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New insight in the 2-flavor Schwinger model based on lattice simulations
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We consider the Schwinger model with two degenerate, light fermion flavors by means of lattice simulations. At finite temperature, we
probe the viability of a bosonization method by Hosotanal. Next we explore an analogue to the pion decay constant, which agrees for
independent formulations based on the Gell-Mann-Oakes-Renner relation, the 2-dimensional Witten-Veneziano formularagihibe

Finally we confront several conjectures about the chiral condensate with lattice results.
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1. The 2-flavor Schwinger model m, in a Schidinger-type equation for a periodic function
fle) = f(p+2m) [4],

In the early 1960s, when quantum field theory was yet )
to be elaborated as the correct theory of particle physics, ef(p) = <d — rcos @) £(9)
Schwinger [1] analyzed Quantum Electrodynamicg s 2 ’ dp? ’

space-time dimensions (QEDPor Schwinger model). It 4 12 -
shares qualitative properties with QCD, in particular confine- k= —mL¢[B(my L) B(mxLy)] e/ Gule)
ment, chiral symmetry breaking and topology.

Schwinger was patrticularly interested in the emergence P T 7 du
of mass, which was puzzling before the Higgs mechanism B(2) = s ol e 2/ e 5| >
. . 7T z (e Dvu? —1
was established. In fact, fd¥; massless fermion flavors, the 1

spectrum of QERincludes one massive aid — 1 indepen- , 7
dent massless bosons. By analogy to QCD we denote them ,,2 _ 2LH / do cos o | fo(0)]?,
as the %-meson” (which could also be interpreted as a mas- L '
sive “photon”) and the “pions”. Thg-mass was computed o
analytically [2], md—m 4 e \/Eg ’ )
2 Nfg2 . .
My =— (1)  wherey = 0.577... is Euler's constant is the energy, and
fo the ground state function. This system of equations can
whereyg is the gauge coupling. be solved numerically [5], but the viability of its solution is
At a degenerate fermion mass > 0, there are conjec- |imited tom < .
tures but no exact solutions for the massgsandm,,. They In an infinite spatial volume, for a small mass the so-

can be numerically measured with lattice simulations, WhiChution to Egs.R) for the “pion” mass takes the form

provide fully non-perturbative results. We present such sim-

ulation results, which we obtained witNy = 2 degener- me — 4627\/5(”129)1/3 = 2.1633... (m2)Y3.  (3)
ate flavors of dynamical Wilson fermions, using the Hybrid T ™ ' '

Monte Carlo algorithm. The renormalized fermion mass s js similar to another infinite volume prediction by
was measured based on the PCAC relation. Part of these "8milga [6], m, = 2.008...(m2g)'/3. Figure 1 compares

sults were anticipated in Ref. [3]. the solution to Hosotani’s Eq&2)and the asymptotic Ec3)
to our simulation results on a lattice of sizgx L = 12 x 64,
2. “Meson” masses at finite temperature ats = 1/g% = 4 (in lattice units), as a function of the fermion
massm.
Bosonization reduces the Schwinger model to a quantum me- We observe a quasi-chiral regime, with< 0.05, where
chanical system ofV; — 1 degrees of freedom; we call its the predictions forn, based on Hosotani’'s formula is man-
temporal sizeL;. In the case ofN; = 2 degenerate fla- ifestly successful. There is another regime aroQrzh <
vors of massm, this method encodes the masses and m < 0.3 where the asymptotic formula for.,. agrees with
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- ig=12, T =68, P-4 Regarding the standard definition of the pion decay
..... 2.1633(m?g)" constarit F,,

0.7 1" v Prediction by Hosotani et al.
Lattice simulation

7 (0[5 (0)|7(p)) = ipuFr , (4)
this property suggest&, (m = 0) = 0.

However, there are other ways to define an analogue to
0.3 F. in the 2-flavor Schwinger model, which lead to finite val-

ues. We are going to see that they are quite consistent.
To the best of our knowledge, there is only one non-trivial
prediction in the literature fof’; in the 2-flavor Schwinger

0.00 0.05 0.10 0.15 0.20 0.25 0.30 model [7]. It is based on a light-cone quantization approach

0.5

m and it refers to the relation
- L=12,L =64, B=4
e et (010,J:(0)|m(p)) = m3Fx (5)

0.8 4 —— Prediction by Harada et al
Lattice simulation

) i which we infer from Eq.4), but this form allows foF, (m =
0) > 0. Haradaet al. obtained a very mild dependence on
the (degenerate) fermion mass[7],

EE
Fr(m) = 0.394518(14) + 0.040(1) % . (6)
0.31 Note thatF, is dimensionless in 2 dimensions.
0.2 T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 3.1. Gell-Mann—Oakes—Renner relation

m

The Schwinger model analogue of the Gell-Mann—Oakes—

FIGURE 1. The masses. andm,, depending on the renormal- Renner relation reads [9]

ized fermion massn. We show results obtained from Hosotani’s

equations2), from the asymptotic Eq.3}, from light-cone quanti- o 2my
zation [7], and from lattice simulations. Fi(m) = m2 )
s
the lattice data, but that could be accidental, since the slopeshereX = —(¢7)) is the chiral condensate. Substituting in-
differ. finite volume and low mass expressions given in Ref. [10],

On the other hand, the results far, illustrate that none . o\ 1/3
of the predictions is accurate, except perhaps at tiny fermion y, _ 1 femmp — (4622 ) /3 8
. . e - 9 My = ( € 'm :u’) ) ( )

mass, where even the simple Ed) {or the chiral limit is m 4
more successful (it yields:, = 0.3989...). In that case,

. L C : yields
we include a predictions, which is given — up to re-scaling —
in Ref. [7], m,, = (¢/v/7) (>*°[vrm/g]*** + v2) , and
which is (accidentally) close the the lattice data aroune: P = Vo =0.3989... . ©)

0.23.

This result is constant im andg, but form /g = 0 —or close
to it—we observe agreement with E6) (ip to1 %. Ref. [10]
also provides formulae far andm, in two other regimes,
depending onn and the volume. Inserting either of them
] ] . consistently leads again to E®)( One might also insert the
A frequent question about the multi-flavor Schwinger mOdelnumericaIIy measured values of, andy, see Sec. 4; this
refers to the “pions” in the chiral limitp, = 0: they are mass- analysis is in progress.

less, but in contrast to QCD they cannot represent Nambu-

Goldstone bosons due to the Mermin-Wagner-Coleman Thez 5 The 2d Witten—Veneziano formula

orem — although at smalt > 0 they behave much like quasi-

Nambu-Goldstone bosons. An explanation is gieeg. in In 't Hooft's formulation of largeN, QCD, the Witten—
Ref. [8]: atm = m, = 0 the “pions” do not interact. Veneziano formula [11] relates thg-mass to the quenched

3. The “pion decay constant”

1 Note that this “pion” does not actually decay.
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topological susceptibility (. In particular, it explains—asa L4, L=10; =t

topological effect — why the’-meson is so heavy compared | | | | | - 2.1633(m?g)'?
to the light meson octet. This relation involves the decay con-
. . . . 0.8
stantF,,, which — at largeV. — coincides with#’;.
According to Ref. [12], the analogous relation in the
multi-flavor Schwinger model is actually more robust. In the y
chiral limit it reads g
0.4
2N
2 _ q ¥
my = TgXt : (10) 024 ///,/’
If we employ relation'T) along with the formula [13] 0.0 | | | | | |
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
2 (ng)l/B
a_ 9. (11 i i 2,\1/3
Xy = ar FIGURE 2. Pion mass as a function @fn“g)"/°, in a volume
L x Ly = 10 x 64, at3 = 4. As expected, the error bars shoot
we obtain up at tinym, but the data at moderate guide a controlled chiral
extrapolation tan®.
1
F,=—. 12
n m ( )

TABLE I. F, obtained fromm® in thed-regime, for three different
If we further assumé, = F, as in largeN, QCD, we ar-  (-values.
rive at exact agreement with E@)(

F7T
Equation|() is well tested as the continuum limit of var- i 0.3925(11)
ious lattice actions [3], as requested by universality, see also
Refs. [14]. On the other hand, we are not aware of a sound 4 0.3930(14)
justification for settingF;, = F, in the Schwinger model. S 0.3962(13)

Equation|l5) is not designed fo#l = 2, where there are
3.3. Thedj-regime no Nambu-Goldstone bosons and the next-to-leading term is
singular. We try to apply it nevertheless, restricting the for-
We proceed to yet another, independent way of introducingnula to Leutwyler’'s leading order, and interpreting, as
an analogue té’,. Here we refer to thé-regime, which was the number of “pions” in theV;-flavor Schwinger model,
introduced in QCD by Leutwyler [15]. It is characterized by N, = N; — 1. Thus we conjecture fav; = 2
a small spatial volume, but a large extent in Euclidean time,

1
R~ . 1
M = 9m2p (16)

V=LxL, L§i<<Lt. (13)
M If the behaviorm® oc 1/L is confirmed, the proportion-
ality constant provides another way of introducihy, by
means of yet another analogy to QCD.

In order to probe this scenario, we measuredat differ-
ent values ofn, and extrapolated to the chiral limit in order
to obtain simulation results:}* (simulations directly at tiny
m are plagued by notorious technical problems). Figure 2
shows an example for such an extrapolation.

Repeating this extrapolation at different spatial sizes

As a finite-size effect, there is a residual pion magseven
in the chiral limit,

mE =m.(m=0)>0. (14)

It was computed to leading order in Ref. [15], and to next-to-
leading order — in a general space-time dimengion3 —in

Ref. [16], leads to good agreement with the conjectured proportionality
N relationm? oc 1/L, as Fig. 3 shows for threg-values.
mi = ﬁ, This allows us to employ Ed16) and extract the value of

F. — as defined in thé-regime. The results &t = 3, 4 and
O — p2rd-1 [1+ N —1 (d_1+...>] . (15) DaregiveninTable . _ -
N 2rF2L4=2 \d—2 They agree very well for various values®f In addition,
they are very close to the result f6y. of Ref. [7], and to the
N, is the number of pions (or generally of Nambu- results that we obtained based on the 2d Gell-Mann-Oakes-
Goldstone bosons), and if we consider the system as quasi-Renner relation, and on the Witten-Veneziano formula (if we
guantum mechanic§) represents a moment of inertia. assumef’, = F),).
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1/L vs. m,’},B=3 L=20,L=20,B=4
0.40

0554 ___ pR=_1 =

my P Fr=0.3925(11) //Z( 0.35 4

P
0.50 —
a7 0.30 1
/”
0.45 X 0.25 1
/”
<= e 2 0.20 1
g i z 3 0 TR
0.40 pEace g}}}g
/z’ 0.15 4 g Prediction by Hetrick et al. for ulL > 1 > mL(uL)"?
x g f’ —.— Prediction by Hetrick et al. for mL(uL,)¥2 > 1
0.35 1 - i i i
7 0.10 —Egrl 1 e Prediction by Smilga
,X’ ].1 TE’I -+ Solution to eqgs. by Hosotani et al.
i A7 P Solution to egs. by Hosotani et al.,
0.30 //X« 0.05 -I-l I’I ~="" relating m, and m, according to Harada et al.
", "Z I Lattice simulation results
T T T T T 0.00 T T T T T T T
0.08 0.10 0.12 0.14 0.16 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
1/L m/g

1/L vs. mR, p=4

— % FIGURE 4. A multitude of results for the chiral condensaie
=== M =52, Fa=0.3930(14) k

0.6 7 plausible), andn/g < 0.035. However, the data follow well
o this straight line even up ta/g = 0.035.

d /,/“ We add another small-mass predictions given in Ref. [10],
b3 - which refers to the regime:/g > 0.035, hence it should be
72" valid in most of this plot, but it does not agree well with the
0.41 r oo lattice data (which are obtained with overlap fermions).

-~ Next we show the line for a similar prediction from
031" Ref. [6], which is not in accurate agreement with the lattice
|~ | | | | | | results either.
008 04004z oLh0d6 048 020 The solution of Eqs/d), inserted in relation17), works
L vs. mR, B=5 better. It can be further improved if we replace the (some-
—T—— what troublesome) ansata? = m?2 + p* by a formula for
=== mpy==—r, F;=0.3962(13) X . . . .
0.504 T e my,, Which is derived in Ref. [7].
7 Unlike Figs. 1 to 3, here we obtain an almost contin-
0.45 - 1oL uous line of lattice results, because we are using a single
¥s set of quenched configurations which are re-weighted by the
% 0.40 x- fermion determinant to compute the chiral condensate for dif-
7 ferent fermion masses. As the ratio/g grows, we see that
0-33h) e none of the theoretical predictions is truly successful, as we
¥ already observed in the case of the “meson” masses. We
00— should add, however, that all these formulae refer to the con-
. tinuum and an infinite spatial size, so the discrepancies could

0.08 010 0-'121/L 0.14 0.16 be (in part) due to finite-size effects and lattice artifacts.

FIGURE 3. Residual pion mass as function dbfL for g = 3, 4
and5. We observe good agreement with the conjectured relation5,  Summary and mysteries
m% oc 1/L.
We presented lattice simulation results for the “meson”
. masses and the chiral condensate in the 2-flavor Schwinger
4. The chiral condensate model, and confronted them with a multitude of theoretical
predictions. While some of them work well at small fermion
massm, none of them is truly successful at moderate
We also formulated the pion decay constéitin var-

If we rely on the resultd), we can re-write the Gell-Mann—

Oakes—Renner relation in the form
2

v M , (17) ious ways, by referring to different analogies to QCD. For
. dmm ' three formulations we obtained consistent values, which are
and use it to extract a value for the chiral condensateom  compatible withF, (m = 0) = 1/v/27, and with a previous
the numerical solution of Eqs2). study in Ref. [7]. This is very satisfactory, but there remain

Figure 4 compares results fof by a variety of ap-  two open questions:
proaches: the line linear im/g is the tangent aitn/g = 0,
which was correctly predicted in Ref. [10]. For our para- 1. Why does the method based on the Witten—\eneziano
meters, the corresponding conditions m&as 1 (which is formula require the identificatioR,, = F;, ?
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