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Direct and indirect methods of vortex identification in continuum limit
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Inspired by the Direct and Indirect maximal center gauge methods which identify vortices in lattice calculations, and by using connection
formalism, we show that under some appropriate gauge transformations, vortices and chains appear in the continuum limit of QCD vacuum.
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1. Introduction

Confinement mechanism is one of the most controversial un-
solved issues in particle physics in the low energy regime or
large distances. In order to study the confinement potential
between a pair of quark and anti-quark, the Quenched ap-
proximation is used where the dynamical quarks are removed
for the infrared regime. In fact, we can obtain some collec-
tive modes from the gluons [1] which are associated with
some topological degrees of freedom of the QCD vacuum.
Magnetic monopoles and center vortices are among the main
candidates for describing the confinement problem.

In the absence of matter fields, the center vortex model
has been suggested as a possible mechanism of confinement
by extracting some degrees of freedom of pure Yang-Mills
theory. The idea is that the QCD vacuum is filled with closed
magnetic vortices, and it is assumed that the vortices are con-
densed in it. Vortices are defined by the center of the SU(N )
gauge group and there exist(N − 1) distinct vortices, which
are called non-Abelian ZN vortices. They produce full string
tensions as the Yang-Mills vacuum does.

To study the confinement problem by center vortices, we
first have to identify the vortices in the continuum limit. The
most common methods of identifying vortices in the lattice
simulations are Direct maximal center gauge (DMCG) [2]
and Indirect maximal center gauge (IMCG) [3]. Using these
two methods and by the help of the connection formalism [1],
we discuss about the appearance of vortices in the continuum
limit of QCD.

2. The Direct Method of Identifying Vortices
in SU(2) Gauge Group

Motivated by DMCG method in lattice QCD, we identify vor-
tices in the continuum limit. In this method, the formation of
center vortices in the QCD vacuum relies upon two steps:
center gauge transformation and center projection.
In the continuum limit, the gluon field is transformed as

~AG
µ . ~T = G(x)

(
Ac

µT c
)
G†(x)− i

g
G(x)∂µG†(x), (1)

where ~AG
µ (x) ∈ SU(N), and T c are generators of the

SU(N ) group andc is the color index. After the center gauge
transformation, thin vortices appear as topological defects.
Therefore, Eq. (1) can be used for studying the vortices if
G(x) ≡ N(x) is defined as a center gauge transformation.
On the other side, we recall that in lattice QCD calculations,
a Wilson loop receives a phase difference equal toei2πn/N

associated with the non-trivial center element contribution
Z(k). Therefore, under a center gauge transformationN(x),
a Wilson line should be transformed as [4],

WN (C ′) = N(x)W (C ′)N†(x + ε)

= N(x)N†(x + ε) +O(ε) ≡ Z(k) +O(ε),
(2)

whereW (C ′) = 1 +O(ε). C ′ is a straight-line path fromx
to x+ ε andε is an infinitesimal parameter so that in the limit
whereε → 0, we haveC ′ = C. Equation (2) must be used to
find an appropriate center gauge transformation.

We recall that an ideal vortex is defined on(D − 1)-
dimensional hypersurface,Σ vortex, while the thin vortex is
defined on(D − 2)-dimensional boundary,S = ∂Σ. Pierc-
ing the hypersurface vortex by the Wilson loop, results into a
discontinuity Z(k). The relation between an ideal vortex and
a thin vortex is the following [4],

ideal vortex= − i

g
N(x)∂µN†(x)− thin vortex. (3)

Replacing Eq. (3) in Eq. (1) for G(x) ≡ N(x), one gets

~AN
µ . ~T = N(x)

(
Ac

µT c
)
N†(x)

+ ideal vortex+ thin vortex. (4)

On the other hand, as observed in lattice calculation, it is
the thin vortex that links to the Wilson loop. Therefore, we
deduct the ideal vortex contribution [4], so that~AN

µ . ~T →
~A′Nµ . ~T . Finally, we get

~A′Nµ . ~T = N(x)
(
Ac

µT c
)
N†(x) + thin vortex. (5)

For x /∈ hypersurface, we only see the boundary of the vor-
tex, called the thin vortex field. Thus, the contribution of the
ideal vortex would be zero.

thin vortex= − i

g
N(x)∂µN†(x), x /∈ hypersurface. (6)
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For SU(2) case, a gauge transformation is written in terms of
three Euler anglesα,β,γ,

G(x) = eiγ(x)T 3
eiβ(x)T 2

eiα(x)T 3
,

α(x) ∈ [0, 2π) , β(x) ∈ [0, π] ,

γ(x) ∈ [0, 2π) , T c =
σc

2
, (7)

where σc (c = 1, 2, 3) are the Pauli matrices. The center
gauge transformationG(x) ≡ N(x) ∈ SU(2) is continuous
everywhere except at the hypersurface of the vortex. There-
fore, the Euler angles are selected in a way that the constraint
of Eq. (5) is satisfied. There are different choices for the an-
gles. One can chooseα = γ = ϕ/2 andβ = 0 and thus,

N = eiϕT 3
, ϕ ∈ [0, 2π) . (8)

It can be shown that forϕ = 0, N(ϕ = ε)N†(ϕ = 2π− ε) =
−12×2 ∈ Z(2) when ε → 0. Thus the contribution of an
ideal vortex is observed atϕ = 0. On the other hand, outside
the hypersurface, the contribution of the thin vortex can be
identified as a pure gauge shown in Eq. (6),

thin vortex≡ ~Vµ. ~T = − i

g
N∂µN† = −1

g
∂µϕT 3. (9)

In cylindrical coordinates, the thin vortex is observed ex-
plicitly at ρ = 0 [4] in the third direction of the color
space,~Vϕ. ~T = −(g−1/ρ)T 3. The magnetic vortex flux is

Φflux =
∫

dxµ
(

~Vµ. ~T
)

= −(2π/g)T 3. Under the center
gauge transformation Eq. (8), the gluon field Eq. (5) is written
in terms of the local color framênc, so thatNT cN† ≡ n̂c. ~T
and the vector potential is transformed as,

~A′Nµ = A1
µn̂1 + A2

µn̂2 +
(

A3
µ −

1
g
∂µϕ

)
k̂, (10)

wheren̂3 = k̂. Therefore some topological defects appear
as a result of the singular gauge transformation. To ob-
serve these defects explicitly, we rewrite the field strength
in terms of the covariant-derivative operatorD̂µ and the or-
dinary derivative operator̂∂µ (See [1]),

Fµν =
1
ig

[
D̂µ, D̂ν

]
− 1

ig

[
∂̂µ, ∂̂ν

]
, (11)

whereFµν is the SU(N ) non-Abelian field strength tensor,
and Eq. (11) is applied when the singularity exists. It should
be noted that for the regular systems, the second term in the
right hand of Eq. (11) is zero.

In general, ifG(x) ∈ SU(N) represents a gauge trans-
formation, the field strength tensor is transformed asFG

µν =
G(x)FµνG†(x). If we use a singular system defined byFµν

in Eq. (11) we have,

FG
µν =

(
∂µAG

ν − ∂νAG
µ

)

+ ig
[
AG

µ , AG
ν

]
+

i

g
G [∂µ, ∂ν ]G†. (12)

This is called the connection formalism technique and as a
result of using this technique, the theory will remain gauge
invariant after the singular gauge transformation.

For SU(2) case, by the help of Eq. (10), we rewrite the
first term of Eq. (12) for the gauge transformationG(x) ≡
N(x). The first term is linear in terms of~A′Nµ ,

~F linear
µν =

3∑
c=1

(
∂µAc

ν − ∂νAc
µ

)
n̂c+ (∂µVν−∂νVµ) k̂

−g
(
A1

νVµ−A1
µVν

)
n̂2+g

(
A2

νVµ−A2
µVν

)
n̂1. (13)

The first term of Eq. (13) is regular and the second term repre-
sents the field strength of a thin vortex field carrying a mag-
netic flux equal toΦflux = −(2π/g)T 3. The third and the
fourth terms indicate some kind of interactions between thin
vortex and the off-diagonal gluon fields. Using Eq. (10), the
second term of Eq. (12), ~F bilinear

µν ≡ (i/g)[ ~A′Nµ , ~A′Nν ] can be
written in terms of the local framênc,

~F bilinear
µν = −g

3∑

a,b,c=1

εabc
(
Aa

µAb
ν −Ab

µAa
ν

)
n̂c

+g
(
A1

νVµ−A1
µVν

)
n̂2−g

(
A2

νVµ−A2
µVν

)
n̂1. (14)

The first term of Eq. (14) represents, interactions between
gluon fields, and is regular. The second and the third terms
indicate interactions between the thin vortex and the off-
diagonal gluon fields but with an opposite sign compared
with their counterparts in Eq. (13). The third term of Eq. (12),
~F singular

µν ≡ (i/g)N [∂µ, ∂ν ]N† = − (∂µVν − ∂νVµ) k̂ indi-
cates the field strength of an anti-thin vortex carrying mag-
netic flux ofΦflux = +(2π/g)T 3. The anti-thin vortex field
strength tensor contribution represented by~F singular

µν is can-
celed by the thin vortex field strength tensor contribution
brought in the second term of~F linear

µν ; and finally one is left
with a full QCD field strength tensor. In fact, with the above
parametrization, we have shown that the vacuum is filled with
vortices and anti-vortices. Therefore, it is clear that if one
wants to have only the contribution of vortices, one has to
discard the term~F singular

µν . Thus, the center projected field
strength tensor is defined as the following,

~F CP
µν ≡ ~F linear

µν + ~F bilinear
µν . (15)

By the help of Eqs. (13) and (14), the Lagrangian for center
projected QCD(CP-QCD) is obtained,

£CP = £YM − g

2
(∂µVν − ∂νVµ)

(
A1

µA2
ν −A2

µA1
ν

)

− 1
4

(∂µVν − ∂νVµ)2

− 1
2

(∂µVν − ∂νVµ)
(
∂µA3

ν − ∂νA3
µ

)
. (16)

In fact, the third term in the Lagrangian of Eq. (16) shows
the kinetic energy of a thin vortex. To summarize, we have
directly shown that under a center gauge transformation fol-
lowed by a center projection, a gauge field configuration is
obtained which contains a thin vortex.
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3. The Indirect Method of Identifying Vortices
in SU(2) Group

Another method of identifying vortices in lattice QCD is the
IMCG method and we are interested in investigating this
method in continuum limit. We show that by indirect method,
we would have chains of vortices and monopoles in compar-
ison with Sec. 2, where we have only a single vortex. In this
method, in addition to the center gauge transformation and
center projection, an initial step called Abelian gauge trans-
formation and then Abelian projection is used [3]. Choosing
α(x) = ϕ, β(x) = θ andγ(x) = ±ϕ for the gauge rotation
matrix of Eq. (7), one gets an appropriateG ≡ M ∈ SU(2)
which leads to an Abelian gauge transformation. In this pa-
per, we chooseγ(x) = −ϕ,

M(θ, ϕ) = e−iϕT 3
eiθT 2

eiϕT 3
. (17)

We defineM(θ, ϕ) as an Abelian gauge transformation, then
the transformation of the gluon field is given by Eq. (1),

~AM
µ . ~T = M

(
3∑

c=1

Ac
µT c

)
M† − i

g
M∂µM†. (18)

The first term on the right hand side of Eq. (18) is regular un-
der Abelian gauge transformationM , but the second term is
singular and in the spherical coordinates is obtained by,

Asingular(θ, ϕ) =
g−1

r
(cos ϕeϕ + sin ϕeθ)T 1

+
g−1

r
(sinϕeϕ − cos ϕeθ)T 2

+
g−1

r

1− cos θ

sin θ
eϕT 3, (19)

where Asingular(θ, ϕ) = Ac singular(θ, ϕ)T c. It is observed
from Eq. (19) that there exists a magnetic monopole as a
point defect at the origin,r = 0 along with a Dirac string
at θ = π. The magnetic fluxΦflux(θ) of the singular term is
Φflux(θ) = (2π/g) (1− cos θ)T 3. At θ = π, the magnetic
flux of a Dirac string that enters a monopole located at the
origin r = 0, is equal to4π/gT 3.

It is clear that under the Abelian gauge transformation,
the field strength tensor has a form similar to Eq. (12),
but with theG ≡ M which indicates the Abelian gauge
transformation. Since the two color directionsT 1 and T 2

have no contribution in the magnetic flux, we suppress these
non-diagonal components of the gauge fields in the infrared
regime and use only the diagonal sector. It can be easily con-
firmed that the first term of Eq. (12) for the Abelian sector(
F linear

µν

)3 ≡ ∂µ

(
AM

ν

)3 − ∂ν

(
AM

µ

)3
includes a magnetic

monopole sitting at the origin along with a Dirac string in
θ = π. The second term of Eq. (12) for the Abelian sec-
tor,

(
F bilinear

µν

)3 ≡ ig
{(

AM
µ

)1 (
AM

ν

)2 − (
AM

µ

)2 (
AM

ν

)1
}

contains an anti-monopole at the origin, and the third

term of Eq. (12) for the Abelian sector,
(
F singular

µν

)3

≡

(i/g)M(θ, ϕ) [∂µ, ∂ν ] M†(θ, ϕ), includes an anti-Dirac
string atθ = π with a magnetic flux equal to−(4π/g)T 3.

The sum of the two termsF linear
µν + F singular

µν represents a
gauge configuration that only contains a monopole atr = 0.
However it is exactly canceled by the anti-monopole arisen
from F bilinear

µν , such that a field strength tensor which gives a
full QCD is obtained. Thus, one can claim that the vacuum is
filled with monopoles and anti-monopoles. Therefore, in or-
der to have only the contribution of the monopole, we define
the projected gauge fields as,

~AM
µ . ~T =

(
AM

µ

)a
T a → Aµ ≡

(
AM

µ

)3
T 3, (20)

where,

(
AM

µ

)3
= Aregular

µ +
1
g

(1− cosθ) ∂µϕ. (21)

As a result,F bilinear
µν which represents the anti-monopole con-

tribution is equal to zero and the remaining partF linear
µν +

F singular
µν describes an Abelian projection QCD which con-

tains a monopole atr = 0, and it is called the monopole
the monopole vacuum. Next, we have to do a center gauge
transformation on the monopole vacuum. Similar to the ar-
guments of Sec. 2, we obtain

~A′NM
µ . ~T=N(x)AµN†(x)+thin vortex. (22)

Using the center gauge transformation defined in Eq. (8) and
Eq. (20), one obtains

~A′NM
µ . ~T=

[
A′ regular

µ +
1
g

(1−cosθ) ∂µϕ−1
g
∂µϕ

]
T 3. (23)

Eµ ≡ −(1/g) cos θ∂µϕT 3 indicates a defect representing
a monopole located at the originr = 0 along with the
two line vortices atθ = 0, π in spherical coordinates. In
fact, the magnetic potential of the chain defined by “Eµ ≡
−(1/g) cos θ∂µϕT 3”, can be interpreted as the sum of two
terms: a magnetic potential of a monopole along with a
Dirac string defined by “Bµ ≡ (1/g) (1− cos θ) ∂µϕT 3”
plus a magnetic potential of a vortex defined by “Vµ ≡
−(1/g)∂µϕT 3”. Therefore, the chain flux is obtained as the
sum of the vortex flux and the magnetic monopole flux plus
the Dirac string and it is equal to−(2π/g) cos θT 3. Now, we
present some discussions about the chain characteristic. For
θ = 0, we only have the contribution of a magnetic line vor-
tex flux equal to−(2π/g)T 3 located in the positive direction
of thez-axis which enters to the magnetic monopole placed
at the origin,r = 0. At θ = π, there exists a Dirac string
flux equal to+(4π/g)T 3 located in the negative direction of
the z-axis and enters the magnetic monopole. There is also
a magnetic line vortex whose flux is equal to−(2π/g)T 3 at
θ = π. It is located in the negative direction of thez-axis and
exits from the magnetic monopole placed atr = 0. In fact,
the sum of the two fluxesΦDirac string+Φline vortexrepresents the
contribution of a line vortex equal to+(2π/g) which enters
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the magnetic monopole sitting at the origin,r = 0. As a re-
sult, the magnetic flux of the monopole is obtained as the sum
of the absolute values of the fluxes of the two line vortices en-
tering to it. Next, for the center projection, we investigate the
field strength tensor Eq. (12) by applying Eq. (23). As a re-
sult, the first term~F linear

µν ≡ ∂µ
~A′NM

µ − ∂ν
~A′NM

µ contains
some defects as the following

(∂µEν − ∂νEµ)T 3 =
1
g

sin θ (∂µθ∂νϕ− ∂µϕ∂νθ) T 3

+
1
g

(1− cos θ) [∂µ, ∂ν ]ϕ T 3

− 1
g

[∂µ, ∂ν ] ϕ T 3. (24)

The first term of Eq. (24) represents the field strength of a
magnetic monopole located atr = 0, the second term indi-
cates the field strength of a Dirac string atθ = π and the
third term represents the field strength of a thin vortex field
expanded on thez-axis. But the second term of Eq. (12),
~F bilinear

µν ≡ ig
[
~A′NM

µ (x), ~A′NM
ν (x)

]
is zero. Using the cen-

ter gauge transformation defined in Eq. (8) and the Abelian
gauge transformation of Eq. (17), the third term of Eq. (12)
is,

~F singular
µν . ~T = −1

g
(1− cos θ) [∂µ, ∂ν ]ϕ T 3

+
1
g

[∂µ, ∂ν ]ϕ T 3, (25)

where−(1/g) (1− cos θ) [∂µ, ∂ν ] ϕ T 3 represents an anti-
Dirac string inθ = π with a flux equal to−(4π/g)T 3 and
the term(1/g) [∂µ, ∂ν ] ϕ T 3 represents an anti-vortex on the
z-axis with a flux equal to+(2π/g)T 3. In fact, the contri-
bution of the vortex and the Dirac string appearing in~F linear

µν

is exactly canceled by the contribution of the anti-vortex and
the anti-Dirac string in~F singular

µν . As a result, a monopole vac-
uum is obtained unless we remove some of the singularities.
As explained in Sec. 2, a center projection is done by remov-
ing ~F singular

µν defined in Eq. (15). This means that the center

projection is obtained by~F linear
µν + ~F bilinear

µν . On the other hand,
we have shown that~F bilinear

µν is zero, and thus the center pro-

jected field strength tensor is equal to~F CP
µν . ~T =

(
~F linear

µν . ~T
)

.
Therefore, only a monopole attached to a Dirac string and a
vortex are remained. We can interpret these configuration as
a chain.

We end this section by discussing about the possible ad-
vantages of using chains. None of the two models, the dual
superconductor and the center vortex model, and their asso-
ciated defects are able to describe all the expected features of
the confining potential between color sources. We recall that
the dependence of the potential slope to the Casimir scaling
applies only for the intermediate distances and it is valid and
exact for the largeN limit [5]. In addition, at large distances,
thek-string tension depends on theN -ality of the representa-
tions. Vortex based models have been able to explain theN -
ality dependence. However, to get the Casimir scaling for all
representations, the models have been modified by defining
a thickness to the vortex. On the other hand, lattice results
confirm the existence of chains of monopoles and vortices
that may explain the agreement of the potentials with Casimir
scaling for higher representations. In this article, motivated
by lattice gauge theory results, we have identified chains of
monopoles and vortices for the continuum limit.

4. Conclusions

In the direct method, by applying a center gauge transforma-
tion, we have shown that QCD vacumm is filled by vortices
and anti-vortices. On the other hand, by the indirect method
and applying two singular gauge fixing, the vortex and anti-
vortex appear in the gauge theory along with the monopole.
In fact, using the indirect method, we do not have single vor-
tices but a chain that includes monopoles and vortices. Our
results are in agreement with Del Debbio’set al. [3], who
have done lattice QCD calculations, as well as the results by
Engelhardt and Reinhardt [4].
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