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The τ → ντπe+e− decay revisited
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Abstract. The recent results from Belle of theτ− → ντπ−e+e− analysis have incentivated us to make a reanalysis of a former work where
the Structure Dependent parts are obtained using Resonance Chiral Theory. Here we rely on the same theory accounting for effects that
explicitly break such symmetry. A motivation is the involvedWπγ? vertex, utterly relevant in computingτ− → ντπ− radiative corrections.
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1. Introduction

(This work is based on the research of Ref. [1].) The increas-
ing development in the search for Beyond Standard Model
(BSM) Physics in flavor factories demands a better control
of backgrounds, specially in processes allowed in the Stan-
dard Model with large suppressions. It has been shown
that, to the precision achieved in such experiments, impor-
tant background may arise from radiative corrections [2–4]
and hadronic contamination [5]. In particular,τ decays pro-
vide a suitable scenario to search for BSM phenomena since
they involve low hadronic contamination compared to purely
hadronic transitions and since at experiments like Belle, a
very large amount of them are created. Therefore, such de-
cays are suitable to look for BSM effects, such as Lepton
Flavor, Lepton Number and Lepton Universality-Violation,
in semileptonicτ decays. Some of the aforementioned ef-
fects could induce decays such asτ− → ντπ+µ−µ− or
τ− → µ−γ that could be explored in Belle-II. In this work,
we focus on an important background of such processes,
namely, theτ− → ντπ−``. Furthermore, the relevance of
such decays relies on the effective vertexWγ∗P , which is
of utmost importance in the evaluation of radiative correc-
tions to theτ → ντP [6] decays as well as in determining
high energy behavior of the Transition Form Factor (TFF) of
theπ meson, which is needed to describe the most important
parts of the Hadronic Vacuum Polarization contribution to the
anomalous magnetic moment of theµ.

The recent measurement of theτ− → ντπ−e+e− de-
cays in Belle [7] has confirmed our previous determination
of the Branching Fraction of such process [8], where we re-
lied on Resonance Chiral Theory (RχT) [9,10] (which isχPT
[11–13] expanded to include resonances as active degrees of
freedom), where the lack of a pseudoscalar-resonance ex-
change and someO(p6) contributions provide an incom-

plete axial form factor in the sense of VAP Green’s function
analysis [1, 14, 15]. This motivated us to revisit the analy-
sis of such decays taking into account the missing parts in
the form factors by including the pseudoscalar resonance ex-
change. These resonances, however, will necessarily cou-
ple to a pseudo Goldstone boson and such coupling in-
volves the mass of the latter. Therefore, these resonances
will contribute through terms that break explicitly the Chiral
Symmetryi. Thus, for the sake of consistency (to see how the
VVP Green’s function analysis [16, 17] relates to the vector
form factor see Ref. [18]), all the leading-order contributions
(O(m2

π)) to the remainingU(3)V breaking must be consid-
ered. Therefore, our analysis will involve the missingO(p6)
terms in ref. [8] as well as all leading mass contributions to
the τ− → ντπ−`` decays. (Although we also analyzed the
τ− → ντK−`` in Ref. [1], here we focus only in theπ decay-
channel.)

2. Amplitudes

There are two types of contributions to the decay amplitude,
the first is a Structure Independent (SI), which stems from
Inner Bremsstrahlung, that is, the virtual photon is radiated
by theτ andπ meson where the latter is taken as a point-like
particle, therefore, the correspondig matrix element can be
obtained using scalar QED. The second is Structure Depen-
dent (SD), which means that the virtual photon can resolve
the internal structure of theπ, this means that the matrix el-
ement of the weak and the electromagnetic quark currents
cannot be factorized into a matrix element of the weak cur-
rent times a matrix element of the electromagnetic one. This
is where one needs to rely on an Effective Field Theory. Sep-
arating the left weak current into the vector and axial currents
we can express the decay amplitude as follows
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FIGURE 1. Feynman diagrams of the SI contributions.
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whereJν
` = u(p−)γνv(p+) andJµ

τ = u(q)(1 + γ5)γµu(pτ ) are the lepton electromagnetic andτ weak charged currents,
respectively. The definition of momenta is given in Fig. 1. Also,W 2 = (pτ −q)2 andk = p+ +p−. It is in the Form Factors of
Eqs. (1b) and (1c) that the hadronic dynamics that cannot be described by means of the underlying theory (QCD) is encoded.
These are the expressions that we will compute using RχT.

3. Structure dependent part

Using RχT we find that the Feynman diagrams that contribute to the vector form factor are those shown in Fig. 2, while those
contributing to the axial form factors are given in Fig. 3. We refer the reader to Ref. [1] for the operator basis used. The
expression for the vector form factor gives
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which is the same result as for theπ0-TFF (accounting for factors of 2 from Bose symmetry) with the leading-order chiral
symmetry breaking terms [18].

FIGURE 2. Feynman diagrams of the vector SD contributions. P-resonance considered as mixing with the Goldstone bosons.

FIGURE 3. Feynman diagrams of the axial SD contributions. P-resonance considered as mixing with the Goldstone bosons.
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From the diagrams of Fig. 3 we find the expressions
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Taking the chiral limit (mπ → 0), it can be seen thatA2 andA4 recover their linear dependency [14,15,19].

Imposing the high-energy beahviour of QCD form fac-
tors allows us to constrain the parameters of the model.
The behavior of the vector form factor in the limits
limλ→∞ FV (λW 2, 0) and limλ→∞ FV (λW 2, λk2) [20, 21]
give the constraints (see Ref. [18])

• FV (W 2, k2),O(m0
P ):

CW
22 = 0 , (6)

c125 = 0 , (7)

c1256 = − NCMV

32
√

2π2FV

, (8)

d3 = − NCM2
V

64π2F 2
V

. (9)

• FV (W 2, k2),O(m2
P ):

λV = −64π2FV

NC
CW∗

7 , (10)

c∗1235 =
NCMV eV

m

8
√

2π2FV

+
NCM3

V λV

4
√

2π2F 2
V

. (11)

We also use the relations from VVP Green’s Function, for
the sake of predictability. Also, we use the values for some
parameters of the fit done in Ref. [18]. These are
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However, if we impose that the axial form factors van-
ish in the same limits as the vector form factors we obtain
no constraint since they already have the correct asymptotic

behavior. Instead, we use the VAP Green’s Function behav-
ior [14,15,19], which gives the following relations
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4. Fit

Although the spectra of the invariantmπe+e− mass shows the
typicalρ(1450)−ρ(1700) interference (see [1,7]), involving
heavier copies of theρ meson implies considering more un-
constrained parameters, wich cannot be well contrained us-
ing the data due to large errors. It is, therefore, expected that

FIGURE 4. Normalized invariant mass spectra obtained with the
two sets of parameters obtained from fitting to the Belle data. The
purple line corresponds to the data withFA fixed, while the green
one stands for that withλ?

0 fixed. The blue data corresponds to
measurements ofτ− decays, which show best agreement with our
model [7].
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FIGURE 5. Invariant mass spectramπ−e+e− for P = π, the thick-
ness represents the error band obtained from the difference between
the two sets.

FIGURE 6. Invariant mass spectramπ−e+e− , the thickness repre-
sents the error band obtained from the difference between the two
sets. The green line is the prediction of Ref. [8].

TABLE I. Our best fit results forFA , FV , λ∗0 and the branching
ratio. For the fit results shown on the left (right) columns we fix
FA = 130 MeV (λ?

0 = 102 × 10−3), respectively. A0 error
means that the fit uncertainty in the parameter is negligible with
respect to its central value.

set 1 set 2

FA = 130 MeV λ?
0 = 102× 10−3

FA 130 MeV (122± 0) MeV

FV (135.5±1.1) MeV (137.4± 1.6) MeV

λ?
0 (384± 0)× 10−3 102×10−3

B (6.01± 0)× 10−6 (6.36± 0.12)× 10−6

χ2/dof 31.1/26 31.4/26

some relations stemming from high-energy QCD or Green’s
Functions will not be fulfilled. Thus, we do not rely on Wein-
berg’s sum rules.

Comparing the branching fraction data from Belle with
the expected signal events distribution, we obtain an estima-
tion for the deconvolution of signal from the detector, which
we do not know. This is taken as a systematic uncertainty,
which is comparable to the one reported by Belle. Also, the
use of incomplete expressions for the axial form factors by
the Belle collaboration to obtain the branching ratios and in-
variant mass spectrum [1, 7] can lead to biased estimations.
We, therefore, choose to fit the total branching fraction to the
data instead of computing it from the partial width expres-
sion. Thus, we fitFV , FA, λ?

0 andB, the branching ratio.
The resolution of the data is not precise enough in order

to obtain a determined set of parameters that minimize the
χ2 of the fit. Therefore, we fix one of the parameters and
fit the other three. We fix firstFA = 130 MeV, and then
λ?

0 = 102× 10−3. The former is in agreement with the high
energy relation of Ref. [22], while the latter is the estimation
of λ?

0 neglecting chiral symmetry breaking effects [23]. A
third fit fixing FV =

√
3F (its correct high energy value [22])

was done, however, it furnishes a very poor fit. The fits ob-
tained are shown in Table I. As can be seen from set 2 in
this Table,FV is far closer to

√
2F than to

√
3F , which

reiforces the decision of neglecting the Weinberg’s sum rules.
The spectra obtained from the number of events spectrum for
each parameter set along with the experimental data is shown
in Fig. 4.

5. Predictions

Using the phase space configuration of Ref. [1] and the pa-
rameters of both sets we obtained themπe+e− andme+e−

invariant mass spectra and the total branching ratio. We com-
puted theB(τ− → ντπ−e+e−) implementing the kinemat-
ical cut used by Belle to obtain their measurement of the
branching ratio,mπe+e− ≥ 1.05 GeV. The difference be-
tween our prediction and Belle’s measurement is taken as a
systematic uncertainty due to unfolding. Thus, taking into
account the correlation of the fit, we produced 2400 points
using a Gaussian distribution in the parameter space to inte-
grate the branching fraction. We define our prediction of the
branching ratio with uncertainty for each decay channel to
be the union of the intervals given by the central values with
their errors for the prediction thrown by each parameter set,
this is, the union of the intervals of Table II; this is given in
Table I. We also give themπ−e+e− invariant mass spectrum
in Fig. 5 and theme+e− in Fig. 6.

TABLE II. Full branching ratios accounting for both (dominant) systematic and statistical uncertainties. In the right column we show the SI
contribution with the error arising from numerical integration of the differential decay width.

set 1 set 2 IB

B(τ− → ντπ−e+e−) (2.38± 0.28± 0.11) · 10−5 (2.45± 0.45± 0.04) · 10−5 1.457(5) · 10−5
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TABLE III. Branching ratios for the different decay channels. The
central value is the mean of the union of intervals given in both
columns of Table II, the first error covers the width of such union
of ranges and the second error is the quadratic mean of statistical
uncertainties in Table II.

P, ` B(τ− → ντP−``)

π, e (2.41± 0.40± 0.12) · 10−5

6. Conclusions

We have given an improved description of the decay ampli-
tude from Ref. [8]. This involves a more accurate theoreti-
cal description by including flavor breaking terms as well as
predictions with reduced uncertainty. As found in the VVP
Green’s function, the inclusion of pseudoscalar resonances
in the form factors is needed to give compatible expressions
with the VAP Green’s Function analyses [14, 15, 19]. A rea-
sonably good fitχ2/dof ≈ 1.2 was obtained. However, a

better set of data for themπ−e+e− and data for theme+e−

invariant mass spectra would allow to resolve the dynamics
of the heavier copies of theρ meson involved in these de-
cays. The fact that the fits favor a valueFV =

√
2F shows

that dynamics from such heavier copies are indeed involved,
making thus necessary to improve the experimental analyses
to obtain more precise data and the need for ame+e− spectra.
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i. Terms in the effective Lagrangian that depend on the masses of
the quarks (or equivalently on the masses of the pseudo Gold-
stone bosons) will break chiral symmetry explicitly. Since the
chiral symmetry is spontanously brokenU(3)L ⊗ U(3)R →
U(3)V , considering quark-mass terms means that theSU(3)V

subgroup gets explicitly broken.
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