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Three-particle scattering amplitudes from lattice QCD
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Lattice QCD already offers the possibility of extracting three-hadron scattering quantities from first principles. In the last few years, signif-
icant progress has been achieved in developing and applying the finite-volume three-body formalism. The formalism is now able to treat
physically relevant systems of three mesons, including those with resonances, as well as threebody decays. In this talk, I will review the state
of the art, and comment on recent applications to lattice QCD data for systems of three pions and kaons.
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1. Introduction

Understanding the properties of the exotic excitations of
the strong force needs first-principles predictions of multi-
hadron scattering amplitudes. The formulation of Quan-
tum Chromodynamics (QCD) on the lattice-lattice QCD-
promises access to such quantities with systematically im-
provable uncertainties [1]. Indeed, significant progress has
been achieved for low-lying resonances-see Ref. [2] for a re-
view. Yet, the exploration of resonances with more compli-
cated decay modes is still at a very preliminary stage. Inter-
esting examples are the Roper resonance, which can decay
Nπ andNππ [3], and also other mesonic resonances, such
as theω(782) andh1(1170), with predominantly three-pion
decay modes [4].

The foundations of the theoretical framework were laid
down by M. Lüscher for two-particle systems [1,5]. The
central idea of this formalism is to connect the energy lev-
els extracted from Euclidean correlation functions to infinite-
volume scattering quantities. Subsequent theoretical devel-
opments [6-17] achieved a general two-particle formalism
that can treat arbitrarily complex two-body systems below
the particle production threshold.

More recently, the three-particle problemi in finite-
volume has received a lot of attention. In fact, the community
has witnessed a blossoming of theoretical developments [21-
55], as well as the first applications to lattice QCD data [56-
66]. The latter has been only possible thanks to technical
advances in the extractions of energy levels on the lattice [67-
69], with up to hundreds of energy levels available [66]. In
fact, some of these studies point towards nonvanishing mani-
festations of three-particle interactions in finite volume.

The goal of this talk is to give an overview of the current
status of three-particle spectroscopy. I will summarize the
theoretical formalism, and describe some of the recent appli-
cations to systems of three pions and kaons.

2. The finite-volume spectrum

Lattice QCD simulations allow one to stochastically evaluate
Euclidean correlation functions:

C(t) = 〈O†(0)O(t)〉, (1)

whereO(t) is an operator with some given quantum num-
bers at Euclidean timet. The spectral decomposition of this
correlation function reads

C(t) =
∑

n

| 〈0|O|n〉 |2e−Ent, (2)

where{En} is the set of energy levels-the spectrum. There-
fore, from the time dependence of a correlation function, one
can constrain the spectrum and the matrix elements of the
operator. In addition, variational techniques enable the deter-
mination of several lower lying energy levels [70].

Since lattice simulations are necessarily performed in a
finite box, the measured spectrum corresponds to that of an
interacting quantum field theory in a finite volume. In a few
cases, the interpretation of these energy levels is simple: if
an energy level corresponds to a one-particle state (or sta-
ble bound state), these energies are exponentially close to
its infinite-volume value [71-73]. However, if a state cor-
responds to a multi-particle state, the connection to infinite-
volume is harder to establish. A relevant perspective on this
challenge was discussed by Maiani and Testa [74]. In their
work, it was shown that one cannot in general obtain on-
shell amplitudes from matrix elements of Euclidean corre-
lation functions.

An ingenious strategy to study multi-particle dynamics is
to make use of finite-size effects. Restricting systems of par-
ticles to a finite volume shifts their energy levels in a way that
depends on their interactions [75]. A very simple example is
that of the ground state of two particles of massm. The en-
ergy of this state in a box of sizeL depends asymptotically
on the volume as:
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FIGURE 1. Energy shift of theN -particle ground state as a func-
tion of the size of the box,L, extracted from lattice simulations in
the complexϕ4 theory [44]. A global fit to the expectedL depen-
dence yields a statistically significant result for the threshold three-
particle amplitude,̄T = −19(4) · 104. See Ref. [44] for details.

∆E = E − 2m =
4πa0

mL3
+ O(L−4), (3)

where∆E is the energy shift, anda0 the s-wave scattering
length. Therefore, to this order this energy may be mapped
into the threshold two-particle amplitude. Similar expansions
have been calculated in the literature for more complicated
cases. These include higher orders in1/L, multi-particle
states, the isospin-1 three-pion system, as well as excited
states and non-identical particles [1,17,43,44,46,76-78].

Perturbative expansions of energy levels can be practi-
cal to study some systems of weakly interacting particles,
e.g., π+ and K+ [76,79-81]. They are particularly useful
to constrain the two-particle scattering length, as this quan-
tity yields the dominant effect in the finite-volume spectrum.
Three-particle effects may also be extracted, although it is
technically more challenging. The reason for this is that
three-body interactions contribute to the energy shifts with
a relative1/L3 suppression with respect toa0.

A successful example of extracting three-particle quan-
tities in this manner was carried out in Ref. [44] using lat-
tice simulations in the complexϕ4 theory. In that article, the
authors fit the volume dependence of theN -particle energy
levels, withN = 2 − 5, to extract the three-particle ampli-
tude at threshold,̄T . This is shown in Fig. 1, and results
in a statistically-significant determination of the amplitude,
T̄ = −19(4) · 104.

2.1. The Lüscher formalism

Unfortunately, properties of resonances cannot be studied
with the 1/L expansion. Instead, they require the use of

a finite-volume formalism that is nonperturbative in1/L.
For two-particle scattering channels, this is provided by the
so-called L̈uscher two-particle quantization condition [1,8]-
abbreviated as QC2. It is an equation whose solutions corre-
spond to the energy levels in finite volume:

det
[K2(E∗) + F−1

2 (E, P , L)
] ∣∣∣∣

E=En

= 0, (4)

whereK2 is the two-particleK matrix evaluated at the center-
of-mass (CM) energy,E∗, andF−1

2 is a known function-the
Lüscher zeta function-that depends on kinematical variables
and the box size. The matrix indices of Eq. (4) are angular
momentum and its third component,`m. In order to have
finite matrices, interactions above some partial wave are ne-
glected. Note that unlikeK2, F is a finite-volume quantity
and it is not diagonal iǹm space.

3. The three-particle finite-volume formalism

The step from two to three particles constitutes an increase
in complexity. One reason is that three-particle amplitudes
have physical divergences in specific kinematical configu-
rations, which correspond to on-shell propagation of inter-
mediate particles. In addition, three-particle amplitudes de-
pend in general on off-shell two-body interactions, and there-
fore a separation between two and three-body effects is not
well defined. The finite-volume formalism will then require
a scheme-dependent intermediate quantity to parametrize
three-body interactions, even if all on-shellS-matrix ele-
ments are uniquely defined.

Early work on the subject showed that the three-body
spectrum is determined byS-matrix elements [21]. Sub-
sequently, the three-body formalism was derived following
three different approaches. By chronological order, these are:
(i) a generic relativistic effective field theory (RFT) [22,23],
(ii) a nonrelativistic effective field theory (NREFT) [40,41],
and (iii) the (relativistic) finite volume unitarity (FVU) ap-
proach [47,56]. In its original form, all three approaches dealt
with identical (pseudo)scalars withG-parity-like symmetry,
e.g., a3π+ system in the limit of isospin symmetry.

Qualitatively, the RFT approach connects the finite-
volume spectrum to the three-particle amplitude by formu-
lating a generic relativistic field theory into finite volume.
Note that no specific form of the the theory is required. The
NREFT approach uses an effective low-energy nonrelativis-
tic theory. Finally, the FVU approach is derived by means of
the unitarity relations of the scattering amplitude in a finite
volume.

It is now generally accepted that the three versions should
be equivalent. The connection has been explicitly shown for
FVU and RFT [34]. In addition, the equations in the FVU ap-
proach and the “relativized” formulation of the NREFT [54]
have the same formii. Substantial numerical evidence also
supports the equivalence [33,42].
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A key point that differs in the different versions is the
precise definition of a scheme-dependent intermediate three-
particle scattering quantity. In the RFT approach, this ob-
ject is the three-particleK matrix, Kdf,3. Here, the sub-
script “df” stands for divergence-free, and indicates that the
physical divergences in three-body scattering have been sub-
tracted. Thus,Kdf,3 is a Lorentz-invariant regular function of
the kinematical variables, that has the same symmetries as
the underlying theory. These properties will indeed be useful
when applying the formalism.

In practice, the three-particle formalism is a two-step pro-
cess. This is a shared trait of all three versions of the formal-
ism, but for concreteness I focus on the RFT approach. First,
the three-particle quantization condition relates the spectrum
to theK matrices,Kdf,3 andK2. In the second step, one must
solve a set of integral equations that mapKdf,3 andK2 into
the three-particle scattering amplitude,M3. The latter re-
moves the scheme dependence ofKdf,3. These steps will be
discussed in the next two subsections.

3.1. The quantization condition

The three-particle quantization condition (QC3) in the RFT
approach for identical scalars reads [22]

det
[Kdf,3(E∗) + F−1

3 (E, P , L)
] ∣∣∣∣

E=En

= 0. (5)

Although the previous equation looks very similar to Eq. (4),
there are some fundamental differences. First,F3 is not
a pure kinematical quantity, and it also contains infinite-
volume information through the two-particleK matrix,K2:

F3 =
F2

3
− F2

1
1/K2 + F2 + G

F2. (6)

Here, F2 andK2 are substantially the same as in the two-
body case, andG encodes the finite-volume effects of the
one-particle exchange diagrams, in which the spectator par-
ticle is switched. The origin of all the elements in Eq. (6) is
depicted schematically in Fig. 2.

In addition,Kdf,3 andF3 are matrices with indices that
characterize three on-shell particles in finite volume. The
standard choice is to describe two of the particles-the inter-
acting pair-with angular momentum indices,`m in the CM

FIGURE 2. Representation of the diagrams that lead to finite-
volume effects described byF2,K2 andG in Eq. (6).

FIGURE 3. Finite-volume spectrum as a function ofL in theT+
1 ir-

reducible representation of the finite-volume symmetry group, that
is, a channel that couples to theh1 resonance. It has been gener-
ated by solving numerically the three-particle quantization condi-
tion for the three-pion isospin-0 channel derived in Ref. [33]. The
two-particleK matrix is chosen such that a resonance similar to
theρ is present. Moreover, the three-particleK matrix contains a
pole term to mimic the three-body resonance. Source: Ref. [33].

frame. The third particle-the spectator-is described using its
finite-volume three-momentum,k. A finite dimensionality is
ensured by a cutoff function ink that is built into the formal-
ism, and by neglecting̀ above some valuè > `max. The
latter has to be done in a consistent way to describe two- and
three-particle interactions up to the same partial waves [29].

It is also worth mentioning that several articles by differ-
ent groups have extended the quantization condition to deal
with nonidentical scalar particles [33,36,38,52,65]. There-
fore, the formalism is ready to study systems such as theh1

or ω resonance [33], mixed systems of light pseudoscalars,
e.g., ππK [38,39].

Furthermore, solutions of the quantization condition have
been extensively studied in the context of toy models, seee.g.,
Refs. [27,42]. The idea is to solve the quantization condition
for some arbitrary parametrizations of the two- and three-
particle interactions. A selected example is Fig. 3, which
shows the volume dependence of the energy levels in a three-
pion isospin-0 channel. For this, the three-pion quantization
condition derived in Ref. [33] was used. The two- and three-
particleK matrices are chosen such thatρ- andh1-like reso-
nances are present.

3.2. Integral equations

While Kdf,3 is a very useful quantity to parametrize three-
body effects, it is unphysical due to its scheme (or cutoff)
dependence. Nevertheless, this can be fixed by solving the
integral equations that map theK matrices [23]. Schemati-
cally, the procedure is:

K2,Kdf,3 −−−−−−−−−−→
Integral equations

M3, (7)
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FIGURE 4. Dalitz plot for three-π+ scattering obtained solv-
ing the integral equations of the three-body formalism with input
from lattice simulations. The color bar indicates the magnitude of
M4

π|M3|2, while the label the incoming squared invariant mass
of particlesi andj (m2

ij). The outgoing kinematics is fixed to be
equal to the incoming one. The pion mass isMπ ∼ 391 MeV.
More details in the original article: Ref. [63].

whereM3 is the full amplitude containing the singularities
and analytical structure of three-to-three scattering.

These integral equations have been solved in several
works [27,53,63,65]. In Ref. [53] different methods are pro-
posed to solve the integral equations when the two-particle
subsystem is bound-like a toy model for deuteron-nucleon
scattering that neglects spin.

Another example is that of Fig. 4, which shows a Dalitz
plot for three-π+ scattering obtained after solving the integral
equations and using lattice QCD inputs [63]. In this case, the
pion mass isMπ ∼ 391 MeV, K2 is given by the scattering
length measured on the same ensemble, andKdf,3 is set to
zero. The different colors indicate the value ofM4

π |M3|2.
Note the presence of divergences in the corners of the plot.

Finally, Ref. [65] solves the integral equations in the
FVU approach for the three-pionI = 1 channel, where the
a0(1260) resonance is present. A pole term is included in the
three-body intermediate quantity, and the amplitude is ana-
lytically continued to the complex plane. Using energy levels
from the lattice, new information about the pole positions and
branching ratios is deduced.

3.3. Three-body decays

Another interesting avenue of the multi-particle formalism in
finite volume is the extraction of decays amplitudes from lat-
tice QCD. Due to final-state interactions, decay processes get
distorted in a finite volume. In order to obtain the physical
amplitude a correction must be applied to the finite-volume
matrix element calculated from lattice simulations. In the
two-particle sector, this is the so-called Lellouch-Lüscher for-
malism [7] (see also Refs. [8,11,12,82-96]). Recently, the
formalism for three-particle decays has been worked out in

Refs. [37,45] following the NREFT and RFT approaches, re-
spectively. Ref. [45] considers only the case of identical par-
ticles, while Ref. [37] treats systems of three pions in the
isospin limit.

In Ref. [37], three hadronic processes for which the for-
malism can be applied were described. They are (i) the
K → 3π weak decay, (ii) the strong isospin-breaking tran-
sition η → 3π, and (iii) the electromagneticγ∗ → 3π am-
plitudes that enter the calculation of the hadronic vacuum
polarization contribution to muonicg − 2. Indeed, one ex-
pects that lattice calculations for these can be accessible in
the near future, given the recent success in theK → ππ am-
plitudes [97].

Also relevant are the weak decays ofD mesons, for which
CP violation has been recently confirmed at LHCb [98]. A
first-principles prediction will however require the descrip-
tion of four-pion final states in finite volume.

4. Results for three-meson scattering

The formalism can already be used to study generic systems
of (pseudo)scalar mesons in QCD. But first, it is important to
test the methods in controlled setups before turning to more
complicated channels. Thus, three pions (or kaons) at maxi-
mal isospin constitute an excellent benchmark system for the
initial three-body studies.

4.1. ParametrizingKdf,3

In order to constrain the values ofKdf,3, it is essential to find
good parametrizations for this quantity. Note that sinceKdf,3

is an infinite-volume object, its parametrization will not rely
on the finite volume. In Ref. [29], it was proposed to ex-
ploit the symmetry properties ofKdf,3 to carry out a poly-
nomial expansion in the kinematic variables about the three-
particle threshold-the threshold expansion ofKdf,3. The ex-
pansion parameter will be a set of Mandelstam variables that
exactly vanish at the three-particle threshold, for instance,
∆ ≡ (s− 9M2

π)/9M2
π and similar quantities.

Let us consider identical particles, such as threeπ+. Im-
posing thatKdf,3 remains invariant under the symmetries of
the theory-particle exchange, parity and time reversal-puts
strong constraints on its threshold expansion. In fact, up to
quadratic order in∆, only five terms are present:

Kdf,3 = Kiso,0
df,3 +Kiso,1

df,3 ∆ +Kiso,2
df,3 ∆2

+KA∆A +KB∆B + O(∆3),
(8)

whereKiso,0
df,3 ,Kiso,1

df,3 ,Kiso,2
df,3 ,KA,KB are real constants, and

∆A/B are kinematic functions of the Mandelstam vari-
ables. The terms that contain “iso” in their name (short for
“isotropic”) depend only on the total energy and thus they
contribute tos-wave interactions. By contrast,∆A and∆B

have an angular dependence:∆A corresponds to three parti-
cles withJ = 0, but relative` = 2 in the two-particle sub-
system, while∆B describes an overallJ = 2.
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FIGURE 5. a) Results forKiso,0
df,3 , b) Results forKiso,1

df,3 . Results for two terms of the three-particleK matrix for the3π+ system in different
publications. All results use the RFT formalism, and include onlys-wave interactions in the two- and three-body sectors. The result in blue
([B,RL,S]) is from Ref. [57], orange ellipses ([ETMC]) come from Ref. [61], and the red ones ([B,H,H,M,RL,S]) from Ref. [66].

4.2. Constraining three-bodys-wave interactions

The first studies of three-particle interactions have focused
on pures-wave interactions [56-64]. That is, only thes-wave
phase shift is nonzero, and the three-body parameter is either
kept constant, or dependends linearly on(E∗)2. In the RFT
approach, the consistent truncation fors-wave only interac-
tions is to keep the two leading isotropic terms ofKdf,3:

Kdf,3 = Kiso,0
df,3 +Kiso,1

df,3 ∆. (9)

In Fig. 5, a summary of recent determinations ofKiso,0
df,3

andKiso,1
df,3 is shown. In addition, the leading order (LO) chi-

ral perturbation theory (ChPT) prediction [57] is included for
each quantity (dashed line). While several of these results

indicate nonzero values for these quantities, there are signifi-
cant differences between the various works that remain to be
understood. Furthermore, the results forKiso,1

df,3 differ signif-
icantly from the ChPT prediction, which suggests important
effects from higher orders.

Interestingly, at LO in the chiral expansion,Kdf,3 is triv-
ially related to the full amplitude [57]:

M3 −DLO = Kdf,3
[
1 + O(M2/F 2)

]
, (10)

whereDLO is a subtraction term that cancels the divergences
of the one-particle exchange diagrams (see Appendix S2
in Ref. [57]). In other words, the scheme dependence in
this quantity arises at next-to-leading order (NLO) in ChPT.
Therefore, +a nonvanishing value ofKdf,3 is meaningful

FIGURE 6. Overview of the finite-volume spectrum of the three positive pions on the N200 CLS ensemble. The vertical axis shows the CM
energy, and the various finite-volume irreps and momentum-squared are listed at the bottom. Dashed lines mark the free energy levels, and
the open circles denote the interacting energies. Colored circles indicate the central values of the resulting energies from fits to the two- and
three-particle quantization condition. Teal circles correspond to energies included in the fits, while orange label those not included. For more
details, see Ref. [66].

Supl. Rev. Mex. Fis.3 0308003



6 F. ROMERO LÓPEZ

FIGURE 7. Lattice determination of thed-wave three-π+ scatter-
ing quantity,KB . The results for three different values of the pion
mass are shown, along with the a fit to the expected chiral behavior,
M2

πKB ∝ (Mπ/Fπ)6. The physical point is marked with a empty
square. Source: Ref. [66].

FIGURE 8. Lattice determination ofKB for 3K+ scattering. Ma-
genta circles show the results for three different ensembles, and
they are plotted against(Mπ/Fπ)2. A linear extrapolation to the
physical point is also included. Source: Ref. [66].

despite its scheme dependence. Moreover, note that a NLO
prediction could be derived using the results of Ref. [99] with
the appropriate subtraction scheme.

4.3. Beyonds-wave interactions

The study of three-body interactions is not limited to the lead-
ing s-wave effects. This was shown in Ref. [66], where three-
π+ and three-K+ interactions were studied includingd-wave
effects. In order to achieve this, it was crucial to determine
a large number of energies in each channel-O(100) energy
levels per ensemble in different irreps and frames were deter-
mined. An example of the measured energy levels is shown in

Fig. 6 for3π+ on the N200 CLS ensemble (Mπ ∼ 280 MeV).
The hollow markers indicate the measured spectrum, while
colored points are predictions from the QC3. Teal circles de-
note energies included in the fit, while orange ones are those
not included. Note that the fit range for the fits to the quanti-
zation condition does not go above theE∗ = 5Mπ inelastic
threshold, even if the quantization condition still seems to
describe those energy levels appropriately. This suggests that
inelasticities may not be very relevant.

An exciting result of Ref. [66] is the determination ofKB

with statistical significance in most of the ensembles, even
if this term is expected to produce a subleading effect in the
energy shifts. It turns out that it is the leading contribution of
Kdf,3 to the energy levels in nontrivial irreducible represen-
tations of the spatial symmetry group. In Fig. 7, results for
KB for threeπ+ are shown. As can be seen, good agreement
with the chiral expectation,M2

πKB ∝ (Mπ/Fπ)6, is found.
Interestingly, at the physical point this quantity is very small,
and it would be very hard to determine in direct simulations
with physical pions. Finally, Fig. 8 shows the same object for
kaons, along with an extrapolation to the physical point.

5. Conclusion and outlook

Three-particle spectroscopy is progressing rapidly, both in
the theoretical developments, as well as applications to
QCD. Simple systems of pseudoscalar can be studied, and
the first steps towards three-particle resonances have been
taken [33,65].

From the theoretical perspective, there are still some
open questions. Examples are the formalism for systems
of three particles with spin, and multi-channel three-particle
processes. It is also to be expected that more applications of
the formalism will appear in the following years, involving
three-body systems of growing complexity.

The long-term aspiration is the first-principles computa-
tion of properties of higher-lying resonances, such asXY Z
particles and other exotics. This will require further theoret-
ical developments-either in the form ofN -particle quantiza-
tion conditions, or alternative approaches [100-103].
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32. F. Romero-Ĺopez, S. R. Sharpe, T. D. Blanton, R. A. Briceño
and M. T. Hansen, Numerical exploration of three relativis-
tic particles in a finite volume including two-particle reso-
nances and bound states,JHEP10(2019) 007,https://10.
1007/JHEP10(2019)007 .
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