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Application of the weak-binding relation with range correction
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The weak-binding relation is a useful tool to study the internal structure of hadrons from the observable quantities. We introduce the range
correction in the weak-binding relation for the system having a sizable magnitude of the effective range, and show that the applicability of
the weak-binding relation can be enlarged by the range correction. Thanks to the low-energy universality, the weak-binding relation can be
used to study the structure of shallow bound states in any systems with different length scales. We apply the weak-binding relation to actual
systems, including hadrons, hypernuclei, and atoms, and show the importance of the range correction.
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1. Introduction 2. Weak-binding relation

Consider the two-body system with the scattering lenrgth
having a shallow bound state with the binding eneljyThe

It has been generally considered that most of the Observe%omgozitenesé( !s defined as tr?e prob?bility of fi:dringbthe d
hadrons [1] consist ofg mesons orgq baryons, because of two-body scattering states in the wavefunction of the boun

the absence of the quantum number exotic states [2] and talate. These quantities follow the weak-binding relation [8, 9]

phenomenological success of the constituent quark models 29X R,
for the description of the excited hadron spectra. Since the ap=R { x o ( Ryp> } ; (1)
observation ofX (3872) by the Belle collaboration [3], how-

ever, there have been growing evidence that the exceptiongnere g — 1/1/2uB is the length scale by the binding en-
of gq/qqq classifications seem to exist. Such candidates argrgy with the reduced mass of the systemR,,, is the typ-
called exotic hadrons, and their internal structures are intengg| length scale of the two-body system, which will be dis-
sively studied theoretically and experimentally [4—6]. cussed in detail below. The weak-binding relati@hghows
that the compositeness can be determined from the observ-
The investigation of the internal structure of hadrons hasiblesay and R (or B) when the binding energy is so small
some similarity with the discussion in the 1960s to distin-that the correction terms @ (R,,,,/R) are negligible.
guish the elementary particles from the composite ones. In Let us now discuss the length scdtg,,. In Refs. [8, 9],
that context, Weinberg studied the structure of the deuterorihe relation L) is derived using the nonrelativistic effec-
showing that the deuteron is a composite system of the prdive field theory with contact interactions, and the correction
ton and neutron from the observables [7]. This idea has beeterms appear from the finite cutoff of the momentum inte-
re-evaluated recently, and the weak-binding relation has beggration. Because the inverse of the momentum cutoff corre-
used to study the compositeness of hadrons [8,9]. The wealsponds to the length scale where the contact interaction the-
binding relation is useful in hadron physics, particularly be-ory is applicable, it gives the interaction range of the micro-
cause the structure of hadrons can be determined from a fescopic theoryR;,; ~ 1/A. From this observation, the length
observables, without having the detailed knowledge of the inscale R,, was estimated in Refs. [8, 9] by the interaction
teraction potential. range as,

We have introduced the range correction in the weak- Riyp = Rin. @

binding relation by considering the effective range parameter,

and demonstrated that the applicability of the relation can b, Range correction

extended by the range correction [10, 11]. Here, we present

the application of the weak-binding relation to the actual sys\We notice that the interaction ran@g,; is not the only length
tems in which the range correction is important. Becausescale of the system. For instance, the effective rangetro-

the weak-binding relation is based on the low-energy univerduces the additional length scale in the scattering amplitude.
sality [12, 13], it is applicable to any system as long as thd_et us define the length scale.s as the largest length scale
scattering length is sufficiently larger than other length scale# the effective range expansion of the scattering amplitude.
in the system. We choose some examples of hadrons, nuclén usual casesR. is of the same order witl®;,;. This is
and atoms that satisfy this requirement, and study the strudtowever not always guaranteed, becailisg is essentially
ture of bound states using the weak-binding relation. different from R;,;. The cutoffA is introduced for the inte-
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gration of the off-shell momentum. In other wordg,,; ex-  study the structure of th& Q) dibaryon [15] and of th&)2
presses the length scale in the off-shell nature of the systendibaryon [16]. Weakly bound states can also be found in nu-
On the other handz.4 is defined through the effective range clear systems. Let us choose the hypertritdh near the
expansion of the on-shell scattering amplitude, and hence extA threshold. We further consider atomic systems. A well
presses the length scale of the on-shell nature of the systenknown example of shallow bound states is & dimer.
According to the discussion in Refs. [10, 11], we intro- Masses of hadrons are taken from PDG [1] except for the
duce the range correction in the weak-binding relation by theVQ and Q2 dibaryons where the lattice hadron masses are
redefinition of the length scal,y,, in the correction term as used, and the mass of théle atom is taken from Ref. [17]
R {Rine, Rett} 3) for the calculation of the reduceq mass pf the system.
typ = HAX U nt Leff 1 Comments on the Coulomb interaction and the decay ef-
namely, the larger one amorg,; and R.g. In fact, using fects are in order. Most of the two-body systems considered
the effective range model [14], we explicitly construct a sys-are free from the Coulomb interaction, because they include
tem which does not follow the weak-binding relation with at least one electrically neutral particle. For tN& system,
the correction term2), but is consistent only with the im- we can choose the neutrento avoid the Coulomb effect.
proved correction terni3j [10, 11]. We also show that the While the Coulomb interaction is unavoidable in thg sys-
range correction should be introduced in the correction termtem, here we use the values of the scattering parameters ob-
by analyzing the origin of the effective range [11]. tained only by the strong interaction, and study the property
To examine the applicability of the weak-binding rela- of the dibaryon in the absence of the Coulomb interaction.
tions, we perform numerical calculations with the effectiveNote also that th&)2 dibaryon is shown to remain bound
range model with a finite cutoff [14]. In this model, the ex- even if the Coulomb repulsion is included [16].
act value of the compositeness of the bound state is fixed as While the weak-binding relatiorilj should be applied
X = 1 because there is no channel coupling to other state$o stable bound states{ (3872) and theN(} dibaryon are
In addition, the finite cutoff\ provides the scale of the inter- the unstable states which decays via the strong interaction
action rangeR;,., and the values of the scattering length  to the lower energy coupled channels. The experimental
and the effective range can be arbitrarily chosen by adjust- decay width of X'(3872) is experimentally determined as
ing the bare parameters. Hence, we can examine the appli-19 & 0.21 MeV [1] which is significantly smaller than the
cability of the weak-binding relation by varying thig,; and  typical decay width of the excited hadron®((100) MeV).
Reg = |r.| in the model. We find that the improved relation The NQ dibaryon has/”” = 2% and decays into tha= and
with the correction term3) has larger applicability than that 3= channels inf wave. In fact, the decay width is obtained as
with the previous relation with Eq2j [10]. ~ 1 MeV by the explicit calculation in the meson-exchange
model [18]. We thus ignore the decay effects of KiE3872)
and theN Q) dibaryon, and apply the weak-binding relation
for the stable bound state®)(
4.1. Bound states and two-body systems Next, we summarize the scattering length and the
effective ranger. of the two-body system, and the bind-
We now apply the weak-binding relations to the bounding energy of the bound stat8 shown in Table I. For the
states summarized in Table |. As a representative exandeuterong, andr. of thepn(3S;) scattering, together with
ple of experimentally established states, we consider théhe deuteron binding enerdy are taken from the CD-Bonn
deuteron ¢) near the threshold of the proton-neutrgm)  potential [19]. TheD®D*° scattering parameters and the
system. Among recently observed exotic hadron candidatebjnding energy ofX (3872) are taken from Ref. [20] based
we chooseX (3872) near theD® D*0 threshold (in this no- on the Flaté analysis by the LHCb collaboration [21] (note,
tation, linear combination with the charge conjugate pair ishowever, the ambiguity of the determinationrefdiscussed
implicit). In recent lattice QCD studies, existence of a shal-in Ref. [22]). The parametergy,r. and B for the NQ)
low bound state is predicted in several systems. Here wandQ(2 dibaryons are taken from the lattice QCD analysis

4. Application

TABLE |. Properties of the bound states near the threshold of the two-body system. The scatteringJlethgtieffective range., and the
interaction rangeR;,: of the two-body system are shown. The binding energy of the bound Btaeneasured from the threshold of the
two-body system in this table. B.R. stands for the Bohr radius.

Bound state Two-body system ao Te Rint B
d pn(3S1) 5.42 fm 1.75fm 1.43 fm 2.22 MeV
X (3872) D°D*0 28.5fm —5.34fm 1.43 fm 18 keV
NS dibaryon nQ(°S2) 5.30 fm 1.26 fm 0.676 fm 1.54 MeV
Q0 dibaryon Q0Q(*So) 4.6 fm 1.27 fm 0.949 fm 1.6 MeV
3H dA 16.8 fm 2.3fm 4.31 fm 0.13 MeV
“He dimer ‘He*He 189 B.R. 13.8B.R. 10.2 B.R. 1.30 mK
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[15,16]. In both cases, r. and B are determined by solv-
ing the Schdvdinger equation with the lattice hadron massesTasLE II. Estimation of the compositeness of bound stateby
which are slightly heavier than the physical oned{ = 955 the weak-binding relation wittR,, = Rt (second column) and
MeV andmiat = 1712 MeV). For theQ(2 dibaryon, we use  Reyp = Rint (third column). The fourth column shows the results
the binding energyB obtained without Coulomb potential, Py the improved correction tern8) together with the constraint
as discussed above. The hypertriton binding energy fronffom the definitiond < X' < 1.

the Ad threshold (separation energy inal) is taken from Bound state  Riyp = Rer  Riyp = Rint This work

the emulsion data [2_3]. _We adopt the scz_attermg parameters d 1687319 T 168t 0738 < X < 1

ao, re from the effective field theory analysis [24]. As for the X i
4He dimer, we useg, 7., B shown in Ref. [25] which are

X(3872)  0.743703%2  0.743750575 0530 < X < 1

obtained by solving the LM2M2 potential. NQdibaryon 1407055, 1407055 0.801 <X <1
Finally, we estimate the interaction length scélg; in QQdibaryon 15675757, 1567535, 0791 < X <1
each system. In contrast t@,r. and B, the interaction iH 1357055 13570280 0.745< X <1

range is not a direct observable. Itis therefore needed to esti- 4pje gimer  1.0819179  1.08%9122  0.926 < X < 1
mateR;,; from the longest possible length scale by consider- ' '

ing the underlying interaction mechanisms. For the deuteroge compositeness of the bound staténcluding the uncer-
(d) and X (3872), the pion exchange is possible in the corre-ajnties with the typical length scalyy,, = Reg = |r.| and
sponding two-body systems. Because the pion is the Ilghteslfztyp = Ry, separately. The previous weak-binding relation
hadron which can be exchanged, we estimate the interactiqjth £q. [2) gives the results in the columRy, = Rine,
rangeRin; by the pion Compton wavelengtfi,, ~ 1/mx.  while for the improved one with Eq3), the results with

In Ref. [15]é theNQ .potent|al is par_ametrlzedlpty Gaussian Riyp = Reg are adopted except fdH. We find that the
+(Yukawa)* form with the lattice pion mass:* = 146 |ower bound of the compositeness of tN€! dibaryon is 1.04
MeV for the Yukawa term. Because this potential is expo-for R, = Ryy. This contradicts with the definition of the
nentially suppressed beyond the distangemr", we esti-  compositeness of the bound statec X < 1. Namely, the
mateRin, ~ 1/2mz" = 0.676 fm (the range of the Gaussian previous weak-binding relatiolR,,, = Rin) cannot be used
partis~ 0.1 fm). As for thedA system, we estimate the for the N} dibaryon. On the other hand, the lower bound is
interaction rangek;,; by the radius of the deuteron. The in- 5 gg1 WithRyy,, = Rint, and therefore the improved relation

teraction range of théHe dimer is estimated by the van der iy Riyp = Reg provides the compositeness consistent
Waals lengthRin; ~ lvaw = (mCs/h?)'/* with the coeffi-  \yith the definition.

cientsCs calculated in Ref. [26]. Taking into account the definition of the compositeness
0 < X < 1, the results of the weak-binding relation with the
4.2. Evaluation of the compositeness improved correction ternB8j are shown in the fourth column

of Table Il. The results show that the composite component
In Table I, we find that the scattering length is the largestdominates the internal structure of the bound states studied
length scaleqy > |re|, Rin¢ in each system. This justifies here. In particular, more than 90% of thHe dimer consists
the use of the weak-binding relation to study the compositeof the composite component. On the other hand, while the
ness of these bound states, even though the length scale @imposite dominance holds fdf (3872), the lower bound
the strong interaction (fm) is completely different from that around 0.5 indicates the nonnegligible mixing of the compo-
in the atomic systemA). In addition, except for the hyper- nents other than thB° D* one.
triton, the magnitude of the effective range is larger than the
estimated ir?tera(?tion range,.,t. - o 5. Summary

Comparing with the applicability of the weak-binding re-
lations with respect tdR.¢ and R;,,¢, we find thatX (3872)  Based on the discussion of the length scales, we propose a
lies in the region where only the improved weak-binding re-range correction in the weak-binding relation by modifying
lation with Eq. B) can be applied. Also, th&/Q2 dibaryon  the correction term. From the hadrons, nuclei, and atomic
lies close to the boundary of the applicability of the previoussystems, we list the weakly bound states with the sizable ef-
relation with Eq./2). This implies that the range correction is fective range. The compositeness of these bound states is
particularly important for these cases, and the weak-bindingjuantitatively evaluated by using the weak-binding relations.
relation with the previous correction terr)(might fail to It is shown that the range correction of the weak-binding re-
estimate the compositeness. lation is necessary for the meaningful estimation of the com-
Following the uncertainty estimation procedure proposedositeness of theéVQ) dibaryon. These results indicate the

in Ref. [9], we apply the weak-binding relations to the boundimportance of the range correction for the study of the inter-
states in Table I. In Table I, we show the estimated values ofal structure of hadrons.
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