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New insight in the 2-flavor Schwinger model based on lattice simulations
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We consider the Schwinger model with two degenerate, light fermion flavors by means of lattice simulations. At finite temperature, we
probe the viability of a bosonization method by Hosotaniet al. Next we explore an analogue to the pion decay constant, which agrees for
independent formulations based on the Gell-Mann-Oakes-Renner relation, the 2-dimensional Witten-Veneziano formula and theδ-regime.
Finally we confront several conjectures about the chiral condensate with lattice results.
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1. The 2-flavor Schwinger model

In the early 1960s, when quantum field theory was yet
to be elaborated as the correct theory of particle physics,
Schwinger [1] analyzed Quantum Electrodynamics ind = 2
space-time dimensions (QED2, or Schwinger model). It
shares qualitative properties with QCD, in particular confine-
ment, chiral symmetry breaking and topology.

Schwinger was particularly interested in the emergence
of mass, which was puzzling before the Higgs mechanism
was established. In fact, forNf massless fermion flavors, the
spectrum of QED2 includes one massive andNf−1 indepen-
dent massless bosons. By analogy to QCD we denote them
as the “η-meson” (which could also be interpreted as a mas-
sive “photon”) and the “pions”. Theη-mass was computed
analytically [2],

m2
η =

Nfg
2

π
, (1)

whereg is the gauge coupling.
At a degenerate fermion massm > 0, there are conjec-

tures but no exact solutions for the massesmπ andmη. They
can be numerically measured with lattice simulations, which
provide fully non-perturbative results. We present such sim-
ulation results, which we obtained withNf = 2 degener-
ate flavors of dynamical Wilson fermions, using the Hybrid
Monte Carlo algorithm. The renormalized fermion massm
was measured based on the PCAC relation. Part of these re-
sults were anticipated in Ref. [3].

2. “Meson” masses at finite temperature

Bosonization reduces the Schwinger model to a quantum me-
chanical system ofNf − 1 degrees of freedom; we call its
temporal sizeLt. In the case ofNf = 2 degenerate fla-
vors of massm, this method encodes the massesmπ and

mη in a Schr̈odinger-type equation for a periodic function
f(ϕ) = f(ϕ + 2π) [4],
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whereγ = 0.577 . . . is Euler’s constant,ε is the energy, and
f0 the ground state function. This system of equations can
be solved numerically [5], but the viability of its solution is
limited tom ¿ µ.

In an infinite spatial volume, for a small massm, the so-
lution to Eqs. (2) for the “pion” mass takes the form

mπ = 4e2γ

√
2
π

(m2g)1/3 = 2.1633 . . . (m2g)1/3. (3)

This is similar to another infinite volume prediction by
Smilga [6], mπ = 2.008 . . . (m2g)1/3. Figure 1 compares
the solution to Hosotani’s Eqs. (2) and the asymptotic Eq. (3)
to our simulation results on a lattice of sizeLt×L = 12×64,
atβ ≡ 1/g2 = 4 (in lattice units), as a function of the fermion
massm.

We observe a quasi-chiral regime, withm . 0.05, where
the predictions formπ based on Hosotani’s formula is man-
ifestly successful. There is another regime around0.25 .
m . 0.3 where the asymptotic formula formπ agrees with
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FIGURE 1. The massesmπ andmη, depending on the renormal-
ized fermion massm. We show results obtained from Hosotani’s
equations (2), from the asymptotic Eq. (3), from light-cone quanti-
zation [7], and from lattice simulations.

the lattice data, but that could be accidental, since the slopes
differ.

On the other hand, the results formη illustrate that none
of the predictions is accurate, except perhaps at tiny fermion
mass, where even the simple Eq. (1) for the chiral limit is
more successful (it yieldsmη = 0.3989 . . . ). In that case,
we include a predictions, which is given – up to re-scaling –
in Ref. [7], mη = (g/

√
π)

(
e0.19[

√
πm/g]0.993 +

√
2
)
, and

which is (accidentally) close the the lattice data aroundm ≈
0.23.

3. The “pion decay constant”

A frequent question about the multi-flavor Schwinger model
refers to the “pions” in the chiral limit,m = 0: they are mass-
less, but in contrast to QCD they cannot represent Nambu-
Goldstone bosons due to the Mermin-Wagner-Coleman The-
orem – although at smallm > 0 they behave much like quasi-
Nambu-Goldstone bosons. An explanation is givene.g. in
Ref. [8]: atm = mπ = 0 the “pions” do not interact.

Regarding the standard definition of the pion decay
constanti Fπ,

〈0|J5
µ(0)|π(p)〉 = ipµFπ , (4)

this property suggestsFπ(m = 0) = 0.
However, there are other ways to define an analogue to

Fπ in the 2-flavor Schwinger model, which lead to finite val-
ues. We are going to see that they are quite consistent.

To the best of our knowledge, there is only one non-trivial
prediction in the literature forFπ in the 2-flavor Schwinger
model [7]. It is based on a light-cone quantization approach
and it refers to the relation

〈0|∂µJ5
µ(0)|π(p)〉 = m2

πFπ , (5)

which we infer from Eq. (4), but this form allows forFπ(m =
0) > 0. Haradaet al. obtained a very mild dependence on
the (degenerate) fermion massm [7],

Fπ(m) = 0.394518(14) + 0.040(1)
m

g
. (6)

Note thatFπ is dimensionless in 2 dimensions.

3.1. Gell-Mann–Oakes–Renner relation

The Schwinger model analogue of the Gell-Mann–Oakes–
Renner relation reads [9]

F 2
π (m) =

2mΣ
m2

π

, (7)

whereΣ = −〈ψ̄ψ〉 is the chiral condensate. Substituting in-
finite volume and low mass expressions given in Ref. [10],

Σ =
1
π

(
e4γmµ2

4

)1/3

, mπ = (4e2γm2µ)1/3 , (8)

yields

Fπ =
1√
2π

= 0.3989 . . . . (9)

This result is constant inm andg, but form/g = 0 – or close
to it – we observe agreement with Eq. (6) up to1%. Ref. [10]
also provides formulae forΣ andmπ in two other regimes,
depending onm and the volume. Inserting either of them
consistently leads again to Eq. (9). One might also insert the
numerically measured values ofmπ andΣ, see Sec. 4; this
analysis is in progress.

3.2. The 2d Witten–Veneziano formula

In ’t Hooft’s formulation of large-Nc QCD, the Witten–
Veneziano formula [11] relates theη′-mass to the quenched

i Note that this “pion” does not actually decay.
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topological susceptibilityχq
t . In particular, it explains – as a

topological effect – why theη′-meson is so heavy compared
to the light meson octet. This relation involves the decay con-
stantFη′ , which – at largeNc – coincides withFπ.

According to Ref. [12], the analogous relation in the
multi-flavor Schwinger model is actually more robust. In the
chiral limit it reads

m2
η =

2Nf

F 2
η

χq
t . (10)

If we employ relation (1) along with the formula [13]

χq
t =

g2

4π
, (11)

we obtain

Fη =
1√
2π

. (12)

If we further assumeFη = Fπ, as in large-Nc QCD, we ar-
rive at exact agreement with Eq. (9).

Equation (11) is well tested as the continuum limit of var-
ious lattice actions [3], as requested by universality, see also
Refs. [14]. On the other hand, we are not aware of a sound
justification for settingFη = Fπ in the Schwinger model.

3.3. Theδ-regime

We proceed to yet another, independent way of introducing
an analogue toFπ. Here we refer to theδ-regime, which was
introduced in QCD by Leutwyler [15]. It is characterized by
a small spatial volume, but a large extent in Euclidean time,

V = L3 × Lt , L . 1
mπ

¿ Lt . (13)

As a finite-size effect, there is a residual pion massmR
π even

in the chiral limit,

mR
π = mπ(m = 0) > 0 . (14)

It was computed to leading order in Ref. [15], and to next-to-
leading order – in a general space-time dimensiond ≥ 3 – in
Ref. [16],

mR
π =

Nπ

2Θ
,

Θ = F 2
πLd−1

[
1 +

Nπ − 1
2πF 2

πLd−2

(
d− 1
d− 2

+ . . .

)]
. (15)

Nπ is the number of pions (or generally of Nambu-
Goldstone bosons), and if we consider the system as quasi-1d
quantum mechanics,Θ represents a moment of inertia.

FIGURE 2. Pion mass as a function of(m2g)1/3, in a volume
L × Lt = 10 × 64, at β = 4. As expected, the error bars shoot
up at tinym, but the data at moderatem guide a controlled chiral
extrapolation tomR

π .

TABLE I. Fπ obtained frommR
π in theδ-regime, for three different

β-values.

β Fπ

3 0.3925(11)

4 0.3930(14)

5 0.3962(13)

Equation (15) is not designed ford = 2, where there are
no Nambu-Goldstone bosons and the next-to-leading term is
singular. We try to apply it nevertheless, restricting the for-
mula to Leutwyler’s leading order, and interpretingNπ as
the number of “pions” in theNf -flavor Schwinger model,
Nπ = Nf − 1. Thus we conjecture forNf = 2

mR
π '

1
2F 2

πL
. (16)

If the behaviormR
π ∝ 1/L is confirmed, the proportion-

ality constant provides another way of introducingFπ, by
means of yet another analogy to QCD.

In order to probe this scenario, we measuredmπ at differ-
ent values ofm, and extrapolated to the chiral limit in order
to obtain simulation resultsmR

π (simulations directly at tiny
m are plagued by notorious technical problems). Figure 2
shows an example for such an extrapolation.

Repeating this extrapolation at different spatial sizesL
leads to good agreement with the conjectured proportionality
relationmR

π ∝ 1/L, as Fig. 3 shows for threeβ-values.
This allows us to employ Eq. (16) and extract the value of

Fπ – as defined in theδ-regime. The results atβ = 3, 4 and
5 are given in Table I.

They agree very well for various values ofβ. In addition,
they are very close to the result forFπ of Ref. [7], and to the
results that we obtained based on the 2d Gell-Mann-Oakes-
Renner relation, and on the Witten-Veneziano formula (if we
assumeFπ = Fη).
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FIGURE 3. Residual pion mass as function of1/L for β = 3, 4
and5. We observe good agreement with the conjectured relation
mR

π ∝ 1/L.

4. The chiral condensate

If we rely on the result (9), we can re-write the Gell-Mann–
Oakes–Renner relation in the form

Σ =
m2

π

4πm
, (17)

and use it to extract a value for the chiral condensateΣ from
the numerical solution of Eqs. (2).

Figure 4 compares results forΣ by a variety of ap-
proaches: the line linear inm/g is the tangent atm/g = 0,
which was correctly predicted in Ref. [10]. For our para-
meters, the corresponding conditions mean8 À 1 (which is

FIGURE 4. A multitude of results for the chiral condensateΣ.

plausible), andm/g ¿ 0.035. However, the data follow well
this straight line even up tom/g ≈ 0.035.

We add another small-mass predictions given in Ref. [10],
which refers to the regimem/g À 0.035, hence it should be
valid in most of this plot, but it does not agree well with the
lattice data (which are obtained with overlap fermions).

Next we show the line for a similar prediction from
Ref. [6], which is not in accurate agreement with the lattice
results either.

The solution of Eqs. (2), inserted in relation (17), works
better. It can be further improved if we replace the (some-
what troublesome) ansatzm2

η = m2
π + µ2 by a formula for

mη, which is derived in Ref. [7].
Unlike Figs. 1 to 3, here we obtain an almost contin-

uous line of lattice results, because we are using a single
set of quenched configurations which are re-weighted by the
fermion determinant to compute the chiral condensate for dif-
ferent fermion masses. As the ratiom/g grows, we see that
none of the theoretical predictions is truly successful, as we
already observed in the case of the “meson” masses. We
should add, however, that all these formulae refer to the con-
tinuum and an infinite spatial size, so the discrepancies could
be (in part) due to finite-size effects and lattice artifacts.

5. Summary and mysteries

We presented lattice simulation results for the “meson”
masses and the chiral condensate in the 2-flavor Schwinger
model, and confronted them with a multitude of theoretical
predictions. While some of them work well at small fermion
massm, none of them is truly successful at moderatem.

We also formulated the pion decay constantFπ in var-
ious ways, by referring to different analogies to QCD. For
three formulations we obtained consistent values, which are
compatible withFπ(m = 0) = 1/

√
2π, and with a previous

study in Ref. [7]. This is very satisfactory, but there remain
two open questions:

1. Why does the method based on the Witten–Veneziano
formula require the identificationFπ = Fη ?

Supl. Rev. Mex. Fis.3 020707
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2. How can this be reconciled with relation (4), which
suggestsFπ(m = 0) = 0 ?
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