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We give a short review on the static and dynamical Casimir effects, recalling their historical prediction, as well as their more recent experi-
mental verification. We emphasise on the central role played by so-calleddynamical boundary conditions(for which the boundary condition
depends on a second time derivative of the field) in the experimental verification of the dynamical Casimir effect by Wilsonet al. We then go
on to review our previous work on the static Casimir effect with dynamical boundary conditions, providing an overview on how to compute
the so-called local Casimir energy, the total Casimir energy and the Casimir force. We give as a future perspective the direction in which this
work should be generalised to put the theoretical predictions of the dynamical Casimir effect experiments on a rigorous footing.
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1. Introduction

In the late 1940s Casimir and Polder set forth to calculate the
force exerted between two polarisable atoms and between an
atom and a neutral conducting plate [1]. Soon after Casimir
understood that a force would also be present between two
neutral conducting plates [2]. The latter effect is a particular
instance of what is known today as the (static) Casimir ef-
fect. Meanwhile the former effect is related to the so-called
Casimir-Polder effect.

Nowadays it is understood that the Casimir effect is ex-
plained by the non-triviality of the energy density or local en-
ergy of the ground state of a quantum system, a situation that
is different to the local energy of the Minkowski vacuum in
Minkowski spacetime, which can be renormalised to zero at
every point. If a quantum system is confined between walls
of some particular geometry, say the quantum electromag-
netic field between conducting parallel plates, the non-trivial
energy of the ground state will lead to a net force between
the walls. This is the Casimir force. If in the previous case
only one wall had been present, we would refer to the force
upon it as Casimir-Polder. In general terms it is useful to
keep in mind the semantics that if the system is bounded in
one spatial direction we refer to the resulting net force as the
Casimir effect and if it is semi-bounded we refer to it as the
Casimir-Polder effect.

From a theoretical point of view, the Casimir effect is re-
markable in that it is a direct way of probing properties of
the ground state of a quantum system, and contributes to our
conceptual understanding of what quantum field theory is all
about. For this reason, it is not surprising that a large amount
of effort has been devoted to studying the Casimir effect in
a variety of settings, as different boundary conditions and
boundary shapes can lead to attractive or repulsive forces. A
couple of relatively recent reviews are [3,4].

From a technical point of view, the relevant observable to
compute is the local energy of the field, dubbed in this con-
text the local Casimir energy, a task that requires renormali-
sation. Already for free theories the local energy is quadratic
in the field, and thus naı̈vely involves a pointwise product of
distributions. There are several methods for renormalising
the local Casimir energy, such as introducing ahigh-energy
regulator(removed at the end of renormalisation), usingRie-
mann zeta regularisationor via heat kernel techniques. The
most general renormalisation method is viapoint splitting
and Hadamard subtraction. The use of point-splitting reg-
ularisation and divergence subtraction in the context of the
Casimir effect can be traced back to the works of Deutsch
and Candelas, who advocated its use in curved spacetimes
through general arguments [5], and especially to the work of
Kay [6] who gave an axiomatic justification for local quan-
tum field theories that was sufficiently robust to be applied for
perturbative interacting theories and compute radiative cor-
rections in the Casimir effect.
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From an experimental point of view, the first verification
of the Casimir effect came about almost fifty years after its
prediction in an experiment carried out by Lamoreaux using
an electromechanical system with two conductors and a tor-
sion balance. The results came to an agreement of 5% with
the theoretical predictions [7]. The first verification of the
Casimir effect between metallic parallel plates took place a
few years later [8].

So far we have discussed the Casimir effect in the pres-
ence of fixed boundaries, but theoreticians and experimental-
ists have also considered a setting with moving boundaries.
In this case there are analogous – although more complicated
– effects which are collectively referred to as thedynamical
Casimir effect. See e.g. [9] for a review. The most impressive
effect in this context is the production of particles out of the
ground state by the moving boundary. The pioneering works
that predicted this situation were those of Moore [10] and
Davies and Fulling [11]. The latter article is also a direct an-
tecedent to the current vibrant field of analogue gravity (see
e.g. [12]), which seeks to design a measure effects in table-
top experiments that emulate gravitational situations, such as
superradiance or Hawking radiation. Indeed, the point of [11]
was that the creation of particles by an accelerated mirror
mimicks the onset of Hawking radiation by the dynamics of
spacetime during the black hole formation (seee.g. [13] for
details on the onset of Hawking radiation, and [14–16] also
in this context).

We should mention that performing a mathematically rig-
orous study of the dynamical Casimir effect is challenging
in general, due to the intricacies of studying (quantum) field
theory in the presence of moving boundaries. We refer to
[17–19] for some recent progress in studying cavities with
non-uniform motion.

The experimental verification of the dynamical Casimir
effect remained a challenge until recently. The reason for
this is that the size of the measurable effects in amenable
mechanical experimental settings is negligible, and cannot
be accounted for beyond systemic errors or other sources of
noise. For instance, a mechanical boundary should be accel-
erated to relativistic velocities in order to have a significant
signal of the particle creation.

However, in 2011 the first experimental verification of
the dynamical Casimir effect was reported by Wilsonet al.
in [20].i In their setting, the above experimental challenges
are avoided altogether. Wilsonet al. considered the quan-
tum electromagnetic field inside a waveguide that is open at
one end and has at the other end attached a superconduct-
ing quantum interference device (SQUID), which induces a
time-dependent magnetic flux into the waveguide changing
the electromagnetic field without the need of a physical mov-
able boundary. In other words, the boundary conditions im-
posed by the SQUID mimic a rapidly-moving wall in the ex-
periment. The results reported in [20] present the detection
of radiation from the open end of the waveguide in agreement

with that produced by photon creation inside the waveguide
due to the dynamical Casimir effect [23]. See [24] for a non-
technical review.

It turns out that a precise mathematical modelling of the
above experiment is quite intricate. This owes to the fact that
from a mathematical point of view the SQUID imposes ady-
namical boundary condition, i.e., a boundary condition that
depends explicitly on the second time derivative of the field
at the boundary, see Eq. (10) in Ref. [23]. This situation
is unlike the better-known Dirichlet or Neumann boundary
conditions that fall within the Robin class and with which a
theoretical physicist is familiar.

These dynamical boundary conditions are closely related
to a class of problems that in the mathematical literature are
known asboundary eigenvalue problems, seee.g.[25]. In the
physics literature, systems with dynamical boundary condi-
tions have been studied in Refs. [26–31] owing to different
motivations, as discussed in our papers [32, 33]. In the con-
text of the Casimir effect we should also point out the work
of [34].

The purpose of the following sections will be to discuss in
more detail these dynamical boundary conditions in the con-
text of the static Casimir effect, following our work [32, 33].
As we shall see (Eq. (1) below) dynamical boundary condi-
tions depend on a number of free parameters, which we shall
take to be real constants, but we should emphasise that in the
dynamical Casimir effect experiment of Wilsonet al. [20]
one of these parameters is an explicit time function, which
can be controlled by the experimental apparatus, and induces
the electromagnetic field time variation that produces pair
creation. In this sense, our work [32,33] can be seen, among
other things, as putting on a mathematically rigorous footing
the “in” theory describing the experimental setup of [20] be-
fore the electromagnetic field in the waveguide begins vary-
ing in time. Another interesting aspect of systems with dy-
namical boundary conditions is that there is a natural way of
defining “boundary observables”, which is perhaps interest-
ing in the view of holography in high-energy physics or for
condensed matter physics.

In Sec. 2 we describe in more detail the structure of sys-
tems with dynamical boundary conditions and their quanti-
sation, including how to define bulk and boundary observ-
ables, by studying in detail a real scalar field on an interval
of (coordinate) length̀ with a Robin boundary condition on
the left end and a dynamical boundary condition on the right
end. In Sec. 3 we study the Casimir effect for this system.
We show how to obtain the local Casimir energy by a point-
splitting regularisation and Hadamard renormalisation, and
present the ideas on how to compute the total (integrated)
Casimir energy and Casimir force with the aid of numerical
techniques, which is done in more detail in [33]. Perspectives
are discussed in Sec. 4.

Supl. Rev. Mex. Fis.3 020714
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2. Quantisation of systems with dynamical
boundary conditions

Consider a real scalar field on an interval of length` > 0,
φ : R× [0, `] → R, defined by the following dynamics





[
∂2

t − ∂2
z + m2 + V (z)

]
φ(t, z) = 0,
t ∈ R, z ∈ (0, `),

cos α φ(t, 0) + sin α ∂zφ(t, 0) = 0,
α ∈ [0, π),[

β′1∂
2
t−β1

]
φ(t, `)=−β2∂zφ(t, `)+β′2∂z∂

2
t φ(t, `),

(1)

wherem2 is a mass term,V (z) a potential andβ1, β
′
1, β2, β

′
2

are real parameters. Note that while at the end-pointz = 0
system (1) imposes a boundary condition of Robin class,
the boundary condition at the endpointz = ` depends on
∂2

t φ(t, `) and∂z∂
2
t φ(t, `), being a dynamical boundary con-

dition in the sense discussed in the Introduction of this note.
The form of the boundary condition indicates thatβ′1 can

be interpreted as the square of an inverse velocity (or minus
the square of an inverse velocity) of a boundary observable
φ∂(t) := φ(t, `), −β1 yields a mass term andβ2, andβ′2 are
coupling parameters to external sources for the boundary dy-
namical observable. Note that the presence of normal deriva-
tives in the sources prevents us from interpreting something
like ∂zφ(t, `) as a boundary observable, as these functions
are not intrinsic to the boundary. The case that is relevant for
the experimental verification of the dynamical Casimir effect
hasβ′2 = 0 and is slightly more general in thatβ1 is a fixed
time-dependent function. Thus, system (1) can be thought of
as an “in” theory in which the time dependence ofβ1 has not
been switched on.

If we look for solutions to (1) of the form φ(t, z) =
e−iωt ϕ(z), (1) becomes a boundary eigenvalue problem of
the form





[−∂2
z + m2 + V (z)

]
ϕ(z) = ω2 ϕ(z),

z ∈ (0, `),
cos α ϕ(0) + sin α ∂zϕ(0) = 0,

α ∈ [0, π),
− [β1ϕ(`)−β2∂zϕ(`)]=ω2 [β′1ϕ(`)−β′2∂zϕ(`)] .

(2)

Here, we have written the eigenvalue asλ = ω2 and
note the presence of the eigenvalue in the boundary condi-
tion atz = `. The classical problem defined by Eq. (2) has
been studied by Fulton in Ref. [35]. In the kind of bound-
ary eigenvalue problems like (2) the relevant Hilbert space
where classical dynamics take place is not the standardL2,
but rather some extended Hilbert space including the “bound-
ary dynamics”. Here, it isH := L2((0, `)) ⊕ C with its ele-
ments being two-component vectors, sayu = (u1, u2)T with
u1 ∈ L2((0, `)) andu2 ∈ C. The Hilbert space is equipped
with the inner product

(u, v)H :=

`∫

0

dz u1(z)v1(z) + ρ−1u2v2. (3)

whereρ := β′1 β2 − β1 β′2 is required to be positive.
Solutions to (2) can be obtained by introducing the self-

adjoint operator

ϕ ∈ D(A) 7→ Aϕ :=
([−∂2

z + m2 + V (z)
]
ϕ1(z)

− [β1ϕ1(`)− β2∂zϕ1(`)]

)
, (4)

which is densely defined inH on the domain

D(A) =
{

ϕ =
(

ϕ1

ϕ2

)
∈ H : ϕ1, ∂zϕ1 are absolutely

continuous in[0, `], ∂2
zϕ1 ∈ L2((0, `)),

cosαϕ1(0) + sin α∂zϕ1(0) = 0,

ϕ2 = β′1ϕ1(`)− β′2∂zϕ1(`)
}

. (5)

Indeed, the eigenvalue problem (2) takes the formAϕ =
ω2ϕ or equivalently the dynamical problem (1) becomes an
abstract wave equation∂2

t φ + Aφ = 0. Under some fur-
ther technical assumptions on the coefficientsβ1, β

′
1, β2, β

′
2

spelled out in [32, Prop. 1],A defines a positive oper-
ator and solutions to the abstract wave equation take the
usual form: Given initial dataφ|t=0 = f ∈ D(A) and
∂tφ|t=0 = p ∈ D(A1/2) strong solutions can be written in
terms of a complete set of orthonormal eigenfunctions ofA,
{Ψn}∞n=1 ∈ D(A), as

φ(t, z) =
∞∑

n=1

Ψn(z)

×
(

[Ψn, f ]H cos(ωnt)+[Ψn, p]H
sin(ωnt)

ωn

)
. (6)

Note that the eigenfunctions{Ψn}∞n=1 are indeed two-
component vectors taking the form

Ψn(z) =
(

ψn(z)
β′1ψn(`)− β′2∂zψn(`)

)
, (7)

since they are in the domain of the operatorA.
Once the classical problem has been characterised,

canonical quantisation can be performed immediately. The
bosonic Fock space of the theory is

H = C⊕∞n=1 (⊗n
s `2(N )), (8)

where `2(N ), is the space of complex-valued, square-
summable sequences of the form{αn}∞n=1, with the scalar
product

({αn}∞n=1, {βn}∞n=1)l2(N ) :=
∞∑

n=1

αn βn, (9)

and quantum fields are operators onH defined in terms of
the annihilation and creation operators in Fock space,ân and

Supl. Rev. Mex. Fis.3 020714
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â†n respectively, satisfying the canonical commutation relations. Namely, field operators are of the form

Φ̂(t, z) =
∞∑

n=1

1
(2ωn)1/2

(
e−iωntΨn(z) ân + eiωntΨn(z) â†n

)
. (10)

This completes the canonical quantisation of the scalar field defined by the system (1), whereby the field observable is
represented as the operator (10) in the Fock spaceH (8). The fact that the3-field operator,̂ϕ(z) := Φ̂(0, z), and its momentum,
π̂(z) := ∂tΦ̂(t, z)|t=0 represent canonical commutation relations follows from the commutation relations of the annihilation
and creation operators.

3. The Casimir energy and Casimir force

The local Casimir energy can be obtained by a point-splitting prescription and Hadamard subtraction. We henceforth assume
that the potential term vanishes,V (z) = 0. For the ground state we have that the Wightman function takes the form

〈Ω`|Φ̂(t, z) Φ̂(t′, z′)Ω`〉 =
∞∑

n=1

1
2ωn

e−iωn(t−t′)Ψn(z)⊗Ψn(z′). (11)

Note that the two-point function is tensor-valued. On the diagonal of this tensor we have a “bulk” and a “boundary” two-
point function, while off the diagonal we have “bulk-boundary” two-point functions. It is natural to define a “bulk” Casimir
energy using the bulk two-point function as follows

〈Ψ|ĤB
ren(t, z)Ψ〉: = lim

(t′,z′)→(t,z)

1
2

(
∂t∂t′+∂z∂z′+m2+V (z)

)
( ∞∑

n=1

1
2ωn

e−iωn(t−t′)ψn(z)⊗ ψn(z′)−HM(x, x′)

)
. (12)

HereHM is theHadamard singular structureof the Wightman two-point function, which for sufficiently close pointsii

takes the form

HM((t, z), (t′, z′)) := − 1
4π

(
2γ + ln

[
m2

2
σ{(t, z), (t′, z′)}

]
+

m2

2
σ[(t, z), (t′, z′)]

[
ln

{
m2

2
σ((t, z), (t′, z′))

}
+ 2γ − 2

]

+
m4

16π
σ2[(t, z), (t′, z′)]

[
ln

{
m2

2
σ((t, z), (t′, z′))

}
+ 2γ − 3

])
+ O

(
σ3[(t, z), (t′, z′)] ln[σ{(t, z), (t′, z′)}]) , (13)

where2σ((t, z), (t′, z′)) = −(t− t′)2 +(z−z′)2 andγ is the Euler number. In fact, there are a number of freedoms in defining
HM but the current definition guarantees that the local energy of the Minkowski vacuum be zero. Note that in (12) the “bulk”
component of theΨn-eigenfunctions (7), ψn, is used.

The technical point in order to obtain the local Casimir energy is to estimate sufficiently well the eigenfunctions at large
eigenvalue, which in the coincidence limit give rise to the distributional logarithmic divergences that are subtracted byHM,
making the right-hand side of Eq. (12) well defined. For example, if a Dirichlet boundary condition is imposed atz = 0, we
have that the local Casimir energy in the ground state,

Ω(D)
` = (1, 0, 0, . . .), (14)

is given by

〈Ω(D)
` |ĤB

ren(t, z)Ω(D)
` 〉 =

π2β′2 + 6(2γ − 1)β′2`
2m2 + 6β′2`

2m2 ln
(

`2m2

4π2

)
+ 24β′1`

48πβ′2`2
+

m2

2π
<

(
e−i π

` z ln
[
1− ei 2π

` z
])

+
∞∑

n=1

([
(ND

n )2ωD
n

4
− πn

2`2
+

π

4`2
− m2

4πn

]
−m2

[
(ND

n )2

8ωD
n

− 1
4πn

]

+
(ND

n )2m2

4ωD
n

sin2
(
sD

n z
)− m2

2πn
sin2

[π

`
(n− 1/2)z

])
, (15)

where thesD
n are connected to the eigenvalues by(ωD

n )2 = (sD
n )2 + m2 andND

n is a normalisation factor, see [32]. The
D superscripts make reference to the Dirichlet boundary condition atz = 0. The sums on the right-hand side of (15) are
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absolutely and uniformly convergent inz ∈ (0, `). While the
closed form of the eigenvalues is not known in closed form,
estimations can be obtained with the aid of analytical and nu-
merical techniques.

Note that in this case the bulk local Casimir energy is
conserved in time. The local energy diverges logarithmically
as z → 0 and asz → `, a feature that also occurs with
two Dirichlet boundary conditions, seee.g. [36]. But since
the logarithmic divergences of (15) are integrable, the total
Casimir energy, defined by

E(t, `) :=

`∫

0

dz 〈Ω`|ĤB
ren(t, z)Ω`〉, (16)

is finite. (We keep the time argument explicit out of principle,
but in this case the energy is time-independent.) The Casimir
force exerted on the boundaries is defined by

F (t, `) := −∂`E(t, `), (17)

and can also be studied with the aid of numerical techniques.
We present some examples in [32,33].

In the experiments carried out by Wilsonet al. [20] the
dynamical Casimir effect was studied at finite temperature at
approximately50 mK and250 mK. The result (15) gets mod-
ified at finite temperatureT = 1/β as

〈ĤB
ren(t, z)〉β(D) = 〈Ω(D)

` |ĤB
ren(t, z)Ω(D)

` 〉

+
∞∑

n=1




[
{ω(D)

n }2 + m2
]

2ω
(D)
n

[
ψ

(D)
n (z)

]2

eβω
(D)
n − 1

+
1

2ω
(D)
n

[
∂zψ

(D)
n (z)

]2

eβω
(D)
n − 1


 , (18)

where the sum appearing on the right-hand side of (18) is
absolutely convergent and converges exponentially fast. The
above situation can also be explored in coherent states (at
finite temperature), for which the general form of the local
Casimir energy takes the form of the ground (thermal) state
energy added to the energy of the classical solution around
which the coherent state is “peaked”.

A boundary Casimir energy for the boundary observable
φ∂ can be defined too, but in this case no renormalisation
is required, since in this model the boundary has spacetime
dimension1 (i.e., the boundary has no spatial extension).

In our paper [32] the bulk and boundary Casimir energies
(and state polarisations) are presented in detail for the ground
state and at finite temperatures for Dirichlet and Robin (in-
cluding Neumann) boundary conditions on the left end of
the intervalz = 0 and dynamical boundary conditions at
z = `. This work is extended to include coherent states
in [33], where the Casimir force is also explored with the
aid of numerical techniques, giving strong indication that the
force can be repulsive or attractive depending on the parame-
ters of the problem. The technical part of the numerical anal-
ysis is to obtain sufficiently many “low energy” eigenvalues,
which dominate the effect by the uniform convergence of the
sums, in order to obtain good numerical approximations to
the Casimir force.

4. Summary and perspectives

After a short discussion on the static and dynamical Casimir
effects in the Introduction, we have given a short overview of
the static Casimir effect for a system with dynamical bound-
ary conditions beginning by a summary of the quantisation of
systems with dynamical boundary conditions. More details
appear in [32, 33], including explicit numerical examples for
which the Casimir force is attractive or repulsive depending
on the free parameters of the dynamical boundary condition,
a thorough discussion on boundary observables and details
on the propagators of the theory.

We emphasise that for the experimental verification of the
dynamical Casimir effect the parameterβ2 in (1) is instead a
time-dependent function. In this sense, the present work puts
in a rigorous setting the “in” theory that models the exper-
iment [20] before the electromagnetic field is set to vary in
time and particle creation takes place.

The main perspective of this work is to extend the present
techniques to time-dependentβ2 to recover the results in
[20,23] on a rigorous footing.
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6 B. A. JUÁREZ-AUBRY AND R. WEDER

Conducting Plates,”Proc. K. Ned. Akad. Wet. B(1948)51793-
795.

3. M. Bordag, G. L. Klimchitskaya, U. Mohideen and
V. M. Mostepanenko,Advances in the Casimir effect(Oxford
University Press, 2009).

4. K. A. Milton, The Casimir Effect(World Scientific, 2001).

5. D. Deutsch and P. Candelas, Boundary Effects in Quantum
Field Theory”,Phys. Rev. D20 (1979) 3063,https://doi.
org/10.1103/PhysRevD.20.3063 .

6. B. S. Kay, Casimir effect in quantum field theory”,Phys.
Rev. D 20 (1979) 3052,https://doi.org/10.1103/
PhysRevD.20.3052 .

7. S. K. Lamoreaux, Demonstration of the Casimir force in the 0.6
to 6 micrometers range”,Phys. Rev. Lett.78 (1997) 5, [erratum:
Phys. Rev. Lett. 81 (1998) 5475,https://doi.org/10.
1103/PhysRevLett.81.5475 .] https://doi.org/
10.1103/PhysRevLett.78.5 .

8. G. Bressi, G. Carugno, R. Onofrio and G. Ruoso, Measure-
ment of the Casimir force between parallel metallic surfaces”,
Phys. Rev. Lett.88(2002) 041804,https://doi.org/10.
1103/PhysRevLett.88.041804 .

9. V. V. Dodonov, Fifty Years of the Dynamical Casimir Ef-
fect”, MDPI Physics2 (2020) 67,https://doi.org/10.
3390/physics2010007 .

10. G. T. Moore, Quantum Theory of the Electromagnetic Field
in a Variable-Length One-Dimensional Cavity”,J. Math.
Phys.11 (1970) 2679,https://doi.org/10.1063/1.
1665432 .

11. P. C. W. Davies and S. A. Fulling, Radiation from a moving mir-
ror in two-dimensional space-time conformal anomaly”,Proc.
Roy. Soc. Lond. A348(1976) 393,

12. C. Barcelo, S. Liberati and M. Visser, Analogue gravity”,Liv-
ing Rev. Rel.8 (2005) 12https://doi.org/10.12942/
lrr-2005-12 . [arXiv:gr-qc/0505065 [gr-qc]].
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