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Direct and indirect methods of vortex identification in continuum limit
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Inspired by the Direct and Indirect maximal center gauge methods which identify vortices in lattice calculations, and by using connection
formalism, we show that under some appropriate gauge transformations, vortices and chains appear in the continuum limit of QCD vacuum.
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1. Introduction where AG(z) € SU(N), and T° are generators of the
SU(N) group and: is the color index. After the center gauge

Confinement mechanism is one of the most controversial untransformation, thin vortices appear as topological defects.

solved issues in particle physics in the low energy regime ofTherefore, Eq.[1) can be used for studying the vortices if

large distances. In order to study the confinement potentialy(z) = N(z) is defined as a center gauge transformation.

between a pair of quark and anti-quark, the Quenched amn the other side, we recall that in lattice QCD calculations,

proximation is used where the dynamical quarks are removed Wilson loop receives a phase difference equal’t6”/"v

for the infrared regime. In fact, we can obtain some collec-associated with the non-trivial center element contribution

tive modes from the gluons [1] which are associated withz(k). Therefore, under a center gauge transformatign),

some topological degrees of freedom of the QCD vacuuma Wilson line should be transformed as [4],

Magnetic monopoles and center vortices are among the main g, x/~\ _ N ATt

candidates for describing the confinement problem. WAHE) = N@W(C)N (z +¢) (2)

In the absence of matter fields, the center vortex model = N(z)N'(z+¢) + O(e) = Z(k) + O(e),

has been suggested as a possible mechanism of confinemwﬂerew(c/) — 1+ O(e). C'is a straight-line path from
by extracting some degrees of freedom of pure Yang-Mills, ;. 1 ¢ ande is an infinitesimal parameter so that in the limit

theory. The idea is that the QCD vacuum is filled with closedherec — 0 we have” = C. Equation’®) must be used to
magnetic vortices, and it is assumed that the vortices are cofnq gn appropriate center gauge transformation.

densed in it. Vortices are defined by the center of the/B)J( We recall that an ideal vortex is defined ¢® — 1)-

gauge group and there exis¥ — 1) distinct vortices, which  gimensional hypersurfacs; vortex, while the thin vortex is
are called non-Abelian £ vortices. They produce full string  yefined on(D — 2)-dimensional boundary§ = 9. Pierc-
tensions as the Yang-Mills vacuum does. ing the hypersurface vortex by the Wilson loop, results into a

~ To study the confinement problem by center vortices, Weiscontinuity Zk). The relation between an ideal vortex and
first have to identify the vortices in the continuum limit. The 3 thin vortex is the following [4],

most common methods of identifying vortices in the lattice i
simulations are Direct maximal center gauge (DMCG) [2] ideal vortex= —— N ()9, NT(z) — thin vortex ~ (3)
and Indirect maximal center gauge (IMCG) [3]. Using these g
two methods and by the help of the connection formalism [1]Replacing Eq.3) in Eq. {I) for G(z) = N(x), one gets
we discuss about the appearance of vortices in the continuum AN T = N(z) (AST°) N'(z)
limit of QCD. . a

+ ideal vortex+ thin vortex 4)

. e . On the other hand, as observed in lattice calculation, it is
2. The Direct Method of Identifying Vortices the thin vortex that links to the Wilson loop. Therefore, we

in SU(2) Gauge Group deduct the ideal vortex contribution [4], so thafy.7" —
_ o o AN T. Finally, we get

Motivated by DMCG method in lattice QCD, we identify vor- o _
tices in the continuum limit. In this method, the formation of A’#N.T = N(z) (A5T°) NT(z) + thinvortex  (5)

center vortices in the QCD vacuum relies upon two stepsgq; . ¢ hypersurface, we only see the boundary of the vor-

center gauge transformation and center projection. tex, called the thin vortex field. Thus, the contribution of the
In the continuum limit, the gluon field is transformed as ideal vortex would be zero.

. 1
G s e ] i - _- T
AE-T - G() (A;T )GT(:c) B QG(x)GMGT(a:), 1) thin vortex gN(a:)auN (x), « ¢ hypersurface (6)
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For SUQ) case, a gauge transformation is written in terms ofThis is called the connection formalism technique and as a
three Euler angles,(,y, result of using this technique, the theory will remain gauge
invariant after the singular gauge transformation.

iv(2)T? iB(2)T? Jio(z)T? .
G(z) = eV @T° BT gia(@)T* For SUQ) case, by the help of Eq10), we rewrite the

a(z) € [0,27), B(z) € [0,7], first term of Eq. [L2) for the gauge transformatiof(z) =
N (z). The first term is linear in terms oi’N
o) efo.2m),  T°=7, @ :
o= " (0, A% — 0, A%) e+ (0, —0, V) k
where o¢ (¢ = 1,2, 3) are the Pauli matrices. The center =1

gauge transformatio6'(z) = N(x) € SU(2) is continuous AV AV ) A2V — A2V ) 13
everywhere except at the hypersurface of the vortex. There- 9 AV A V,) kg (V= Ay Vo) . (13)

fore, the Euler angles are selected in a way that the constraiitthe first term of Eq./13) is regular and the second term repre-
of Eq. B) is satisfied. There are different choices for the an-sents the field strength of a thin vortex field carrying a mag-

gles. One can choose= v = /2 andj3 = 0 and thus, netic flux equal tod™* = —(27/¢g)T3. The third and the
- fourth terms indicate some kind of interactions between thin
N=e%"", pel0,2n). (8)  vortex and the off-diagonal gluon fields. Using EfC), the

second term of Eq1R), Folnea" = (i/g)[ AN, A’N] can be

It can be shown thatfop = 0, N(p = e)NT(p = 27 —¢) = written in terms of the local frama,.,

—1oxo € Z(2) whene — 0. Thus the contribution of an
ideal vortex is observed at = 0. On the other hand, outside Fbilinear _ abe / Aa ab
the hypersurface, the contribution of the thin vortex can be B —9 Z A 4
identified as a pure gauge shown in E&), (

— AbAL) i

a,b,c=1
g (AiV,L—A}LVV) flg—g (AiVI,,—AiVV) ny. (14)

The first term of Eq./14) represents, interactions between

gluon fields, and is regular. The second and the third terms
indicate interactions between the thin vortex and the off-
diagonal gluon fields but with an opposite sign compared

. Lo 1
thin vortex= V,,.T = —~ N9, Nt = —faWT?’. )
g

In cylindrical coordinates, the thin vortex is observed ex-:
plicitty at p = 0 [4] in the third direction of the color

— -1 3 i i
spf)luaxce,Vg,.T N —Eg q /p)T". The ma;gnetlc vortex flux is with their counterparts in Ec18). The third term of Eq.12),
P = [dzt (V T) = —(27/g)T°. Under the center Fj',?g”'a' = (i/g)N [0, 0, |NT = —(0,Vy — BV, )k indi-
gauge transformation EcB), the gluon field Eq.3) iswritten  cates the field strength of an anti-thin vortex carrying mag-
in terms of the local color fram@,, 50 thatNT°NT = 7. T netic flux of ®™* — +(27/¢)T®. The anti-thin vortex field
and the vector potential is transformed as, strength tensor contribution represented A}/ is can-
. 1 R celed by the thin vortex field strength tensor contribution
AN = Al + Alng + <Ai ~y #90> k, (10)  brought in the second term @i’ and finally one is left

with a full QCD field strength tensor. In fact, with the above
wheren; = k. Therefore some topological defects appearParametrization, we have shown that the vacuumis filled with
as a result of the singu|ar gauge transformation. To obVOI'tiCES and anti-vortices. Therefore it is clear that if one

serve these defects explicitly, we rewrite the field strengttwants to have only the contribution of vortices, one has to

in terms of the covariant-derivative operatoy, and the or-  discard the term#,,9"* Thus, the center projected field
dinary derivative Operat(ﬂﬂ (See [1] strength tensor is deflned as the foIIowing,
. FSP = Finear 4 Fiinesr as)
Fl, = [D D] -~ [aﬂ,ay} : (11) e / _
ig tg By the help of Egs.13) and (14), the Lagrangian for center

whereF,,,, is the SU(V) non-Abelian field strength tensor, Projected QCIXCP-QCD is obtained,

and Eq. /1) is applied when the singularity exists. Itsho'uld Lop= £y — 9 0.V, — 3,V,) (Al A2 _ A2 Ai)
be noted that for the regular systems, the second term in the wev 1
right hand of Eq./11) is zero.

In general, ifG(x) € SU(N) represents a gauge trans-
formation, the field strength tensor is transformed s = 1 ) )
G(z)F,,G'(z). If we use a singular system defined By, =5 (0uVe =0 Vy) (0,40 — 0,A7) . (16)
in Eq. (11) we have,

Loy

In fact, the third term in the Lagrangian of EA.6] shows

= (BMAG _ 8VAG) the kinetic energy of a thin vortex. To summarize, we have

v “, directly shown that under a center gauge transformation fol-

+ig [Af, Af] + ta [0,,,0,] Gt (12) Iowe'd by a genter prgjectioq, a gauge field configuration is
g obtained which contains a thin vortex.
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3. The Indirect Method of Identifying Vortices  (i/g)M (0, ¢) [0,,0,] MT(6, ), includes an anti-Dirac
in SU(2) Group string atf = 7 with a magnetic flux equal te(47/g)T3.

The sum of the two termg!inea" 1 59" represents a
Another method of identifying vortices in lattice QCD is the gauge configuration that only contains a monopole at0.
IMCG method and we are interested in investigating thisHowever it is exactly canceled by the anti-monopole arisen
method in continuum limit. We show that by indirect method, from Fﬁﬂinear, such that a field strength tensor which gives a
we would have chains of vortices and monopoles in comparfull QCD is obtained. Thus, one can claim that the vacuum is
ison with Sec. 2, where we have only a single vortex. In thisfilled with monopoles and anti-monopoles. Therefore, in or-
method, in addition to the center gauge transformation ander to have only the contribution of the monopole, we define
center projection, an initial step called Abelian gauge transthe projected gauge fields as,
formation and then Abelian projection is used [3]. Choosing
a(z) = ¢, B(x) = 6 andv(z) = +¢ for the gauge rotation A’ﬁff - (Aff[)aTa — A, = (A£{)3T3, (20)
matrix of Eq. [7), one gets an appropriateé = M € SU(2)
which leads to an Abelian gauge transformation. In this pawhere,
per, we choose(z) = —,

(Aﬂ/[)g _ Az;gulaur ; (1 — cos) 0. (21)

M9, ) = e~ iT? T ipT? a7
We definel (6, ¢) as an Abelian gauge transformation, thenAs a resultF2i"®@" which represents the anti-monopole con-
the transformation of the gluon field is given by E#), tribution is equal to zero and the remaining paif’e +
5 _ FSNoURr describes an Abelian projection QCD which con-
AM T _ af ZACTC Mt — Y“me Mt (18) tains a monopole at = 0, and it is called the monopole
. . g " the monopole vacuum. Next, we have to do a center gauge

] ) ) ] transformation on the monopole vacuum. Similar to the ar-
The first term on the right hand side of E&8j is regular un- guments of Sec. 2, we obtain

der Abelian gauge transformatidd, but the second term is
singular and in the spherical coordinates is obtained by, /ijVM.T*:N(x)A“NT(x)+thin vortex (22)

c=1

ingul 9!
Asmgu ar(07g0) —
T
g1
+ Z— (sin pe, — cos pey) T
r

(cos e, + sin pey) 7! Using the center gauge transformation defined in Ba(d
Eq. (20), one obtains

- - 1 1

A;LNM.T: A;regmar—&—g (1—cos0) @ﬁp—;@m& 3. (23)

11— cosf

+ gfi 7 eLpT37 (19) 3 .
rooosum E, = —(1/g)cos80,¢T" indicates a defect representing

where ASMUR(g o) = AcSnOURg SyTe it is observed @ Monopole located at the origin = 0 along with the

from Eq. I9) that there exists a magnetic monopole as gWo line vortices at = 0, in spherical coordinates. In
point defect at the originy = 0 along with a Dirac string ~ fact, the magneugnpotenUal of the chain defined #,"=
atd = . The magnetic fluxd™(¢) of the singular termis ~ —(1/9) cos 09,¢T"", can be interpreted as the sum of two
d1x(g) = (21/g) (1 — cos§) T®. At 6 = , the magnetic (€rmMS: a magnetic potential of a monopole along with a
flux of a Dirac string that enters a monopole located at thé?irac string defined by B, = (1/g) (1 — cos0) 0T
origin r = 0, is equal totr/gT3. plus a magnetic potential of a vortex defined by, " =

It is clear that under the Abelian gauge transformation,~ (1/9)9.¢T°". Therefore, the chain flux is obtained as the
the field strength tensor has a form similar to E@i2)( SUM Qf the vortex fqu_and the magnetic mongpole flux plus
but with theG = M which indicates the Abelian gauge the Dirac string and itis equal te(2m/g) cos 7. Now, we
transformation. Since the two color directioid and 72  Present some discussions about the chain characteristic. For
have no contribution in the magnetic flux, we suppress thesé = 0, we only have the C?”t“bUUO_” of a magnetic line vor-
non-diagonal components of the gauge fields in the infraredX flux equal to-(27/¢)T* located in the positive direction
regime and use only the diagonal sector. It can be easily corpf the z-axis which enters to the magnetic monopole placed
firmed that the first term of Eq1@) for the Abelian sector 2t the origin,» = 0. At ¢ = m, there exists a Dirac string
(Flinear)3 —_— (AM)3 _9 (AM)3 includes a magnetic flux equal to+(47/g)T? located in the negative direction of

j1% - M v v 1 . . .

monopole sitting at the origin along with a Dirac string in (h€ 2-axis and enters the magnetic monopole. Ther?e): is also
0 = . The second term of EG1P) for the Abelian sec- & magnetic line vortex whose flux is equal-¢2r/g)T" at
tor, (Fbﬂinear)s = g (AM)I (A,],”)Q B (AM)2 (A,ﬂ”)l 0 = Itis located in the negative direction of theaxis and

i . i MI t th LK d the' thi exits from the magnetic monopole placed-at 0. In fact,
contains an anti-monopole at the origin, and the thirdy, o s,y of the two fluxe§Prac sting, iine vortexrepresents the

. 3
term of Eq. [(2) for the Abelian SeCtOF,(Fﬁ'fgu'ar) = contribution of a line vortex equal t&(27/¢) which enters
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the magnetic monopole sitting at the origin= 0. As are-  projection is obtained by ne+ Fbiinear On the other hand,

sult, the magnetic flux of the monopole is obtained as the sunye have shown tha{@b'lmear is zero, and thus the center pro-
of the absolute values of the fluxes of the two line vortices enJected field strength tensor is equaIH§P Flmear 7

tering to it. Next, for the center projection, we investigate the.
9 bro) g Therefore only a monopole attached to a Dlrac string and a

25:? ?:]reer;lgr];? tt:r”rﬁgfmfﬂlf) gy:%ph'}"”g aEi,j%a;\)f ?osn?alrre]s vortex are remained. We can interpret these configuration as
"

a chain.
some defects as the following ) ) ) . )
We end this section by discussing about the possible ad-
(0,F, —9,E,)T® = 1 sin 0 (9,00, — 0,9,0) T? vantages of using chains. None of the two models, the dual
g superconductor and the center vortex model, and their asso-
1 3 ciated defects are able to describe all the expected features of
+ p (1 —cos) [0, 0] T the confining potential between color sources. We recall that
1 the dependence of the potential slope to the Casimir scaling
— = [0, 0] T?. (24) applies only for the intermediate distances and it is valid and

exact for the largeéV limit [5]. In addition, at large distances,
The first term of Eq.24) represents the field strength of a the k-string tension depends on théality of the representa-
magnetic monopole located at= 0, the second term indi- tions. Vortex based models have been able to explaifvthe
cates the field strength of a Dirac stringéat= 7 and the  ality dependence. However, to get the Casimir scaling for all
third term represents the field strength of a thin vortex fieldrepresentations, the models have been modified by defining
expanded on the-axis. But the second term of Eld),  a thickness to the vortex. On the other hand, lattice results
Folinear = 4 ELNM(J;),Z’VNM(Q:)J is zero. Using the cen- confirm the existence of chains of monopoles and vortices
ter gauge transformation defined in E8) &nd the Abelian that may explain the agreement of the potentials with Casimir
gauge transformation of Eq]_'[), the third term of Eq. 12) scaling for higher representations. In this article, motivated
is, by lattice gauge theory results, we have identified chains of
monopoles and vortices for the continuum limit.

%

1 )
FFsingular 7 _ g —(1—cos6)[0,,0.] ¢ T3

+1[8M,ay]<pT3, (25) 4. Conclusions
g

where —(1/g) (1 — cos ) [0,,0,] ¢ T? represents an anti- In the direct method, by applying a center gauge transforma-
Dirac string in = 7 with a flux equal to—(47/¢)T3 and  tion, we have shown that QCD vacumm is filled by vortices

the term(1/g) [0, 0,] » T represents an anti-vortex on the and anti-vortices. On the other hand, by the indirect method
z-axis with a flux equal to+(27/¢)T3. In fact, the contri-  and applying two singular gauge fixing, the vortex and anti-

bution of the vortex and the Dirac string appearingﬁ'ﬁ‘ﬂear vortex appear in the gauge theory along with the monopole.
is exactly canceled by the contribution of the anti-vortex andn fact, using the indirect method, we do not have single vor-

the anti-Dirac string inF59"'*". As a result, a monopole vac- tices but a chain that includes monopoles and vortices. Our
uum is obtained unless we remove some of the singularitiesesults are in agreement with Del Debbietsal. [3], who

As explained in Sec. 2, a center projection is done by removhave done lattice QCD calculations, as well as the results by
ing F5n9® defined in Eq.15). This means that the center Engelhardt and Reinhardt [4].
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