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Doubly cabibbo-suppressed decays at BESIII
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BESIII reports the first observation of the doubly Cabibbo-Suppressed detay> K= x~ 7 and the first evidence fab™ — K*w
using ane™ e~ collision data sample corresponding to an integrated luminosity of 2.98tfiken at a center-of-mass energy of 3.773 GeV.
The ratio of the branching fractions @™ — K n"7~ 7% over DT — K~ ntnt 7Y is significantly larger than other doubly Cabibbo-
Suppressed decays in the charm sector. FReasymmetry in the separated charge-conjugate branching fractiofs'fers Kt~ 7

is determined and no evidence @fP violation is found. An independent measuremeniof — K7t 7~ 7" with semileptonic tags is
also reported.
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1. Introduction tion of the BESIII detector and the detector response. The
MC samples are generally used in the charm physics of BE-

Doubly Cabibbo-suppressed (DCS) decays in charm sect@lil [12,13].

play an important role in the understanding of the weak de-

cay mechanisms of charmed hadrons. Compared with th

Cabibbo-favored (CF) and singly Cabibbo-suppressed (SCS)

decays, the branching fraction (BF) of the DCS decay is eXTaking the advantage of the pair production/ab from the

pected to be much smaller and only fewer DCS decays havgaia sample, the DCS decay can be studied with the double-

been observed to date [1]. The ratio of DCS to its reIatlvetag (DT) technique. Events where o meson is fully

CF counterpart BFs is simply expected to be of the ordetgconsiructed are referred to as “single-tag” (ST) candidates.

tanfc ~0.29% [2, 3], wherdc is the Cabibbo mixing an- A correct tag guarantees the presence of the afheme-

gle [1]. This expectation is roughly supported by the knowng,, and we search for the signal decays recoiling against a

rates of DCS and CF decays [1]. Precisg measurement of triﬁggedD‘ meson. Events with both a tag and such a signal-

BF of D* — K*nn~ " and the rate with its CF counter- nqqe candidate are referred to as “double-tag” (DT) events.

part can offer a crucial check of this expectation. In this article, we report two methods to measure the BF of
Measurements of the BFs 6f — VP decaysV andP”  p+ _, g+z+7—7z9. Charge-conjugated decays are always

refer to vector and pseudoscalar mesons, respectively) prgmplied except when discussir@P violation.
vide insight into quark SU(3)-flavor symmetry and charge-

parity (C'P) violation [3-8]. Study of the DCS decay* — 2.1. Hadronic tags

K+ata= =0 offers an ideal opportunity to determine the BF

of D* — K*w. The result is important to improve the un- Hadronic decays are the dominant decay channel® of

derstanding of quark SU(3)-flavor symmetry and symmetrymeson [1] and widely used as the tagged channel®in

breaking, and also benefits theoretical calculation§ Bfvi-  physics [12, 13]. In the first method, the S7~ meson

olation [3-8]. is reconstructed in one of the three hadronic decay modes
In the Standard Model (SM), the dire€tP violationis D~ — K'n 7", D~ — Kgr~,andD~ — K*n—n~7°.

predicted inD decayse.g, due to a single irreducible phase The BF of the signal decay is determined according to

in the Cabibbo-Kobayashi-Maskawa matrix [9]. In the charm Nirp

sector, C'P violation for SCS processes is expected to be Bsig = Nee B Q)

small (~ 1073), and much smaller for CF and DCS pro- STEsigPsub

cesses [7, 10]. Searching fotP violation in DCS decays whereNgr, Npr, €sig, andBsyy, are the ST yield, DT yield,

allows for more comprehensive understanding’@? viola-  average efficiency of reconstructing the signal decay, and the

tion in the D sector. BF of ¥ — v [1], respectively. e, is weighted by the
BESIII has collected 2.93 fo! of eTe~ collision data measured yields of tag modém data which is given by

at the center-of-mass energy of 3.773 GeV. This data sam-

ple provides the world largest threshadltlD sample and an (23: NéTEiDT/EiST>

ideal experimental platform to study the DCS decays. Simu- . — Ni=l

lated samples produced with tieEANT4-based [11] Monte e 3

Carlo (MC) package which includes the geometric descrip- <ZZ1 NST)

Measurements ofD* — K+xtn— 70
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FIGURE 1. Fits to theMpc distributions of theD ™ tagging decay modes. Data are shown as dots with error bars. The blue solid and red
dashed curves are the fit results and the fitted backgrounds, respectively.
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FIGURE 2. Comparison of two-body and three-body mass distributions ofthe— K+ 7+ 7~ #° candidate events between data (dots with
error bars) and inclusive MC sample (red histograms). The yellow hatched histograms denote the MC-simulated backgrounds.

The ST yields are obtained from maximum likelihood s data
fits to the M}gag distributions of the accepted ST candi- i COD = KT o
dates [12,13], where th@/y¢ is defined by Mys = 10__ B> Ko
VE? —pp-12, Ey andpp- are the beam energy and the = | Eﬁ;‘mkgmund
momentum ofD~ candidate in thee~ rest frame. The
fit results are shown in Fig. 1. The total S7~ vyield is
Nst =(1150.3 + 1.5) x 103,

Events / (8 MeV/c?)
n
T ‘ T
-—
<

The signalD* candidates are identified using thésc
distribution of the signal side. The dominant peaking back- L
ground from the singly Cabibbo-Suppressed defdy — L
K2K* 7% has been rejected by requiriply .+ - — Mol > 0 i
20 MeV/c2. Figure 2 shows the comparison of two-body '
and three-body invariant mass distributions for the —
K+t~ 0 candidate events. FIGURE 3. Distribution of M, + -0 for DT — KTgtna 7°

candidates in data. The red arrows denotedtsignal region. The

Figure 3 shows the comparison of thé.; .- .o distribu-  blue arrows denote the sideband regions.
tions between data and MC simulation. The signal peak of
D+ — K*nis clearly seen in Fig. 3. Since tie™ — K*n The left column of Fig. 4 shows the distributions/aff;
has been well measured by BESII| a9+ 72 Signa| events VS. ]\/[E;é for DT candidate events in data. Slgnal events and
are observed, whergis reconstructed by~ and ST method  three categories of backgrounds are discussed below:

M, . (GeV/c?)

is used [14], we do not repoR™ — K1 in this article. The e Signal events concentrate arou tacg — M]S;g =
definitions of thew signal and sideband regions are shown in Mp+, whereMp+ is the nominal mass of thB+ me-
Fig. 3. son [1].
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FIGURE 4. Distributions of (left cqumn)Mf;cg VS. M;fé, and the projections of the corresponding 2D fits on (middle cquMQ)zg and

(right cqumn)Mgié, for the DT candidate events @1~ — all tags vs.D™ — KTz "7~ 7", The top, middle, and bottom rows correspond

to all events, events lying iw signal region, and those falling i sideband region, respectively. In the figures of the middle and right
columns, data are shown as dots with error bars; the blue solid, black dashed, blue dot-dashed, red dot-long-dashed, and green dashed cur
denote the overall fit results, signal, BKGI, BKGII, and peaking background components, respectively.

e BKGI is from the events with oné>t/~ meson re- DT — K*tw, simultaneous 2D fits are performed on the
constructed correctly and anoth®r/+ meson recon-  events in thev signal and sideband regions.

structed incorrectly, which distributed along the hori-  The fit results as well as the BFs are summarized in
zontal and vertical bands. Table 1, and the projections oi/i& and Myg of the 2D

fits to data are shown in the middle and right columns in
e BKGII is mainly from thee™e™ — ¢g processes and Fig. 4. The statistical significance @#* — Ktxtn—x°

the events found along the diagonal. and Dt — KTw are found to be3.30 and3.30, respec-
tively.
e BKGlIIl is the events in which both the tw mesons Using the world averaged BF forDt N
are reconstructed incorrectly. K~7tn 0 [1], we determine the ratio a8},, .., . o

over Bp+ _ g—r+r+x0 t0 be(1.81 £+ 0.15)%, corresponding
Peaking backgrounds in the decady — K*atr n’is  to (6.28 & 0.52) tan* f¢, which is significantly larger than
from Dt — KTK~(— 7 7%)n* decays and from the the values (0.21-0.58)% for the other DCS decays [1]. This
residualDt — K2 (— =7~ )K" events, which are eval- unexpected ratio implies that there may be a massive isospin
uated using the MC simulations. For the de¢ay — K*w,  symmetry violation in the decay™ — K+7t7~ 70 and
the peaking background contributions are dominated by th&®° — K+7—z—7t, which may be caused by final state
nonw decaysDt — Ktntr— 7Y, interactions and very different resonance structures in these

The DT vyields are determined by performing a two- two decays.

dimensional (2D) unbinned maximum likelihood fit on the ~ The BF for the decayp™ — K *w is consistent with the-
correspondingM]gan vs. My¢ distribution. For the decay oretical predictions that incorporate quark SU(3)-flavor sym-
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FIGURE 5. Distributions ofMzc vs. M2, of the accepted DT candidate events tagged byXa)— K%e~ 7. and (b)D~ — K n e 7.

in data.

TABLE |. The ST yields {Vst), the DT yields (Npr), the averaged signal efficienciesif), and the obtained BFs befor&,) and
after (8%,) removing the contribution fronlb* — K*n, K*w, andK "¢ [15].

Decay channel Nst (x 10°%) Npt €sig (90) Baig (x 107%) Y (X 107%)
Dt - KEptaFal 1150.3 + 1.5 350 + 22 25.03 £0.13 1.21 +0.08 4 0.03 1.13 £ 0.08 4+ 0.03
D* — K*w 1150.3+ 1.5 9.2+29 14.14 £ 0.09 (5.7725 40.2) x 1072 -
DT - Ktnta—xn® 573.5+ 1.0 181+ 15 25.20 +0.18 1.25 +0.11 4 0.03 1.17+0.114+0.03
D™ — K a ntx® 572.7+ 1.0 165 + 15 24.95 4+ 0.18 1.16 4 0.11 4 0.03 1.08 £ 0.1140.03

metry and symmetry breaking [4], but disfavors predictions2.2. Semileptonic tags
based on quark SU(3)-flavor symmetry without symmetry 0 o
breaking [5] and predictions based on the pole model [16]n the measurements of DCB" decays using:"e™ col-

by 1.8-2.8s. This result will benefit future calculations of lision data taken at the(3770) resonance peak, hadronic
C'P violation in the charm sector [3-9]. tagged method suffers from complicated cross feeds between

. the events of CBD® — tag vs. DCSD — signal and those
+ + +. -0 _ gVs. | g
The OF asymmetry ofD" — KTm'rr is deter from DCSD® — tag vs. CFD® — signal. This is mainly

mined b . S
y due to there is possible interference between the DCS and
DE Kt 0 CF amplitudes for hadronic neutral decays. We introduce
Acp and utilize a method using semileptodic — K%~ v, and

D~ — KTn~e v, decays to tag the DCH decays. This
new technique helps to avoid the aforementioned troubles be-
cause the semileptoniB® decays have no DCS component
whereBps . rsr—o andBp- s+ 0 are the BFs and theD® — D° mixing [17,18] effect is small.

of the charge-conjugated decags® — Ktz and For eac(? of the two sen_uleptonlc tags, the BF for —

D~ — K- n—ntx0, which are measured separately. TheS 7 7™ = can be determined by

last two rows of Table | summarize the corresponding ST
yields, DT vyields, signal efficiencies, and the obtained
BFs. TheAZ, K" =" =% is determined to bé—0.04 -+
0.06sta¢ £ 0.014ys;) after considering the correlated system-whereNg;, i, is the yield of the signal DT events in the data
atic uncertainties of tracking and PID of the 7~ pair, 7° sample,Np+p- = (8296 & 31 £ 65) x 103 is the total num-
reconstruction, quoted BFs, and MC modeling. No evidencder of D D~ pairs [19], Bs, is the BF for the semileptonic
for C'P violation is found. decay [1].es1, sig iS the efficiency of reconstructing the DT

_BD+—>K+7T+71'77TO_BD7—>K77T77T+7T0

N )

BD+~>K+7r+7r*7TO+BD*~>K*7r*7r+7rU

NSL,sig

Bsig = P (4)

2- ND+D— : BSL * €SL,sig * Bsub
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FIGURE 6. Simultaneous fits to thé/2;.. distributions of the accepted DT candidate events tagged by(a)— K°e~ . and (b)
D™ — Ktn e b..

events,Bg,y, is the BFsB,o_,,, andBgo_..+,-. Through-  2.3. Combined results

out this section, charge conjugate modes are implied. Infor-

mation concerning the undetectable neutrino is inferred byAter considering the correlated uncertainties &,
the kinematic quantity defined as mtx~ tracking and PID, 7" reconstruction, and MC

model, the averaged BFs dd* — KTrtn~ 70 mea-
M2, = E2.  — |Pmiss|?, (5) sured by two tagged methods are determined to be
BD+HK+7T+7‘-—7‘-U = (110 + 0.07 £+ 003)% The ratio

whereE s andpmiss are the missing energy and momentumOf Bp+ g+ r+r—#0/Bp+ g rt+rtx0 iS determined to be
of the DT event in thete~ center-of-mass system. (1.76 £ 0.13)%, corresponding t§6.11 + 0.52) tan* 6¢.

The distributions ofMpc vs. M2, . for the DT candi-
dates in data are shown in Fig. 5. The signal DT candidatey_ Summary and Outlook
events concentrate around theé known mass and zero.

The signal yield is extracted by the unbinned maximumBESIII reports the first observation of the DCS deday —
likelihood simultaneous fits on the 2, _ distributions forthe K7+~ 7% and the first evidence fdb* — K+w. The BF
two semileptonic tags. In the fit, the two semileptonic tags ar®f DT — KTn+7~x0 is the largest among the known DCS
constrained to have the same BF forr — Ktntn—7%. D decays. The ratio 0Bp+ _ gt ntnn0/BDt - K- ntmtn
The fit results are shown in Fig. 6. The fits give a totalis determined to b€6.11 + 0.52) tan* 6, which is signifi-
yield of 112 £+ 12 for signal DT events. Using the signal cantly larger than the values (0.21-0.58)% for the other DCS
MC events, the efficiencies of reconstructing the DT eventslecays in charm sector. No evidence @GP violation is
D~ — K% v, andD~ — Ktx e v, are obtained to found inD* — K¥xr¥rFx0.
be 0.103 4+ 0.001 and 0.076 + 0.001, respectively, where In the near future, BESIII plan to collect another 17 fb
the efficiencies do not include the BFs f&f® — w7~ ete collision data sample ays = 3.773 GeV [20]. With
and® — ~v. The BF is determined to b8(D* — larger data samples, amplitude analyses of this decay will
K+tata=70%) = (1.034£0.1240.06) x 1073 after subtract- provide crucial information for understanding the origin of
ing the sum of the product BFs for decays containing narrowthe anomalously large ratio. Meanwhile, more other DCS
intermediate resonanceB," — KtX (X = n,w,¢) with  decays,D* — K*n, D' — Ktn—n, DT — K*tn, etc.,
X — ntx~xC. This result is consistent with the one taggedwill also be studied and help to check the theoretical predic-
by hadronic tags. tion [3, 5].
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