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We give a short review on the static and dynamical Casimir effects, recalling their historical prediction, as well as their more recent experi-
mental verification. We emphasise on the central role played by so-aglfeinical boundary conditior{§or which the boundary condition
depends on a second time derivative of the field) in the experimental verification of the dynamical Casimir effect bew¥dilsdfe then go

on to review our previous work on the static Casimir effect with dynamical boundary conditions, providing an overview on how to compute
the so-called local Casimir energy, the total Casimir energy and the Casimir force. We give as a future perspective the direction in which this
work should be generalised to put the theoretical predictions of the dynamical Casimir effect experiments on a rigorous footing.
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1. Introduction From a theoretical point of view, the Casimir effect is re-
markable in that it is a direct way of probing properties of
the ground state of a quantum system, and contributes to our

I conceptual understanding of what quantum field theory is all
In the late 1940s Casimir and Polder set forth to calculate th?about For this reason, it is not surprising that a large amount

force exerted between two polarisable atoms and between i effort has been devoted to studying the Casimir effect in

atom and a neutral conducting plate [1]. Soon after Ca3|m|5 variety of settings, as different boundary conditions and
understood that a force would also be present between tw;

. . , Boundary shapes can lead to attractive or repulsive forces. A
_neutral conductlng plates [2]. The latter eﬁect_ isa pa_rtu_:ularCouple of relatively recent reviews are [3, 4].
instance of what is known today as the (static) Casimir ef-
fect. Meanwhile the former effect is related to the so-called From a technical point of view, the relevant observable to
Casimir-Polder effect. compute is the local energy of the field, dubbed in this con-
text the local Casimir energy, a task that requires renormali-
Nowadays it is understood that the Casimir effect is ex-sation. Already for free theories the local energy is quadratic
plained by the non-triviality of the energy density or local en-in the field, and thus rigely involves a pointwise product of
ergy of the ground state of a quantum system, a situation thatistributions. There are several methods for renormalising
is different to the local energy of the Minkowski vacuum in the local Casimir energy, such as introducingigh-energy
Minkowski spacetime, which can be renormalised to zero ategulator(removed at the end of renormalisation), usitig-
every point. If a quantum system is confined between wallsnann zeta regularisatioor via heat kernel techniqueshe
of some particular geometry, say the quantum electromagmnost general renormalisation method is yiaint splitting
netic field between conducting parallel plates, the non-trivialknd Hadamard subtractionThe use of point-splitting reg-
energy of the ground state will lead to a net force betweenlarisation and divergence subtraction in the context of the
the walls. This is the Casimir force. If in the previous caseCasimir effect can be traced back to the works of Deutsch
only one wall had been present, we would refer to the forceand Candelas, who advocated its use in curved spacetimes
upon it as Casimir-Polder. In general terms it is useful tothrough general arguments [5], and especially to the work of
keep in mind the semantics that if the system is bounded iay [6] who gave an axiomatic justification for local quan-
one spatial direction we refer to the resulting net force as théum field theories that was sufficiently robust to be applied for
Casimir effect and if it is semi-bounded we refer to it as theperturbative interacting theories and compute radiative cor-
Casimir-Polder effect. rections in the Casimir effect.
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From an experimental point of view, the first verification with that produced by photon creation inside the waveguide
of the Casimir effect came about almost fifty years after itsdue to the dynamical Casimir effect [23]. See [24] for a non-
prediction in an experiment carried out by Lamoreaux usingechnical review.
an electromechanical system with two conductors and a tor-
sion balance. The results came to an agreement of 5% with It turns out that a precise mathematical modelling of the
the theoretical predictions [7]. The first verification of the above experiment is quite intricate. This owes to the fact that
Casimir effect between metallic parallel plates took place grom a mathematical point of view the SQUID imposedya
few years later [8]. namical boundary conditigri.e., a boundary condition that

So far we have discussed the Casimir effect in the prest_jepends explicitly on the second time derivative of the field

ence of fixed boundaries, but theoreticians and experimenta?—t thg boundary, see Eq. (1.0.) in Ref. [23]. This situation
is unlike the better-known Dirichlet or Neumann boundary

Ists have also considered a setting with moving boundgrlesc. nditions that fall within the Robin class and with which a
In this case there are analogous — although more Comphcat%é)eoretical physicist is familiar
— effects which are collectively referred to as theamical '
Casimir effect See e.g. [9] for a review. The most impressive
effect in this context is the production of particles out of the

ground state by the moving boundary. The pioneering work nown asboundary eigenvalue problemeeee.g.[25]. In the

that predicted this situation were those of Moore [10] and hvsics literatur tems with dvnamical boundar ndi-
Davies and Fulling [11]. The latter article is also a direct an-PHysICS literature, systems yhamical boundary co

tecedent to the current vibrant field of analogue gravity (seé'onﬁc’ ha_we been d.StUd'ed (|jn_ Refs. [26_31]302\'\”3”39 t(I) dlrf;ferent
e.g.[12]), which seeks to design a measure effects in table%mt'v?t'ﬁnsé as '.SCL]:fsse n Oﬁr plgpelrs [ ! ] nht € col?-
top experiments that emulate gravitational situations, such aSXt ofthe Casimir eflect we should also point out the wor

superradiance or Hawking radiation. Indeed, the point of [11]Of [34].

was that the creation of particles by an accelerated mirror

mimicks the onset of Hawking radiation by the dynamics of
IMICKS S wHing raciat y y 18 more detail these dynamical boundary conditions in the con-

spacetime during the black hole formation . [13] for
P I tring lon (e2g.[13] text of the static Casimir effect, following our work [32, 33].

details on the onset of Hawking radiation, and [14-16] also ; .
in this context). As we shall see (Eq. (1) below) dynamical boundary condi-

tions depend on a number of free parameters, which we shall
We should mention that performing a mathematically rig-take to be real constants, but we should emphasise that in the
orous study of the dynamical Casimir effect is challengingdynamical Casimir effect experiment of Wilsat al. [20]
in general, due to the intricacies of studying (quantum) fieldone of these parameters is an explicit time function, which
theory in the presence of moving boundaries. We refer t@an be controlled by the experimental apparatus, and induces
[17-19] for some recent progress in studying cavities withthe electromagnetic field time variation that produces pair
non-uniform motion. creation. In this sense, our work [32, 33] can be seen, among
. N . .. other things, as putting on a mathematically rigorous footing
The experimental verification of the dynamical Ca5|m|rthe “in” theory describing the experimental setup of [20] be-

effect remained a challenge until recently. The reason fo S ) .
. i : ore the electromagnetic field in the waveguide begins vary-
this is that the size of the measurable effects in amenable ~. "~ ) . ;
g in time. Another interesting aspect of systems with dy-

mechanical experimental settings is negligible, and cannol

; nfalmical boundary conditions is that there is a natural way of
be accounted for beyond systemic errors or other sources Qf .. .~ Y o .
cf_eflnlng boundary observables”, which is perhaps interest-

noise. For instance, a mechanical boundary should be accel " the view of holoaraohy in hiah-enerav phvsics or for
erated to relativistic velocities in order to have a significant 9 grapny 9 gy phy

signal of the particle creation. condensed matter physics.

These dynamical boundary conditions are closely related
0 a class of problems that in the mathematical literature are

The purpose of the following sections will be to discuss in

However, in 2011 the first experimental verification of  In Sec. 2 we describe in more detail the structure of sys-
the dynamical Casimir effect was reported by Wilsstral.  tems with dynamical boundary conditions and their quanti-
in [20].% In their setting, the above experimental challengessation, including how to define bulk and boundary observ-
are avoided altogether. Wilsaat al. considered the quan- ables, by studying in detail a real scalar field on an interval
tum electromagnetic field inside a waveguide that is open abf (coordinate) lengtlf with a Robin boundary condition on
one end and has at the other end attached a superconduttte left end and a dynamical boundary condition on the right
ing quantum interference device (SQUID), which induces and. In Sec. 3 we study the Casimir effect for this system.
time-dependent magnetic flux into the waveguide changingVe show how to obtain the local Casimir energy by a point-
the electromagnetic field without the need of a physical movsplitting regularisation and Hadamard renormalisation, and
able boundary. In other words, the boundary conditions impresent the ideas on how to compute the total (integrated)
posed by the SQUID mimic a rapidly-moving wall in the ex- Casimir energy and Casimir force with the aid of numerical
periment. The results reported in [20] present the detectiotechniques, which is done in more detail in [33]. Perspectives
of radiation from the open end of the waveguide in agreemenrdre discussed in Sec. 4.
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2. Quantisation of systems with dynamical wherep:= 3] 3, — 31 3, is required to be positive.
boundary conditions Solutions to2) can be obtained by introducing the self-
adjoint operator
Consider a real scalar field on an interval of lengtb- 0,

¢ : R x [0,/] — R, defined by the following dynamics o€ D(A) > A = ([:83 +m? tV(Z)] ¢1(2)> @
[Brp1(€) — B20-01(0)]
[0 — 02+ m? + V(2)] ¢(t,2) =0,
teR, ze€(0,0), which is densely defined i on the domain
cosa ¢(t,0) 4+ sina 9,¢(t,0) = 0, (1)
a € [0,m),
(3107 =B1] o(t, 0)=—P20.6(t, £)+ 350,07 p(t, £), D(A) = {s@ = (i;) € M : 1,01 are absolutely
wherem? is a mass termi/(z) a potgntial angb, g1, B2, B4 continuous if0, €], 0%¢; € La((0,¢)),
are real parameters. Note that while at the end-poiat 0
system (1) imposes a boundary condition of Robin class, cos aupy(0) + sinad. 1 (0) = 0,
the boundary condition at the endpoint= ¢ depends on
d2¢(t,¢) andd,d?¢(t, ¢), being a dynamical boundary con- P2 = B () — ﬁéﬁz%(ﬂ)}- (5)
dition in the sense discussed in the Introduction of this note.
The form of the boundary condition indicates ti#tcan Indeed, the eigenvalue proble®) takes the formdy =

be interpreted as the square of an inverse velocity (or minug2,, or equivalently the dynamical problerf)(becomes an
the square of an inverse velocity) of a boundary observablgpstract wave equatiof?¢ + A = 0. Under some fur-
do(t) := ¢(t,£), —f1 yields a mass term angh, andB; are  ther technical assumptions on the coefficieftss;, 52, 3,
coupling parameters to external sources for the boundary d¥pelled out in [32, Prop. 1]A defines a positive oper-
namical observable. Note that the presence of normal deriV%‘[or and solutions to the abstract wave equation take the
tives in the sources prevents us from interpreting somethingsual form: Given initial datap|,—y = f € D(A) and

like 0.¢(t,¢) as a boundary observable, as these functiong), ¢|,_, = p € D(A'/2) strong solutions can be written in

are not intrinsic to the boundary. The case that is relevant foferms of a complete set of orthonormal eigenfunctiong pof
the experimental verification of the dynamical Casimir effect{\pn}zo:1 € D(A), as

haspg, = 0 and is slightly more general in tha} is a fixed

time-dependent function. Thus, systeth¢an be thought of >

as an “in” theory in which the time dependenceigthas not ot 2) = Z Un(2)
been switched on. n=t

If we look for solutions to [T) of the form ¢(t,z) = sin(wpt)
e~ y(z), (1) becomes a boundary eigenvalue problem of <\ [, fln COS(wnt)H‘I’mp]HT - (6)
the form
[—02 +m? + V(2)] 9(2) = w? o(2), Note that the eigenfunction§¥,,}52 , are indeed two-
: z€(0,0), component vectors taking the form
cosap(0) + sina d,9(0) = 0, 2 n(2)
€ 0, ; v, = / " / y 7
“ [ ﬂ') (Z) (ﬁllpn(g) - ﬁ2az7/}n(€)) ( )

= [Brp(0)=B20:0(0)] =w? [B10(0) B30 0(0)]

Here, we have written the eigenvalue as= w? and
note the presence of the eigenvalue in the boundary condi:—a
tion atz = ¢. The classical problem defined by ER) has
been studied by Fulton in Ref. [35]. In the kind of bound-
ary eigenvalue problems lik&) the relevant Hilbert space H = C a2, (FN)) @)
where classical dynamics take place is not the standard "= 3 ’
but rather some extended Hilbert space including the “bOUﬂdwhere 02 (N), is the space of Comp|ex_va|ued, square-

ary dynamics”. Here, itig{ := L*((0,¢)) ® C withits ele-  symmable sequences of the fofim,, }>_,, with the scalar
ments being two-component vectors, sayt (u1, us)T with product

uy € L%((0,¢)) anduy € C. The Hilbert space is equipped
with the inner product

since they are in the domain of the operatior

Once the classical problem has been characterised,
nonical quantisation can be performed immediately. The
bosonic Fock space of the theory is

{antnZ ABn iz = Z Q@ B, 9)
n=1

4
. 1 . L
(u, 0)3 = /dz ui(z)vi(2) + p~ w20, ()  and quantum fields are operators ¢ defined in terms of
0 the annihilation and creation operators in Fock spagend
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al respectively, satisfying the canonical commutation relations. Namely, field operators are of the form

= s 1 —iw ~ iw ~
q)(t’ Z) - Z W (6 ntqj"(z) an +e€ nt\Ijn(Z) aL). (10)
n=1 n

This completes the canonical quantisation of the scalar field defined by the sijtenhéreby the field observable is
represented as the operaid@)in the Fock space?’ (8). The fact that thé-field operatorp(z) := <i>(0, z), and its momentum,
#(z) := 8,®(t, 2)|s=0 represent canonical commutation relations follows from the commutation relations of the annihilation
and creation operators.

3. The Casimir energy and Casimir force

The local Casimir energy can be obtained by a point-splitting prescription and Hadamard subtraction. We henceforth assume
that the potential term vanishdg(z) = 0. For the ground state we have that the Wightman function takes the form

R . 1 . , ,
(Qul(t,2) Dt 2)) =D meﬂwt*t 0, (2) @ U, (2). (11)

n=1

Note that the two-point function is tensor-valued. On the diagonal of this tensor we have a “bulk” and a “boundary” two-
point function, while off the diagonal we have “bulk-boundary” two-point functions. It is natural to define a “bulk” Casimir
energy using the bulk two-point function as follows

oo

1
> 5

n=1 n

) 1
N, HB t U): = li 5
< | ren( 72) > (t’,z’irz’l(t’z) 2

(0:0y +0.0.+m*+V (2)) ( e =y (2) @ Y (2')—Hu(x, x’)> . (12)

Here Hy; is theHadamard singular structuref the Wightman two-point function, which for sufficiently close poihts
takes the form

Hu((t, 2), (t,2")) = —ﬁ (27 +In [W;Qa{(t, 2), (t, z')}] + %20[(15, 2), (t',2")] {ln {ﬂja((t, 2), (t', z'))} + 2y — 2]

4 2

+ %02[(% 2), (t', )] {ln {";o((t, 2), (t, z'))} +2y— 3] ) +0 (0°[(t, 2), (t', ") o {(t, 2), (¢, 2)}]),  (13)

where2o ((t, 2), (', 2')) = —(t—t')?+ (2 — 2’)? and~ is the Euler number. In fact, there are a number of freedoms in defining
Hy\ but the current definition guarantees that the local energy of the Minkowski vacuum be zero. Note1Bpttia (bulk”
component of th&,,-eigenfunctionsi), ¥,,, is used.

The technical point in order to obtain the local Casimir energy is to estimate sufficiently well the eigenfunctions at large
eigenvalue, which in the coincidence limit give rise to the distributional logarithmic divergences that are subtraffigd by
making the right-hand side of EdL2) well defined. For example, if a Dirichlet boundary condition is imposed &at0, we
have that the local Casimir energy in the ground state,

® = (1,0,0,...), (14)
is given by
QP (120 23+ 6(2y — 1)ﬁé€2ng—;;§;jzm2 In (5257 ) +2481¢ N 7;7?9? (71— o)
+(Nf£;m2 sin? (sgz) — % sin? [%(n — 1/2)4) , (15)

where thesD are connected to the eigenvalues(by’)? = (s5)? + m? and N is a normalisation factor, see [32]. The
D superscripts make reference to the Dirichlet boundary conditian-at0. The sums on the right-hand side 5] are

Supl. Rev. Mex. Fis3 020714
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absolutely and uniformly convergent ine (0, ¢). While the In our paper [32] the bulk and boundary Casimir energies
closed form of the eigenvalues is not known in closed form(and state polarisations) are presented in detail for the ground
estimations can be obtained with the aid of analytical and nustate and at finite temperatures for Dirichlet and Robin (in-
merical techniques. cluding Neumann) boundary conditions on the left end of
Note that in this case the bulk local Casimir energy isthe intervalz = 0 and dynamical boundary conditions at
conserved in time. The local energy diverges logarithmically: = ¢. This work is extended to include coherent states
asz — 0 and asz — /, a feature that also occurs with in [33], where the Casimir force is also explored with the
two Dirichlet boundary conditions, seeg [36]. But since aid of numerical techniques, giving strong indication that the
the logarithmic divergences ci%) are integrable, the total force can be repulsive or attractive depending on the parame-
Casimir energy, defined by ters of the problem. The technical part of the numerical anal-

; ysis is to obtain sufficiently many “low energy” eigenvalues,

AB which dominate the effect by the uniform convergence of the
E(t,0) = /dZ (Q|Hyen (8, 2)), (16)  sums, in order to obtain good numerical approximations to
0 the Casimir force.

is finite. (We keep the time argument explicit out of principle,
but in this case the energy is time-independent.) The Casimif Summary and perspectives
force exerted on the boundaries is defined by
After a short discussion on the static and dynamical Casimir
F(t,0) == —0,E(t, 1), (17)  effects in the Introduction, we have given a short overview of
the static Casimir effect for a system with dynamical bound-
%ry conditions beginning by a summary of the quantisation of
systems with dynamical boundary conditions. More details
appear in [32, 33], including explicit numerical examples for
<"\R/hich the Casimir force is attractive or repulsive depending
on the free parameters of the dynamical boundary condition,
a thorough discussion on boundary observables and details

and can also be studied with the aid of numerical technique
We present some examples in [32, 33].

In the experiments carried out by Wilsat al. [20] the
dynamical Casimir effect was studied at finite temperature
approximatelys0 mK and250 mK. The result15) gets mod-
ified at finite temperatur@ = 1/ as

/7B — 6D) B (D) on the propagators of the theory.
(Hiren(t:2))om) = (2 Hren (£, 2)82 ) We emphasise that for the experimental verification of the
- {{WT(LD)}Q " mQ} [%D)(Z)} 2 dynamical Casimir effect the p.aramexi‘grin (2) is instead a
+ Z time-dependent function. In this sense, the present work puts
=1 2w eBun’ — 1 in a rigorous setting the “in” theory that models the exper-
iment [20] before the electromagnetic field is set to vary in
[8 (D)(Z)} 2 time and particle creation takes place.
1 e (18) The main perspective of this work is to extend the present
2wP) Bl 1 |7 techniques to time-dependefit to recover the results in

[20,23] on a rigorous footing.

where the sum appearing on the right-hand sidel8j (s
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