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A general outlook is presented on the study of multiloop topologies appearing for the first time at four loops. A unified description and
representation of this family is provided, the so-callétW\T universal topology. Based on the Loop-Tree Duality framework, we discuss

the dual opening of this family and expose the relevance of a causal representation. We explore an alternative procedure for the search ¢
causal singular configurations of selectet MLT Feynman diagrams through the application of a modified Grover’s quantum algorithm.
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1. Introduction tion, we explore the application of a modified Grover's quan-
tum algorithm [33] to solve the problems associated to the

Precision modelling in particle physics is strongly supportedgentification of singular causal configurations of tHEVLT
by perturbative Quantum Field Theory, hence the importancgypologies.
of progressing towards higher perturbative orders. One of
the most relevant difficulties in the topic is the description .
of quantum fluctuations at high-energy scattering processeg.' Loop-Tree Duality
_Takmg ”?to account_ ke computau_o n of muliiloop scatter-_A general scattering amplitude wifhexternal legs is written
ing amplitudes requires an appropriate treatment of loop dli-n accordance with Refs. [32,33] as
agrams, we based the multiloop topology analysis on the B
Loop-Tree Duality (LTD) formalism [1-7]. (L) n

The LTD is an innovative technique that opens any loop Ap” = / N{ls}e: pjtr) H Grlg), (@)
diagram into a sum of connected trees having as main prop- lryelr, =0
erty the integrand-level distinction between physical andyhere the integration measure in dimensional regulariza-
nonphysical singularities [8, 9]. Since the introduction of [34,35] is denoted as

this formalism, a great effort has been dedicated to under-

stand it in depth, and many interesting features have been _ 4 dies
found [10-18]. Two important applications were addressed - (2m)d’
through the LTD: local renormalization strategies [19,20] and Ls

the cross-section computation in four space-time dimensiongith ¢ the number of space-time dimensions.

at integrand level through the Four Dimensional Unsubtrac- At one loop, the LTD representation is obtained applying

tion [21-24]. the Cauchy'’s residue theorem to Eq. (1§, integrating over
Recently, a significant development was presented, @ne component of thé loop momenta. Having a multiloop

manifestly causal LTD reformulation to all orders [25]. The scattering amplitude scenario, the LTD representation is cal-

strategy adopted was based on the application of nestegjjated based on the evaluation of nested residues [25, 26],
residues [26] which allows to find more compact and man-

ifestly causal dual expressions. The analysis considered a A(DL>(1, o rr+l0n) = —2m Z Res(ASDL)

selected set of multiloop topologies, those appearing for the irer

first time at one loop, two loops (MLT) and three loops X (1,...,r—Lr,....n),Im(n-q,) <0), (2
(NMLT and N?MLT). Since then, LTD has undergone a re-

markable and exciting evolution [27-33]. where the arguments to the left of the semicolon represent the

This paper presents an overview of the study of multi-sets containing an on-shell propagator and the ones located to
loop topologies that first appear at four loops EN_T) [32], the right are those with all the propagators off-shell. The fu-
including a unified representation, the dual opening and théurelike vectorn indicates the loop momenta component to
causal representation. Related to the causal LTD representae integrated, in our case the selectionfs= (1, 0).
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' ing those withL + 4 and L + 5 sets of propagators respec-

1
L 0 123 1 Q 123 1 123 tively. The N*MLT family naturally includes the RMLT,
» 4 @”Q and it can be fully studied through three main topologies de-
0 ‘ A picted in Fig. 1.
v v v 3.1. Universal topology

FIGURE 1. Representative diagrams of thé MLT family. From The topologies shown in Fig. 1 are interpreted agthe and
left to right the diagrams correspond to the andu channels. u-kinematic channels, enabling to provide a unified descrip-

) ) tion. Given the similarities among the three main topologies
Integrating over the energy component gives the advantagg,d with the purpose to obtain a general expression, a current
of working in the Euclidean integration domain of the l00p j is defined as/ = 23 U 34 U 24. This statement allows to
three-momenta space instead of a Minkowky space. merge the three representative topologies into a single one,

the N*MLT universal topologyvritten as
3. N!MLT topology
AL = AP, L +1,12,123,234,0) . (3)
The loop topologies appearing for the first time at four loops
correspond to the AWLT and N*MLT topologies, represent- The nested residues evaluation of EB). gives the dual
|  opening depicted in Fig. 2, and stands as

L 4 L—4
AL (1 D +1,12,123,234,0) = A 1(1,2,3,4,12,123,234, ) @ ALY (5, n)
+AD L (10234,2,340123,12,0) 0 AP B, ), (4)

where the bar indicates the change on the original momentu1n
flow.

The computaton of A\ Y(5,...,n) and 3.2. Causalrepresentation

L-3) %= — AN .
Al(VILT)((i’)' +om) N E(E) ) is according to Ref. [25]. The The fundamental distinction between the direct and causal
terms.Ayiyr and Ay ypp @re opened following a factor- | 1 representations is the presence or absence of noncausal
ization identity described in terms of known subtopologies;gingyjarities. The interest in this topic is motivated by the
this takes into account_a_lll feasible arrangements with fo”'éldvantage of working with a causal representation. To ex-
and three on-shell conditions, respectively. hibit the impact of it, an analysis of a3MLT diagram is

The LTD representation of the “NILT topologies are presented.
obtained through the factorized dual expression shown in In Fig. 3 is shown the integrand of the direct LTD repre-
Eq. @). The analytical expressions are provided in Ref. [32],sentation of a RMLT diagram as a function oﬁg)o and
as it was expected, they satisfy the condition of the absence
of disconnected trees. 10f

= 0.000025

0.000020

0.000015

0.000010

4
;

5.x1076

FIGURE 2. lllustrative representation of the “MILT universal
topology dual opening. Only the cut on the last MLT subtopology FIGURE 3. Singular behaviour at integrand level of the direct LTD
is indicated. representation of the MALT vacuum diagram.
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1. The uniform superposition of th& = 2" possible
states is given by

1 N—1
9) = 7 go |z, (5)

1.0620058x10™°
1.0620058x10™°

wheren denotes the number of Feynman propagators.
Eqg. (5) can also be written as the superposition of the
winning (w)) and orthogonal|g )) states,

aizo

FIGURE 4. Numerical performance of direct (left) and causal lg) = cos@lg,) +sinf|w) . (6)
(right) N*MLT integrand.
The mixing angle between those states is given by

qgg)’o. We can observe the white lines standing for the loca- 0 = arcsin \/r/N, wherer is the number of elements
tion of noncausal singularities. of the winning state.

For a better understanding of the noncausal thresholds in
Fig. 3, one of the singularities is analized through a compara- 2. The oracle operatot/,, = I — 2|w)(w|, flips the state
tive between the direct and causal representations. To obtain  |z) if 2 € w and leaves it unchanged otherwise.
the causal representation of théNLT vacuum diagram the
procedure exposed in Ref. [28] is followed, having as a key 3. The diffusion operator/, = 2|q)(q| — I, performs a
strategy the search of causal compatibility among four entan-  reflection around the initial state) in order to amplify
gled thresholds. the probability of the winning states.

The analysis of the singularity arising from thé LT
vacuum diagram is realized by taking the on-shell energyAn iterated application of steps 1 andt3times leads to
qgg’o as fixed and scanning ovqﬁz)o; the evaluations of (U U,)t|q) = cos 0 |q.) + sin 6y |w), with 6, = (2t + 1) 6.
direct and causal WILT integrands are illustrated in Fig. 4. To define a proper number of iterations, the mixing angle
As we can notice, the right plot shows a desirable numericaplays a crucial rolej.e., the proportion between the num-
stability; the left plot exhibits numerical instabilities coming ber of elements in the winning states and the total states. If
from noncausal singularities. r < N/4, the standard Grover's algorithm is a promising

Going forward to the causal representations of the threapproach, on the contrary, its amplitude amplification perfor-
main topologies of the AMLT family, the same procedure is mance is not satisfactory.
followed with the particularity that causal compatibility has In the case of the AMLT family, we know from classi-
to be fulfill among five thresholds. All the explicit results cal computation that the number of causal singular config-
and details about the causal analysis are fully presented idrations is near half of the total of possible states [32]. A
Ref. [32]. clever modification to reduce the number of solutions pro-
posed in Ref. [33] is based on the fact that given one causal
solution, the mirror configuration resulting from the momen-
tum flow reversal is also a causal solution. This modification
is achieved by fixing one of the qubits, reducing the number
%f solutions by half.

A natural association between Feynman loops integrals an h d ; laorith ires th ist
guantum computing is based on the fact that a Feynman prop-, € proposed quantum algoriinm requires tree regis e,rs
ith one additional qubit needed as a marker in the Grover’s

agator can be represented in terms of a qubit. A propagath le. Th ist tands for the state of the
has only two possible on-shell staték) representing those ora:c e The regis zdh S art] s for te' S a;he %. pr<|3pa—
states with the initial flow configuration ah@) for those with gators. The second registes), contains the binary clauses

inverse flow orientation. The specific four-loop diagrams an abel as; or ¢;;. These binary clauses allows to prove if the

alyzed and the initial configuration are shown in Fig. 5. flow orientation of two adjacent propagators are in the same

An important problem to solve in the causal representag'rectIon and are defined as

tion context is the identification of causal singular configura-

tions. An alternative to deal with this difficulty is to under- - : L :
stand it from a quantum computing point of view, as a query | v 0 ’ 0 w 0 Q
over unstructured datasets [36]. The scheme explored wa: O’ OQ ’ 2 e"
the application of Grover’s quantum algorithm [37]. 6 o 6 ‘

A B C D

Grover’s quantum algorithm relies in three main ingre-
dients: uniform superposition, oracle operator and diffusionFicure 5. Selected four-loop topologies. The arrows’ direction
operator. stand for the initial flow configuration of the diagrams.

4. Feynman integrals through a quantum al-
gorithm
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Four eloops (N*MLT) with one four-particle vertex (qasm_simulator)

ciy = (0 =q5), Cij=(a#q), (7)

with 4,5 € {0,...,n — 1}. Finally, the|a) register stores
loop clauses. These are used to validate if all subloop con—%
figurations form a cyclic circuit applying a multi-Toffoli gate %=
comparing qubits fronfc).

The general structure of the algorithm is described below: ™

e The starting point is to initialize the registers described
above. First of all, the uniform superposition is ap- ! Contgurations
plied to the qubits encoding the propagators through
the Hadamard gatdg) = H®"|0). The registers FIGURE 6. Causal states probabilities foPMILT.
la), |c) are set to]0) and the qubit associated to the
Grover's marker is set to the Bell statguty) =

(10) = 1)) /v2.

e To compare two adjacent lines;; needs two CNOT 5. Conclusions
gates which operate betweep ¢; and a qubit in the o )

¢i;, an extra XNOT gate is required to perform on the LTD reformulation enabling to obtain a general expression
corresponding qubit ifr). to describe any scattering amplitude up to four loops, the

N*MLT universal topology.

The dual opening of the universal topology is ex-
2 , pressed in a very compact way as a factorization of simpler
are satisfied therf(a,¢) = 1, if not f(a,q) = 0. In g yan0igies. It is known that the direct LTD representation
addition to_the causz_il rest_rlctlons, this fu_nctlon (_:O”S'd'can be rewritten in terms of only causal propagators, further-
ers an arbitrary qubit as fixed. Once this function hasy, e “interpreting them in terms of entangled thresholds is
been set, the oracle is applied as the key to extract the causal LTD representation. It was em-

Uwlq)|e)|a)outo) = |g)|c)|a)|outy @ f(a,q)), (8)  Pphasized the importance of the causal representation, show-
ing a desirable efficiency over numerical evaluation of multi-
loop scattering amplitudes.

©) A modified Grover’s quantum algorithm has been applied
to the NNMLT and N*MLT topologies, obtaining the causal

e The oracle operator requires a functiofia, q), de-
fined in such a way that if the winning state conditions

with

louto ® f(a,q)) = {

—louty), ifgew

lowto), ifq¢w7 ingul fi i fth I d multil F i
. . singular configurations of the selected multiloop Feynman in-
ﬁ:;iﬁen;?rek;&gpmeﬁz&}lnSrf\fgfséh;ggfra“ons of thEfegrals. The application of quantum algorithms related to the
' LTD formalism is a promising tool that we intend to explore
e Before measuring, the diffuser operator is appliedfurtherin order to improve the computation of multiloop scat-
to |¢). This operator is taken from the doc- tering amplitudes.
umentation provided in the IBM Qiskit website
(https://qiskit.org/ ).

The adapted Grover's quantum algorithm was applied ttAcknowledgments
the multiloop NMLT, ¢, s andu channels shown in Fig. 5.
The implementation was performed on the IBM’s quantuml am very grateful with R. Herandez-Pinto, G. Rodrigo and
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qubits). For the: channel the algorithm required 33 qubits, velopment of this work. 1 would like to thank CTIC for grant-
more than Qiskit capacity. In this case the algorithm wasng me access to their simulator Quantum Testbed (QUTE)
implemented within QUTE Testbed framework [38]. and IBMQ. Support for this work has been received in part by
The proposed algorithm successfully identified all theMCIN/AEI/10.13039/501100011033, Grant No. PID2020-
causal singular configurations. To expose the performanc&14473GB-100, COST Action CA16201 PARTICLEFACE,
of the algorithm, in Fig. 6 is shown the output of the proba-Project No. Al- S-33202 (Ciencia&Bica), Consejo Na-
bilities of the causal singular states associated to tHédlN' cional de Ciencia y Tecnoldg and Universidad Aghoma
diagram. de Sinaloa.

Supl. Rev. Mex. Fis3 020720



t

10.

11.

12.

13.

14.

FOUR-LOOP SCATTERING AMPLITUDES TH

S. Catani, T. Gleisberg, F. Krauss, G. Rodrigo and J.-C.15
Winter, From loops to trees by-passing Feynman’s theqrem
JHEP 09 (2008) 065, http://dx.doi.org/10.1088/
1126-6/08/2008/09/065

. G. Rodrigo, S. Catani, T. Gleisberg, F. Krauss and J. C. Win-16.

ter, From multileg loops to trees (by-passing Feynman'’s
Tree Theorem)Nucl. Phys. B Proc. Supdi83 (2008) 262,
https://dx.doi.org/10.1016/j.nuclphysbps.

2008.09.114

. |. Bierenbaum, S. Catani, P. Draggiotis and G. Rodrigo,17.

A Tree-Loop Duality Relation at Two Loops and Beyond
JHEP 10 (2010) 073,http://dx.doi.org/10.1007/

JHEP10(2010)0/3 18.

. |. Bierenbaum, S. Buchta, P. Draggiotis, I. Malamos and
G. Rodrigo, Tree-Loop Duality Relation beyond simple poles
JHEP 03 (2013) 025, http://dx.doi.org/10.1007/ 19.
JHEPO3(2013)025

. E. TomboulisCausality and Unitarity via the Tree-Loop Dual-
ity Relation JHEP 05 (2017) 148|http://dx.doi.org/
10.100//JHEPO5(201/)148

. R. Runkel, Z. Sér, J. P. Vesga and S. WeinzieiGausal- 20.
ity and loop-tree duality at higher loopsPhys. Rev.
Lett. 122 (2019) 111603, |http://dx.doi.org/
10.1103/PhysRevLett.122.111603,10.1103/ 21.
PhysRevLett.123.059902

. Z. Capatti, V. Hirschi, D. Kermanschah and B. Ruijhop-Tree
Duality for Multiloop Numerical IntegrationPhys. Rev. Lett. oo

123 (2019) 151602, http://dx.doi.org/10.1103/
PhysRevLett.123.151602

. S.Buchta, G. Chachamis, P. Draggiotis, I. Malamos and G. Ro-
drigo, On the singular behaviour of scattering amplitudes in o5

quantum field theoryJHEP 11 (2014) 014, nttp://dx.
doi.org/10.1007/JHEP11(2014)014

. J. J. Aguilera-Verduget al., Causality, unitarity thresholds,
anomalous thresholds and infrared singularities from the loop-4,

tree duality at higher ordersJHEP 12 (2019) 163 http:
/ldx.doi.org/10.1007/JHEP12(2019)163

S. Buchta, Theoretical foundations and applications of the
Loop-Tree Duality in Quantum Field TheoriehD the-
sis, Valencia U., 2015http://arxiv.org/abs/1509.
0/16/1509.07167 .

S. Buchta, G. Chachamis, P. Draggiotis and G. Rodrigo,
Numerical implementation of the loop—tree duality method
Eur. Phys. JC77 (2017) 274http://dx.doi.org/10.
1140/epjc/s10052-017-4833-6

F. Driencourt-Mangin, G. Rodrigo, G. F. Shorliniand W. J. Tor- 26.

res Bobadilla,On the interplay between the loop-tree duality
and helicity amplitudesPhys. Rev. D105 (2022) 0160012,
http://doi:10.1103/PhysRevD.105.016012

Z. Capaitti, V. Hirschi, D. Kermanschah, A. Pelloni and B. Ruijl,

Numerical Loop-Tree Duality: contour deformation and sub- 27.

traction, JHEP 04 (2020) 096, http://doi.org/10.
100//JHEPO4(2020)096

J. L. Jurado, G. Rodrigo and W. J. Torres Bobadiieym Ja-
cobi off-shell currents to integral relations)HEP 12 (2017)
122, |http://dx.doi.org/10.1007/JHEP12(2017)

122.

25.

28.

ROUGH THE LOOP-TREE DUALITY 5

. M. Beneke and V. A. SmirnovAsymptotic expansion of Feyn-
man integrals near thresholdNucl. Phys.B522 (1998) 321,
http://dx.doi.org/10.1016/S0550-3213(98)
00138-2 .

F. Driencourt-Mangin, G. Rodrigo and G. F. Sborlitini-
versal dual amplitudes and asymptotic expansionsgipr—
H and H — ~v in four dimensions Eur. Phys. J. C
78 (2018) 231 http://dx.doi.org/10.1140/epjc/
s$10052-018-5692-5

J. PlenterAsymptotic Expansions Through the Loop-Tree Du-
ality, Acta Phys. Polon. B0(2019) 1983http://dx.dol.
0org/10.5506/APhysPolB.50.1983

J. Plenter and G. RodrigoAsymptotic expansions through
the loop-tree duality Eur.Phys.J.C81 (2021) 320,nttps:
//doi.org/10.1140/epjc/s10052-021-09094-9 |

F. Driencourt-Mangin, G. Rodrigo, G. F. R. Sborlini and W. J.
Torres Bobadilla,Universal four-dimensional representation
of H — ~~ at two loops through the Loop-Tree Duality
JHEP 02 (2019) 143 http://dx.doi.org/10.1007/
JHEPOZ(2019)143

R. M. Prisco and F. TramontanoDual subtractions
JHEP 06 (2021) 089, |https://doi.org/10.1007/
JHEPO06(2021)089

R. J. Hernandez-Pinto, G. F. R. Shorlini and G. Rodrigw,
wards gauge theories in four dimensiodslEP 02 (2016) 044,
http://dx.doi.org/10.1007/JHEP02(2016)044

G. F. R. Sborlini, F. Driencourt-Mangin, R. Hernandez-Pinto
and G. RodrigoFour-dimensional unsubtraction from the loop-
tree duality JHEP 08 (2016) 160 http://dx.doi.org/
10.100//JHEPO8(2016)160

G. F. R. Sborlini, F. Driencourt-Mangin and G. Ro-
drigo, Four-dimensional unsubtraction with massive particles
JHEP 10 (2016) 162, http://dx.doi.org/10.1007/
JHEP10(2016)162

F. Driencourt-Mangin, Four-dimensional representation of
scattering amplitudes and physical observables through the
application of the Loop-Tree Duality theorehD thesis, U.
Valencia (main), 201%ttp://arxiv.org/abs/1907.
124501907.12450 .

J. J. Aguilera-Verdugo, F. Driencourt-Mangin, R. J. Her-
nandez Pinto, J. Plenter, S. Ramirez-Uribe, A. E. Rente-
ria Olivo et al.,Open loop amplitudes and causality to all or-
ders and powers from the loop-tree dualihys. Rev. Lett.
124 (2020) 211602, http://dx.doi.org/10.1103/
PhysRevLett.124.211602

J. Jefis Aguilera-Verdugo, R. J. Heandez-Pinto, G. Rodrigo,
G. F. R. Sborlini and W. J. Torres Bobadill&jathematical
properties of nested residues and their application to multi-
loop scattering amplitudesIHEP 02 (2021) 112 http://
dx.dol.org/10.1007/JHEP02(2021)112

J. Aguilera-Verdugeet al,, Manifestly Causal Scattering Am-
plitudes in Snowmass 2021 - Letter of Intenfidagust 2020.

J. J. Aguilera-Verdugo, R. J. Hernandez-Pinto, G. Rodrigo,
G. F. R. Sborlini and W. J. Torres Bobadill@ausal represen-
tation of multi-loop Feynman integrands within the loop-tree
duality. JHEPO1 (2021) 069,http://dx.doi.org/10.
100//JHEPO1(2021)069

Supl. Rev. Mex. Fis3 020720


http://dx.doi.org/10.1088/1126-6708/2008/09/065�
http://dx.doi.org/10.1088/1126-6708/2008/09/065�
https://dx.doi.org/10.1016/j.nuclphysbps.2008.09.114�
https://dx.doi.org/10.1016/j.nuclphysbps.2008.09.114�
http://dx.doi.org/10.1007/JHEP10(2010)073�
http://dx.doi.org/10.1007/JHEP10(2010)073�
http://dx.doi.org/10.1007/JHEP03(2013)025�
http://dx.doi.org/10.1007/JHEP03(2013)025�
http://dx.doi.org/10.1007/JHEP05(2017)148�
http://dx.doi.org/10.1007/JHEP05(2017)148�
http://dx.doi.org/10.1103/PhysRevLett.122.111603, 10.1103/PhysRevLett.123.059902�
http://dx.doi.org/10.1103/PhysRevLett.122.111603, 10.1103/PhysRevLett.123.059902�
http://dx.doi.org/10.1103/PhysRevLett.122.111603, 10.1103/PhysRevLett.123.059902�
http://dx.doi.org/10.1103/PhysRevLett.123.151602�
http://dx.doi.org/10.1103/PhysRevLett.123.151602�
http://dx.doi.org/10.1007/JHEP11(2014)014�
http://dx.doi.org/10.1007/JHEP11(2014)014�
http://dx.doi.org/10.1007/JHEP12(2019)163�
http://dx.doi.org/10.1007/JHEP12(2019)163�
http://arxiv.org/abs/1509.07167�
http://arxiv.org/abs/1509.07167�
http://dx.doi.org/10.1140/epjc/s10052-017-4833-6�
http://dx.doi.org/10.1140/epjc/s10052-017-4833-6�
http://doi:10.1103/PhysRevD.105.016012�
http://doi.org/10.1007/JHEP04(2020)096�
http://doi.org/10.1007/JHEP04(2020)096�
http://dx.doi.org/10.1007/JHEP12(2017)122�
http://dx.doi.org/10.1007/JHEP12(2017)122�
http://dx.doi.org/10.1016/S0550-3213(98)00138-2�
http://dx.doi.org/10.1016/S0550-3213(98)00138-2�
http://dx.doi.org/10.1140/epjc/s10052-018-5692-5�
http://dx.doi.org/10.1140/epjc/s10052-018-5692-5�
http://dx.doi.org/10.5506/APhysPolB.50.1983�
http://dx.doi.org/10.5506/APhysPolB.50.1983�
https://doi.org/10.1140/epjc/s10052-021-09094-9�
https://doi.org/10.1140/epjc/s10052-021-09094-9�
http://dx.doi.org/10.1007/JHEP02(2019)143�
http://dx.doi.org/10.1007/JHEP02(2019)143�
https://doi.org/10.1007/JHEP06(2021)089�
https://doi.org/10.1007/JHEP06(2021)089�
http://dx.doi.org/10.1007/JHEP02(2016)044�
http://dx.doi.org/10.1007/JHEP08(2016)160�
http://dx.doi.org/10.1007/JHEP08(2016)160�
http://dx.doi.org/10.1007/JHEP10(2016)162�
http://dx.doi.org/10.1007/JHEP10(2016)162�
http://arxiv.org/abs/1907.12450�
http://arxiv.org/abs/1907.12450�
http://dx.doi.org/10.1103/PhysRevLett.124.211602�
http://dx.doi.org/10.1103/PhysRevLett.124.211602�
http://dx.doi.org/10.1007/JHEP02(2021)112�
http://dx.doi.org/10.1007/JHEP02(2021)112�
http://dx.doi.org/10.1007/JHEP01(2021)069�
http://dx.doi.org/10.1007/JHEP01(2021)069�

29.

30.

31.

32.

33.

S. RAMIREZ-URIBE

G. F. R. Sborlini,Geometrical approach to causality in mul- 34. C. G. Bollini and J. J. GiambiagDimensional Renormaliza-

tiloop amplitudes PhysRev204 (2021) 036014https://
doi.org/10.1103/PhysRevD.104.036014

W. J. Torres Bobadilla,Loop-tree duality from vertices
and edgesJHEPO4 (2021) 183 /https://doi.org/10.
100//JHEPO4(2021)183

W. J. T. Bobadilla,Lotty — The loop-tree duality automatipn
Eur. Phys. J. @1 (2021) 514, https://doi.org/10.
1140/epjc/s10052-021-09235-0

S. Rantrez-Uribe, R. J. Herandez-Pinto, G. Rodrigo,
G. F. R. Shorlini and W. J. Torres Bobadilldniversal open-
ing of four-loop scattering amplitudes to tred$1EF04 (2021)
129, |http://dx.doi.org/10.1007/JHEP04(2021)

129.

S. Ranirez-Uribe, A. E. Rentéa-Olivo, G. Rodrigo,
G. F. R. Shorlini and L. Vale SilvaQuantum algorithm
for Feynman loop integralshttp://arxiv.org/abs/
2105.08703 2105.08703 .

35.

36.

37.

38.

tion: The Number of Dimensions as a Regularizing Param-

eter, Nuovo Cim.B12 (1972) 20,http://dx.doi.org/
10.100//BF02895558

G. 't Hooft and M. J. G. VeltmanRegularization and Renor-
malization of Gauge FieldsNucl. Phys.B44 (1972) 189,
http://dx.doi.org/10.1016/0550-3213(72)

90279-9 |

M. Boyer, G. Brassard, P. Hoyer and A. Tafjght bounds on
quantum searchingFortsch. Phys46 (1998) 493.nttps:
//do1.org/10.1002/(SICI)1521-3978(199806)

46:4/5 (493::AID-PROP493 )3.0.CO;2-P

L. K. Grover, Quantum mechanics helps in searching for a
needle in a haysta¢kPhys. Rev. Lett79 (1997) 325/http:
/ldx.dol.org/10.1103/PhysRevLett.79.325

R. Alonso, A. Arias, P. Coca, F.iBz, A. Garga and L. Mei-
jueiro, Qute: Quantum computing simulation platfgri@ct.,
2021. 10.5281/zenodo.5561050.

Supl. Rev. Mex. Fis3 020720


https://doi.org/10.1103/PhysRevD.104.036014�
https://doi.org/10.1103/PhysRevD.104.036014�
https://doi.org/10.1007/JHEP04(2021)183�
https://doi.org/10.1007/JHEP04(2021)183�
https://doi.org/10.1140/epjc/s10052-021-09235-0�
https://doi.org/10.1140/epjc/s10052-021-09235-0�
http://dx.doi.org/10.1007/JHEP04(2021)129�
http://dx.doi.org/10.1007/JHEP04(2021)129�
http://arxiv.org/abs/2105.08703�
http://arxiv.org/abs/2105.08703�
http://dx.doi.org/10.1007/BF02895558�
http://dx.doi.org/10.1007/BF02895558�
http://dx.doi.org/10.1016/0550-3213(72)90279-9�
http://dx.doi.org/10.1016/0550-3213(72)90279-9�
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P�
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P�
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P�
http://dx.doi.org/10.1103/PhysRevLett.79.325�
http://dx.doi.org/10.1103/PhysRevLett.79.325�

