three
main topologies of the N4MLT family, the same procedure is
followed with the particularity that causal compatibility has
to be fulfill among five thresholds. All the explicit results
and details about the causal analysis are fully presented in
Ref. [32].

4. Feynman integrals through a quantum al-
gorithm

A natural association between Feynman loops integrals and
quantum computing is based on the fact that a Feynman prop-
agator can be represented in terms of a qubit. A propagator
has only two possible on-shell states,|1〉 representing those
states with the initial flow configuration and|0〉 for those with
inverse flow orientation. The specific four-loop diagrams an-
alyzed and the initial configuration are shown in Fig. 5.

An important problem to solve in the causal representa-
tion context is the identification of causal singular configura-
tions. An alternative to deal with this difficulty is to under-
stand it from a quantum computing point of view, as a query
over unstructured datasets [36]. The scheme explored was
the application of Grover’s quantum algorithm [37].

Grover’s quantum algorithm relies in three main ingre-
dients: uniform superposition, oracle operator and diffusion
operator.

1. The uniform superposition of theN = 2n possible
states is given by

|q〉 =
1√
N

N−1∑
x=0

|x〉 , (5)

wheren denotes the number of Feynman propagators.
Eq. (5) can also be written as the superposition of the
winning (|w〉) and orthogonal (|q⊥〉) states,

|q〉 = cos θ |q⊥〉+ sin θ |w〉 . (6)

The mixing angle between those states is given by
θ = arcsin

√
r/N , wherer is the number of elements

of the winning state.

2. The oracle operator,Uw = I − 2|w〉〈w|, flips the state
|x〉 if x ∈ w and leaves it unchanged otherwise.

3. The diffusion operator,Uq = 2|q〉〈q| − I, performs a
reflection around the initial state|q〉 in order to amplify
the probability of the winning states.

An iterated application of steps 1 and 3t times leads to
(UqUw)t|q〉 = cos θt |q⊥〉+ sin θt |w〉, with θt = (2t + 1) θ.

To define a proper number of iterations, the mixing angle
plays a crucial role,i.e., the proportion between the num-
ber of elements in the winning states and the total states. If
r ≤ N/4, the standard Grover’s algorithm is a promising
approach, on the contrary, its amplitude amplification perfor-
mance is not satisfactory.

In the case of the N4MLT family, we know from classi-
cal computation that the number of causal singular config-
urations is near half of the total of possible states [32]. A
clever modification to reduce the number of solutions pro-
posed in Ref. [33] is based on the fact that given one causal
solution, the mirror configuration resulting from the momen-
tum flow reversal is also a causal solution. This modification
is achieved by fixing one of the qubits, reducing the number
of solutions by half.

The proposed quantum algorithm requires three registers
with one additional qubit needed as a marker in the Grover’s
oracle. The registerqi stands for the state of then propa-
gators. The second register,|c〉, contains the binary clauses
label ascij or c̄ij . These binary clauses allows to prove if the
flow orientation of two adjacent propagators are in the same
direction and are defined as

FIGURE 5. Selected four-loop topologies. The arrows’ direction
stand for the initial flow configuration of the diagrams.
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cij ≡ (qi = qj), c̄ij ≡ (qi 6= qj) , (7)

with i, j ∈ {0, . . . , n − 1}. Finally, the|a〉 register stores
loop clauses. These are used to validate if all subloop con-
figurations form a cyclic circuit applying a multi-Toffoli gate
comparing qubits from|c〉.

The general structure of the algorithm is described below:

• The starting point is to initialize the registers described
above. First of all, the uniform superposition is ap-
plied to the qubits encoding the propagators through
the Hadamard gate,|q〉 = H⊗n|0〉. The registers
|a〉, |c〉 are set to|0〉 and the qubit associated to the
Grover’s marker is set to the Bell state,|out0〉 =
(|0〉 − |1〉) /

√
2.

• To compare two adjacent lines,c̄ij needs two CNOT
gates which operate betweenqi, qj and a qubit in the
|c〉 register. If the binary clause to be implemented is
cij , an extra XNOT gate is required to perform on the
corresponding qubit in|c〉.

• The oracle operator requires a function,f(a, q), de-
fined in such a way that if the winning state conditions
are satisfied thenf(a, q) = 1, if not f(a, q) = 0. In
addition to the causal restrictions, this function consid-
ers an arbitrary qubit as fixed. Once this function has
been set, the oracle is applied as

Uw|q〉|c〉|a〉|out0〉 = |q〉|c〉|a〉|out0 ⊗ f(a, q)〉, (8)

with

|out0 ⊗ f(a, q)〉 =

{−|out0〉, if q ∈ w

|out0〉, if q 6∈ w
, (9)

After marking the causal states the operations of the
oracle are implemented in reverse order.

• Before measuring, the diffuser operator is applied
to |q〉. This operator is taken from the doc-
umentation provided in the IBM Qiskit website
(https://qiskit.org/ ).

The adapted Grover’s quantum algorithm was applied to
the multiloop N3MLT, t, s andu channels shown in Fig. 5.
The implementation was performed on the IBM’s quantum
simulator provided by Qiskit framework (upper limit 32
qubits). For theu channel the algorithm required 33 qubits,

more than Qiskit capacity. In this case the algorithm was
implemented within QUTE Testbed framework [38].

The proposed algorithm successfully identified all the
causal singular configurations. To expose the performance
of the algorithm, in Fig. 6 is shown the output of the proba-
bilities of the causal singular states associated to the N3MLT
diagram.

FIGURE 6. Causal states probabilities for N3MLT.

5. Conclusions

There has been analyzed an extension in complexity of the
LTD reformulation enabling to obtain a general expression
to describe any scattering amplitude up to four loops, the
N4MLT universal topology.

The dual opening of the universal topology is ex-
pressed in a very compact way as a factorization of simpler
subtopologies. It is known that the direct LTD representation
can be rewritten in terms of only causal propagators, further-
more, interpreting them in terms of entangled thresholds is
the key to extract the causal LTD representation. It was em-
phasized the importance of the causal representation, show-
ing a desirable efficiency over numerical evaluation of multi-
loop scattering amplitudes.

A modified Grover’s quantum algorithm has been applied
to the N3MLT and N4MLT topologies, obtaining the causal
singular configurations of the selected multiloop Feynman in-
tegrals. The application of quantum algorithms related to the
LTD formalism is a promising tool that we intend to explore
further in order to improve the computation of multiloop scat-
tering amplitudes.
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