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Electromagnetic Pion form factor in a deformed background
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This work discusses the electromagnetic (EM) pion form factor (πFF ) in a deformed AdS geometry. We consider the conformal dimension
of the hadron bulk field defined by the scaling dimension of theq q̄ operator instead of the twist. We also compute the pion EM radius and
compare it with the experimental data, finding a relative error of2%.
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1. Introduction

Electromagnetic pion form factor (πFF) is one of the most
valuable QCD quantities related to the transition from the
non-perturbative to the perturbative regime. From theoret-
ical studies such as [1], it is expected the emergence of a
Sudakov suppressionin theπFF for intermediateq2 regions.
In this work, we want to explore this phenomenology from
holographic grounds.

In general, the primary motivation behind the AdS/QCD
idea is how we place confinement. In pure AdS space,
bulk fields are conformal. Free bulk fields have normaliz-
able modes with continuous eigenspectra. Thus, they are
not a good choice to describe hadrons. To circumvent this
issue, we can add geometrical deformations to the back-
ground. In this top/down scenario, the equivalence with low
energy QCD appears when we consider equally the confor-
mal boundary theory and QCD coupling constants at some
fixed point. However, this prescription is restrictive. For
instance, these models do not have fundamental degrees of
freedom ab initio. They should be added by geometrical de-
formations, such as another stack of D-branes, whose Chan-
Paton charge corresponds with the number of flavors of the-
ory [2].

Another possibility to address the emergence of bounded
(hadronic) states in holography is directly transforming the
continuous bulk eigenspectrum into a discrete one. This idea
is achieved by slightly breaking the conformal invariance in
the bulk. We can do this in two forms: by placing a dilaton
(the so-called softwall [3] model) or deforming the geome-
try (the hardwall [4–7] and the deformed background mod-
els [8, 9]). Consequently, we will obtain a dual radial Regge

trajectory, which can be linear if the dilaton or deformation
are chosen to be quadratic in the holographic coordinate. We
will follow the latter path.

This work is organized as follows: in Sec. 2, we de-
scribe the deformed background model for pions and photon.
In Sec. 3, we summarize the hologaphicπFF calculation in
terms of bulk interacting fields. Finally, in Sec. 4 we present
our conclusions.

2. Deformed Background Model

Let us consider a general five-dimensional AdS background
defined by

dS2 =
R2

z2
e2h(z)

[
dz2 + ηµ ν dxµ dxν

]
, (1)

whereR defines the AdS curvature radius, and the Greek in-
dices label four-dimensional spacetime indices. The geomet-
rical deformationh(z) sets confinement.

Hadrons are defined using the bulk fields defined by the
action

IHadron=
∫

d5x e−Φ(z) LHadron, (2)

whereΦ(z) is a dilaton (which can be statically or dynam-
ically generated) which also induces confinement. The la-
grangianLHadron carries all the relevant information of how
bulk fields will mimic hadrons at the boundary.

From the metric (1) and the action (2), we can write
bulk equations of motion. These equations are transformed
into a Schrodinger-like eigenvalue problem−ψ′′+V (z)ψ =
M2

n ψ, with theV (z) defined as holographic potential, and
ψ(z) the normalizable part of the bulk field dual to hadrons.
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In general, the holographic potential for integer spin hadrons
has the form

V (z) =
1
4
B′(z)2 − 1

2
B′′(z) +

M2
5 R2

z2
e2h(z), (3)

where we have introducedB(z) = Φ(z) +
β [log(R/z) + h(z)], andM2

5 R2 defines the bulk field mass,
which characterizes the hadronic identity in terms of its con-
formal dimension. The information initially captured in the
bulk action (2) is now translated into theB(z) function. The
parameterβ counts the hadronic spin in3 + 1 dimensions.
For scalar hadrons we haveβ = −3, and for vectors we have
β = −1. The eigenspectrumM2

n obtained from this holo-
graphic potential defines the so-calledholographic Regge
trajectories.

The geometric background model introduced in Refs. [9,
10] emerges when we fixΦ(z) = 0 andh(z) = (1/2) k z2.
Notice that the parameterk is flavor dependent,i.e., each par-
ticle in the model has its own geometric background.

2.1. Pions in the deformed background model

Pions are defined by a bulk massive scalar fieldX obeying
the following action

Iπ =
∫

d5x
√−gπ [gmn

π ∂mX∂nX + M2
5 X2], (4)

where the bulk massM2
5 is defined in terms of the scalar con-

formal dimension∆ as follows

M2
5 R2 = ∆(∆− 4). (5)

For hadrons,∆ is identified with the dimension of the op-
erator creating them at the boundary. In the case of mesons,
they are created by the operatorq q̄, whose dimension is
three. Therefore, in this particular case, the bulk mass is
M2

5 R2 = −3.
From the action (4) we obtain the following equation of

motion for theX field:

∂z

[
e−Bπ(z) ∂z X

]
+ M2

n e−Bπ(z) X

+
3 R2

z2
e

1
2 k2

π z2
X = 0, (6)

where we have imposed the on-shell condition−q2 =
M2

n for the pion, and also we have definedBπ(z) =
−3 log(R/z)− (3/2)kπ z2.

Following the standard bottom-up AdS/QCD prescrip-
tion [3, 11–13], after performing the transformationX(z) =
e

1
2 Bπ(z) ψπ,n(z) we can write the following holographic po-

tential (3) for the pion normalizable bulk modesψπ,n(z) as

Vπ(z) =
15
4 z2

− 3
z2

e−kπ z2
+

k2
π z2

4
+ kπ. (7)

The ground state of this potential is identified with the
pion. Thus, using the pion mass, we can fit the value of de-
formation slope askπ = −0.04252 GeV2.

2.2. Virtual photons in the deformed background model

Virtual photons emerge from the non-normalizable part of an
abelian massless vector bulk fieldφm(z, q), defined by the
action

Iγ = − 1
α2

γ

∫
d5x

√−gγ
1
4
FmnFmn , (8)

whereαγ is a coupling constant setting units in the action,
and Fmn = 2 ∂[m φn] is field strength, andφµ is a bulk
abelian vector field.

At the conformal boundary, the vector field should be-
have as transverse wave,i.e., φµ(x, z → 0) = ηµ e−i q·x.
This condition imposes thatφz = 0. Thus, the bulk vector
field will be written as

φµ(z, q) = ηµ e−i q·x B(z, q), (9)

whereB(z, q) is the so-calledbulk-to-boundary propagator.
From the vector field action we can write the equations of
motion forB(z, q) as follows

∂z

[
e−Bγ(z,q) ∂z B(z, q)

]
− q2 e−Bγ(z) B(z, q) = 0, (10)

whereBγ(z) = − log(R/z)− (1/2) kγ z2. The equation for
the bulk-to-boundary propagator has the following solution

B(z, q) = −1
2

kγ z2 Γ
[
1− q2

2kγ

]

× U
(

1− q2

2kγ
; 2; −kγ z2

2

)
, (11)

whereU(a, b, z) is the Tricomi function, andkγ is the energy
scale associated with the virtual photon kinematics.

Now that we have described the holographic ingredients,
we can move towards the holographic calculation of the pion
form factor.

3. Holographic πFF calculation

In holography, form factors are defined via interaction terms
in the bulk action (2). These interaction terms may arise in
two possible forms. One is from high-order expansions in
the bulk lagrangian, encoded in the group covariant deriva-
tives due to the inner group structure associated with the bulk
fields [14]. The other comes from phenomenological inter-
action terms writtenab initio inspired by expected hadronic
properties, such as sum rules or OPE’s [15].

In this scenario, the electromagnetic form factor comes
from the minimal coupling between scalar bulk field normal-
izable Schrodinger modes (dual to the incoming and outgoing
pions) and a vector bulk field non-normalizable partB(z, q2)
(dual to the virtual photon). Therefore we have [16]

Fπ(q2) =
∫

dz ψπ,1(z)B(z, q2)ψπ,1(z), (12)
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whereψπ,1(z) stands for the pion ground state eigenfunction.
In our particular case, since we have a background for

each particle, we have set (or choose) the frame where we
will calculate the interaction term (12). In this sense, we
propose thepion geometric backgroundas the most natu-
ral scenario, since in this frame, we have defined the pion
Schrodinger-like modes.

This explicit form for theπFF was introduced in the con-
text of light-front (LF) holography [15], where∆ is not asso-
ciated with the dimension of the operator creating hadrons.
Instead,∆ is connected with thetwist, which carries the
particle content information. Thus, in the case of mesons,
∆ = τ = 2. With this choice, theπFF has the correct large
q2 behavior, expected from QCD sum rules [29]. In the next
paragraphs, we will explore the case with∆ = 3, outside the
LF holography context.

3.1. kγ fixed case

As usual in AdS/QCD, we will take the conformal dimension
for the scalar bulk field as∆ = 3. In Fig. 1 we summa-
rize our results comparing with experimental and theoretical
(holographic and non-holographic) available data. To test the
consistency with the sum rules, we will examine the Brodsky-
Lepage counting rule calculated in this model:

Fπ

(
q2

)∣∣
q2→∞ =

1 + γe(∆− 1)∆ + . . .

8∆2(∆− 1)

×
(

1
q2

)∆−1

∝ 1
q4

. (13)

Notice that when we consider the LF case,i.e. ∆ = 2
[15], we recover the expected behavior1/q2 for the πFF.
However, in the non-LF case, our geometric deformed back-
ground model with∆ = 3 and using Eq. (12), we observed

that theπFF captures the lowq2 (below 1 GeV2) behav-
ior (see Fig. 1), nevertheless it does not satisfy the expected
counting rule. TheπFF in this situation is highly suppressed
for high q2 values also.

The lowq2 behavior is tested by calculating the pion elec-
tromagnetic radius, defined as

〈r2
π〉 = −6

dFπ(q2)
dq2

∣∣∣∣
q2=0

. (14)

In this situation with∆ = 3 andkγ = −3.8 GeV2, we
obtainrπ = 0.458 fm, with an error around30% compared
with experimental data [30].

3.2. kγ running with q case

A possible form to circumvent this issue with the counting
rule appears when we assume the photon slopekγ to be a
function of the transferred momentumq. The parameterkγ

does not set confinement, and it is related with the kinematic
scale of the virtual photon. Thus, we will fixkγ(q) = q κγ ,
whereκγ has energy units. If we compute theπFF at large
q2, following the procedure described in Ref. [15],

Fπ

(
q2

)∣∣
q2→∞ =

32 k2
γ(q)

[q2 + 4 |kγ(q)|] [q2 + 8 |kγ(q)|]

∝ 1
q2

, (15)

we will fulfill the Brodsky-Lepage rule. The results in this
situation are depicted in Fig. 2. Notice that we also have a
softened Sudakov suppression, as expected from lattice anal-
ysis. The plots also show that this approach captures the low
q2 phenomenology. When we compute the pion electromag-
netic radius withκγ = −2.8 GeV, we obtainrπ = 0.671,
having2% of error compared with experimental data [30].

FIGURE 1. The left panel compares our results for the pion form factor with the available experimental data [17–22]. In the next panels,
we have a comparison of our results with non-holographic models (center panel) such as BSE [23], perturbative QCD [25], dispersion
relations [26], sum rules [27], and LFQCD [1]. In the right panel, we depict a comparison with other holographic models such as hardwall
and softwall with∆ = 2 [15], and Sakai-Sugimoto/extrapolated Sakai-Sugimoto [28]. In our results we have takenkγ = −3.8 GeV2.
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FIGURE 2. The left panel compares our results for the pion form factor with the available experimental data [17–22] using the proposed
scaling forkγ . In the next panels, we depict a comparison of our results with non-holographic models (center panel) such as BSE [23]
or Light-Front BSE [24], perturbative QCD [25], dispersion relations [26], sum rules [27], and LFQCD [1]. In the right panel, we show
a comparison with other holographic models such as hardwall and softwall with∆ = 2 [15], and Sakai-Sugimoto/extrapolated Sakai-
Sugimoto [28]. In our results, for lower panels we have takenkγ = −2.8 GeV2.

4. Conclusions

In this work, we have calculated the electromagnetic pion
form factor holographically by considering non-LF formal-
ism, i.e., we have considered∆ = 3. We show the issue
with the largeq2 behavior that this prescription has and how
to solve it by considering a re-scaling in the photon slope
kγ that sets the corresponding geometric background. Our
calculation captures the lowq2 behavior and also exhibits a
Sudakov-like suppression in the intermediateq2 region, as
it was suggested by lattice [1]. Our calculation of the pion
electromagnetic radius give us a result of0.671 fm, with a
2% error in comparison with available experimental data.
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