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Three-particle scattering amplitudes from lattice QCD
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Lattice QCD already offers the possibility of extracting three-hadron scattering quantities from first principles. In the last few years, signif-
icant progress has been achieved in developing and applying the finite-volume three-body formalism. The formalism is now able to treat
physically relevant systems of three mesons, including those with resonances, as well as threebody decays. In this talk, | will review the state
of the art, and comment on recent applications to lattice QCD data for systems of three pions and kaons.
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1. Introduction 2. The finite-volume spectrum

] ) ) o Lattice QCD simulations allow one to stochastically evaluate
Understanding the properties of the exotic excitations of\,cligean correlation functions:

the strong force needs first-principles predictions of multi-

hadron scattering amplitudes. The formulation of Quan- C(t) = (0T(0)O(t)), (1)

tum Chromodynamics (QCD) on the lattice-lattice QCD-

promises access to such quantities with systematically imwhereO(t) is an operator with some given quantum num-

provable uncertainties [1]. Indeed, significant progress habers at Euclidean time The spectral decomposition of this

been achieved for low-lying resonances-see Ref. [2] for a recorrelation function reads

view. Yet, the exploration of resonances with more compli-

cated decay mod%s is still at a very preliminary stage. In?er- ) = Z [ {0lOfn) [~ 5", @

esting examples are the Roper resonance, which can decay "

N and Nwr [3], and also other mesonic resonances, suclivhere{E,,} is the set of energy levels-the spectrum. There-

as thew(782) andh,(1170), with predominantly three-pion fore, from the time dependence of a correlation function, one

decay modes [4]. can constrain the spectrum and the matrix elements of the
The foundations of the theoretical framework were laig@Perator. In addition, variational techniques enable the deter-

down by M. Lilscher for two-particle systems [1,5]. The Mination of several lower lying energy levels [70]. _

central idea of this formalism is to connect the energy ley-  Since lattice simulations are necessarily performed in a

els extracted from Euclidean correlation functions to infinite-finite box, the measured spectrum corresponds to that of an

volume scattering quantities. Subsequent theoretical develteracting quantum field theory in a finite volume. In a few

opments [6-17] achieved a general two-particle formalism@Ses, the interpretation of these energy levels is simple: if

that can treat arbitrarily complex two-body systems below@n €nergy level corresponds to a one-particle state (or sta-
the particle production threshold. ble bound state), these energies are exponentially close to

) L its infinite-volume value [71-73]. However, if a state cor-
More recently, the three-particle problenn finite-  ogn4nds to a multi-particle state, the connection to infinite-

volume has received a lot of attention. In fact, the community,,me js harder to establish. A relevant perspective on this
has witnessed a blossoming of theoretical developments [ch'hallenge was discussed by Maiani and Testa [74]. In their

55], as well as the first applications to lattice QCD data [56'W0rk, it was shown that one cannot in general obtain on-

66]. The latter has been only possible thanks to technicalyq|| ampjitudes from matrix elements of Euclidean corre-
advances in the extractions of energy levels on the lattice [67Iétion functions

69], with up to hundreds of energy levels available [66]. In  ap jngenious strategy to study multi-particle dynamics is
fact, some of these studies point towards nonvanishing mang, maye use of finite-size effects. Restricting systems of par-
festations of three-particle interactions in finite volume. ticles to a finite volume shifts their energy levels in a way that

The goal of this talk is to give an overview of the current depends on their interactions [75]. A very simple example is
status of three-particle spectroscopy. | will summarize thehat of the ground state of two particles of mass The en-
theoretical formalism, and describe some of the recent appliergy of this state in a box of sizé depends asymptotically
cations to systems of three pions and kaons. on the volume as:
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0.5

. a finite-volume formalism that is nonperturbative IfiL.

> o N=2 For two-particle scattering channels, this is provided by the
o N=3 so-called lilscher two-particle quantization condition [1,8]-
= A A No=id abbreviated as QC2. It is an equation whose solutions corre-
| g & N=5 spond to the energy levels in finite volume:
R o
= S det [Ko(E*) + Fy Y(E, P, L)) =0, (4
Z - EzEn
S _ . .
g s wherefCs is the two-particlek’ matrix evaluated at the center-

of-mass (CM) energyl*, andFQ‘1 is a known function-the
Liischer zeta function-that depends on kinematical variables
and the box size. The matrix indices of Ed) are angular
momentum and its third componerftp. In order to have
finite matrices, interactions above some partial wave are ne-
glected. Note that unliké,, F' is a finite-volume quantity
and it is not diagonal idim space.

0.1

0.0
\

FIGURE 1. Energy shift of thelV-particle ground state as a func- 3. The three-partlcle finite-volume formalism

tion of the size of the box[., extracted from lattice simulations in . . .
the complexa* theory [44]. A global fit to the expecteHl depen- The step from two to three particles constitutes an increase

dence yields a statistically significant result for the threshold three-in complexity. One reason is that three-particle amplitudes
particle amplitude7 = —19(4) - 10*. See Ref. [44] for details. have physical divergences in specific kinematical configu-
rations, which correspond to on-shell propagation of inter-
mediate particles. In addition, three-particle amplitudes de-
+O(L™%), (3)  pendingeneral on off-shell two-body interactions, and there-

. _ mL? i fore a separation between two and three-body effects is not
whereAE is the energy shift, and the s-wave scattering o gefined. The finite-volume formalism will then require

length. Therefore, to this order this energy may be mapped goheme_dependent intermediate quantity to parametrize
into the threshold two-particle amplitude. Similar eXpanS'onSthree-body interactions. even if all on-shellmatrix ele-
have been calculated in the literature for more complicateginents are uniquely defir,led.

cases. These include higher ordersljfi, multi-particle

states, the isospin-1 three-pion system, as well as eXCitegpectrum is determined h§-matrix elements [21]. Sub-

statss ?n%ngmdentmallpamcices [1'17’?3’471’46’76678]' tsequently, the three-body formalism was derived following
| ter l:r da |verr<]axpan?|onrqls Of \(,evnerlgly iﬁ;/ers (t:iin ergr?c three different approaches. By chronological order, these are:
cal fo study Some systems ot weakly interacting pa Ces(i) a generic relativistic effective field theory (RFT) [22,23],

+ + i i
€.g, ar_1d K [76,79 81]' They are particularly l.JserI (ii) a nonrelativistic effective field theory (NREFT) [40,41],
to constrain the two-particle scattering length, as this quan:

o . . = and (iii) the (relativistic) finite volume unitarity (FVU) ap-
tity yields the dominant effect in the finite-volume spectrum. . -
Three-particle effects may also be extracted, although it i roach [47,56]. Inits original form, all three approaches dealt

. : o ith identical (pseudo)scalars withi-parity-like symmetry,
e s ey et .0, 7 ysl 1 h i ofSosin Symery,
y 9y Qualitatively, the RFT approach connects the finite-

arelativel /L2 suppression with respect t@. : ;
A successful example of extracting three-particle quan-v olume spectrum to the three-particle amplitude by formu-

tities in this manner was carried out in Ref. [44] using lat- lating a generic rg!ativistic field theory into. finite _vqume.
tice simulations in the complex* theory. In that article, the H;téér_:_at no Speﬁ'f'c form off’;he _theltheory IS reqwredl. The
authors fit the volume dependence of tNeparticle energy ic theo aplgirnO;f tl;]seeli\;ﬁs egzceh ?:V(;er'i\e;;%ybm:qfait'sv(';'
levels, with V' = 2 — 5, to extract the three-particle ampli- h o1y Iy" £ th pp ) litud y! fini
tude at thresholdZ. This is shown in Fig. 1, and results the unitarity relations of the scattering amplitude in a finite

drag

AE =FE —2m =

Early work on the subject showed that the three-body

in a statistically-significant determination of the amplitude,vomn_]e' .

T = —19(4) - 10%, Itis now generally accepted that the three versions should
be equivalent. The connection has been explicitly shown for

2.1. The Liischer formalism FVU and RFT [34]. In addition, the equations in the FVU ap-

proach and the “relativized” formulation of the NREFT [54]
Unfortunately, properties of resonances cannot be studiedave the same forth Substantial numerical evidence also
with the 1/L expansion. Instead, they require the use ofsupports the equivalence [33,42].
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THREE-PARTICLE SCATTERING AMPLITUDES FROM LATTICE QCD

A key point that differs in the different versions is the
precise definition of a scheme-dependent intermediate three
particle scattering quantity. In the RFT approach, this ob-
ject is the three-particld( matrix, K4 3. Here, the sub-

script “df” stands for divergence-free, and indicates that the ity
physical divergences in three-body scattering have been sub77—

tracted. ThuskCys 3 is a Lorentz-invariant regular function of
the kinematical variables, that has the same symmetries a:
the underlying theory. These properties will indeed be useful
when applying the formalism.

In practice, the three-particle formalism is a two-step pro-
cess. This is a shared trait of all three versions of the formal-
ism, but for concreteness | focus on the RFT approach. First,
the three-particle quantization condition relates the spectrum

5.0

“hy" state

37 states

6.5 7.0

6.0

to the K matrices/Cqr 3 and/Cs. In the second step, one must
solve a set of integral equations that miag 3 and K into
the three-particle scattering amplitud®&{;. The latter re-
moves the scheme dependence&lgfs. These steps will be
discussed in the next two subsections.

3.1. The quantization condition

ML

FIGURE 3. Finite-volume spectrum as a functionbin the T}t ir-
reducible representation of the finite-volume symmetry group, that
is, a channel that couples to the resonance. It has been gener-
ated by solving numerically the three-particle quantization condi-
tion for the three-pion isospin-0 channel derived in Ref. [33]. The
two-particle K matrix is chosen such that a resonance similar to
the p is present. Moreover, the three-partiédlematrix contains a

The three-particle quantization condition (QC3) in the RFTpoIe term to mimic the three-body resonance. Source: Ref. [33].

approach for identical scalars reads [22]

det [Kgra(E*) + Fy (E, P, L)] —0.
E=E,

()

Although the previous equation looks very similar to E4), (
there are some fundamental differences. Fifsf,is not

a pure kinematical quantity, and it also contains infinite-
volume information through the two-particl€ matrix, /Co:

Fy 1
— —Fy—————F}.
3 21/K2+FQ+G 2

Here, F; and K, are substantially the same as in the two-
body case, ands encodes the finite-volume effects of the

F5 = (6)

frame. The third particle-the spectator-is described using its
finite-volume three-momenturk, A finite dimensionality is
ensured by a cutoff function ik that is built into the formal-
ism, and by neglecting above some valué > /na. The
latter has to be done in a consistent way to describe two- and
three-particle interactions up to the same partial waves [29].

It is also worth mentioning that several articles by differ-
ent groups have extended the quantization condition to deal
with nonidentical scalar particles [33,36,38,52,65]. There-
fore, the formalism is ready to study systems such asithe
or w resonance [33], mixed systems of light pseudoscalars,
e.g, K [38,39].

Furthermore, solutions of the quantization condition have

one-particle exchange diagrams, in which the spectator pageen extensively studied in the context of toy modelsesge

ticle is switched. The origin of all the elements in E6) i5
depicted schematically in Fig. 2.
In addition, KC4; 3 and F3 are matrices with indices that

Refs. [27,42]. The idea is to solve the quantization condition
for some arbitrary parametrizations of the two- and three-
particle interactions. A selected example is Fig. 3, which

characterize .thre'e on-shelll particles in finite .volume. _Theshows the volume dependence of the energy levels in a three-
standard choice is to describe two of the particles-the interpio isospin-0 channel. For this, the three-pion quantization

acting pair-with angular momentum indicés; in the CM

2 ICo

G

FIGURE 2. Representation of the diagrams that lead to finite-
volume effects described b, K2 andG in Eq. 6).

condition derived in Ref. [33] was used. The two- and three-
particle K matrices are chosen such that&andh, -like reso-
nances are present.

3.2. Integral equations

While Kyi3 is a very useful quantity to parametrize three-
body effects, it is unphysical due to its scheme (or cutoff)
dependence. Nevertheless, this can be fixed by solving the
integral equations that map thé matrices [23]. Schemati-
cally, the procedure is:

K2, K3 M,

Integral equations

)
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= . Refs. [37,45] following the NREFT and RFT approaches, re-
2o 9 10 spectively. Ref. [45] considers only the case of identical par-

’ ticles, while Ref. [37] treats systems of three pions in the
6.5 isospin limit.

4107 In Ref. [37], three hadronic processes for which the for-
~k 6.0 malism can be applied were described. They are (i) the
i K — 37 weak decay, (ii) the strong isospin-breaking tran-
nE 5.5 3% 10° sitionn — 3, and (iii) the electromagnetig* — 37 am-

S plitudes that enter the calculation of the hadronic vacuum
Bl polarization contribution to muonig — 2. Indeed, one ex-
2% 10° pects that lattice calculations for these can be accessible in
4.51 . .
the near future, given the recent success inthe> 77 am-
401 plitudes [97].

Also relevant are the weak decaysgomesons, for which
CP violation has been recently confirmed at LHCb [98]. A
first-principles prediction will however require the descrip-
FIGURE 4. Dalitz plot for threer™ scattering obtained solv- tion of four-pion final states in finite volume.
ing the integral equations of the three-body formalism with input
from lattice simulations. The color bar indicates the magnitude of
M2 M;)?, while the label the incoming squared invariant mass

of particles: andj (mfj). The outgoing kinematics is fixed to be The f i readv b d d .
equal to the incoming one. The pion masslis ~ 391 MeV. € formalism can already be used to study generic systems

More details in the original article: Ref. [63]. of (pseudo)scalar mesons in QCD. But first, it is important to
test the methods in controlled setups before turning to more
where M3 is the full amplitude containing the singularities complicated channels. Thus, three pions (or kaons) at maxi-
and analytical structure of three-to-three scattering. mal isospin constitute an excellent benchmark system for the
These integral equations have been solved in severditial three-body studies.
works [27,53,63,65]. In Ref. [53] different methods are pro-
posed to solve the integral equations when the two-particlé-1. ParametrizingKaf3

subsystem is bound-like a toy model for deuteron-nucleo . . . .
y y rfn order to constrain the values & 3, it is essential to find

scattering that neglects spin. o ; i )
Anotr?er exam%le is thpat of Fig. 4, which shows a Dalitz good parametrizations for this quantity. Note that Siige;

plot for threesr™ scattering obtained after solving the integral Ena;;n?iﬂlittz_\\//c:)lllljjrrnni Otﬂ? (g’egs[gg;a:?%\tlgza“%n \évs"égotgrzg_
equations and using lattice QCD inputs [63]. In this case, the ) ' ' prop

pion mass isM,. ~ 391 MeV, K5 is given by the scattering ploit the symmetry properties dfq;s to carry out a poly-
length measurgd on the sa,me ensemble, /gd is set to nomial expansion in the kinematic variables about the three-

zero. The different colors indicate the value ME: Ms|2. particle threshold-the threshold expansiont@fs. The ex-

Note the presence of divergences in the comers of the plot pansion parameter will be a set of Mandelstam variables that
Finally, Ref. [65] solves the integral equations in thé exactly vanish at the three-particle threshold, for instance,

- 2 2 i i
FVU approach for the three-pioh = 1 channel, where the A=(s 9Mﬂ)./9M?T an(_j S|m|Iar_quant|t|es.
. . . Let us consider identical particles, such as thrée Im-
ao(1260) resonance is present. A pole term is included in the o : :
. ) . . . osing thatiCy 3 remains invariant under the symmetries of

three-body intermediate quantity, and the amplitude is ana; " : )

i . . he theory-particle exchange, parity and time reversal-puts
lytically continued to the complex plane. Using energy levels

. . ! S OIstrong constraints on its threshold expansion. In fact, up to
from the lattice, new information about the pole positions an : . X .
branching ratios is deduced. guadratic order i\, only five terms are present:

40 45 50 55 60 65 70 75
m2, /m?2

4. Results for three-meson scattering

_ 4-is0,0 iso,1 i80,2 A 2
Kotz = Kg3 + Kgrz A+ Kz A

3.3. Three-body decays
+KaAa +KpAp +O(A?),

®)

Another interesting avenue of the multi-particle formalism in _ . _

finite volume is the extraction of decays amplitudes from lat-where K3, K%', Kirs®, K4, K5 are real constants, and
tice QCD. Due to final-state interactions, decay processes g&t 4, are kinematic functions of the Mandelstam vari-
distorted in a finite volume. In order to obtain the physicalables. The terms that contain “iso” in their name (short for
amplitude a correction must be applied to the finite-volume‘isotropic”) depend only on the total energy and thus they
matrix element calculated from lattice simulations. In thecontribute tos-wave interactions. By contrasfh4 andApg
two-particle sector, this is the so-called Lellouctisicher for-  have an angular dependende; corresponds to three parti-
malism [7] (see also Refs. [8,11,12,82-96]). Recently, thecles withJ = 0, but relative/ = 2 in the two-particle sub-
formalism for three-particle decays has been worked out irsystem, whileA g describes an overall = 2.

Supl. Rev. Mex. Fis3 0308003
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FIGURE 5. a) Results forCiyy’, b) Results forCis". Results for two terms of the three-partidié matrix for the3z™ system in different
publications. All results use the RFT formalism, and include ariyave interactions in the two- and three-body sectors. The result in blue
([B,RL,S)]) is from Ref. [57], orange ellipses ([ETMC]) come from Ref. [61], and the red ones ([B,H,H,M,RL,S]) from Ref. [66].

4.2. Constraining three-bodys-wave interactions indicate nonzero values for these quantities, there are signifi-

_ . o _ cant differences between the various works that remain to be
The first studies of three-particle interactions have focuse@inderstood. Furthermore, the results %" differ signif-

on pures-wave interactions [56-64]. That s, only tkevave jcantly from the ChPT prediction, which suggests important
phase shiftis nonzero, and the three-body parameter is eithgffects from higher orders.

kept constant, or dependends |in.ear|y((Ei*)2. In the RFT Interestingly, at LO in the chiral expansiokiy s is triv-
approach, the consistent truncation fewave only interac-  jg|ly related to the full amplitude [57]:
tions is to keep the two leading isotropic termsGf 3:

: . Mz — DO = K43 [1+O(M?/F?)], 10

Kats = ’C(ljsf?éo N lCan%lA. ) 3 df,3 [ +O(M*=/ )] (10)
. whereD' is a subtraction term that cancels the divergences
In Fig. 5, a summary of recent determination %’ of the one-particle exchange diagrams (see Appendix S2
andlcgif’s’l is shown. In addition, the leading order (LO) chi- in Ref. [57]). In other words, the scheme dependence in

ral perturbation theory (ChPT) prediction [57] is included for this quantity arises at next-to-leading order (NLO) in ChPT.
each quantity (dashed line). While several of these result$herefore, +a nonvanishing value &4 3 is meaningful

5.5F
I ko3
E* e
My = o 5 e = o =2
T B —
o — o o o o TS s o g
5.0 o e e e T T — T
e e e el ce
,,,,,,,,,,,,,,,,,,,,, . Oe o
L — Og
[ ko3 - — om i _Te 0o oF
i s s B e e e
o o T
e o8 e
e e i
o® ﬁ ,,,,,,,,, o
Fa S e
4.0- e
[ o® oY T
o8 o
35
I e
3.0 22 3
, B @8 S C G @ GBSO G B @& @ g @ e
N O O R SR O O R RN O R SR D R SR

FIGURE 6. Overview of the finite-volume spectrum of the three positive pions on the N200 CLS ensemble. The vertical axis shows the CM
energy, and the various finite-volume irreps and momentum-squared are listed at the bottom. Dashed lines mark the free energy levels, an
the open circles denote the interacting energies. Colored circles indicate the central values of the resulting energies from fits to the two- anc
three-particle quantization condition. Teal circles correspond to energies included in the fits, while orange label those not included. For more
details, see Ref. [66].
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FIGURE 7. Lattice determination of thé-wave threes™ scatter-

0 250 500 750 1000 1250 1500 1750 2000

Fig. 6 for37* on the N200 CLS ensemblaf, ~ 280 MeV).
The hollow markers indicate the measured spectrum, while
colored points are predictions from the QC3. Teal circles de-
note energies included in the fit, while orange ones are those
not included. Note that the fit range for the fits to the quanti-
zation condition does not go above th& = 50, inelastic
threshold, even if the quantization condition still seems to
describe those energy levels appropriately. This suggests that
inelasticities may not be very relevant.

An exciting result of Ref. [66] is the determination/6f;
with statistical significance in most of the ensembles, even
if this term is expected to produce a subleading effect in the
energy shifts. It turns out that it is the leading contribution of
Kat 3 to the energy levels in nontrivial irreducible represen-
tations of the spatial symmetry group. In Fig. 7, results for

ing quantity,Ks. The results for three different values of the pion [C5 for threer are shown. As can be seen, good agreement
mass are shown, along with the afit to the expected chiral behavionyijth the chiral expectationM 2K 3 oc (M, /F,)%, is found.
MzKp o (My/Fr)°. The physical point is marked with aempty |nterestingly, at the physical point this quantity is very small,

square. Source: Ref. [66].

—----Linear fit

This work
Physical point

—20000 P
o 0 :
o 'a'
g
= —400004 ’,,"
—60000
o
a
—80000 T T T -
2 4 6 8
2
(M- /Fr)

FIGURE 8. Lattice determination ok for 3K ' scattering. Ma-
genta circles show the results for three different ensembles, an
they are plotted againgf\/. /F.)?. A linear extrapolation to the

10 12

physical point is also included. Source: Ref. [66].

and it would be very hard to determine in direct simulations
with physical pions. Finally, Fig. 8 shows the same object for
kaons, along with an extrapolation to the physical point.

5. Conclusion and outlook

Three-particle spectroscopy is progressing rapidly, both in
the theoretical developments, as well as applications to
QCD. Simple systems of pseudoscalar can be studied, and
the first steps towards three-particle resonances have been
taken [33,65].

From the theoretical perspective, there are still some
open questions. Examples are the formalism for systems
of three particles with spin, and multi-channel three-particle
processes. Itis also to be expected that more applications of
the formalism will appear in the following years, involving
Jhree-body systems of growing complexity.

The long-term aspiration is the first-principles computa-
tion of properties of higher-lying resonances, suctXasz
particles and other exotics. This will require further theoret-

despite its scheme dependence. Moreover, note that a NL{@al developments-either in the form 8f-particle quantiza-
prediction could be derived using the results of Ref. [99] withtion conditions, or alternative approaches [100-103].

the appropriate subtraction scheme.

4.3. Beyonds-wave interactions
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