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Application of the weak-binding relation with range correction
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The weak-binding relation is a useful tool to study the internal structure of hadrons from the observable quantities. We introduce the range
correction in the weak-binding relation for the system having a sizable magnitude of the effective range, and show that the applicability of
the weak-binding relation can be enlarged by the range correction. Thanks to the low-energy universality, the weak-binding relation can be
used to study the structure of shallow bound states in any systems with different length scales. We apply the weak-binding relation to actual
systems, including hadrons, hypernuclei, and atoms, and show the importance of the range correction.
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1. Introduction

It has been generally considered that most of the observed
hadrons [1] consist of̄qq mesons orqqq baryons, because of
the absence of the quantum number exotic states [2] and the
phenomenological success of the constituent quark models
for the description of the excited hadron spectra. Since the
observation ofX(3872) by the Belle collaboration [3], how-
ever, there have been growing evidence that the exceptions
of q̄q/qqq classifications seem to exist. Such candidates are
called exotic hadrons, and their internal structures are inten-
sively studied theoretically and experimentally [4–6].

The investigation of the internal structure of hadrons has
some similarity with the discussion in the 1960s to distin-
guish the elementary particles from the composite ones. In
that context, Weinberg studied the structure of the deuteron,
showing that the deuteron is a composite system of the pro-
ton and neutron from the observables [7]. This idea has been
re-evaluated recently, and the weak-binding relation has been
used to study the compositeness of hadrons [8,9]. The weak-
binding relation is useful in hadron physics, particularly be-
cause the structure of hadrons can be determined from a few
observables, without having the detailed knowledge of the in-
teraction potential.

We have introduced the range correction in the weak-
binding relation by considering the effective range parameter,
and demonstrated that the applicability of the relation can be
extended by the range correction [10, 11]. Here, we present
the application of the weak-binding relation to the actual sys-
tems in which the range correction is important. Because
the weak-binding relation is based on the low-energy univer-
sality [12, 13], it is applicable to any system as long as the
scattering length is sufficiently larger than other length scales
in the system. We choose some examples of hadrons, nuclei,
and atoms that satisfy this requirement, and study the struc-
ture of bound states using the weak-binding relation.

2. Weak-binding relation

Consider the two-body system with the scattering lengtha0

having a shallow bound state with the binding energyB. The
compositenessX is defined as the probability of finding the
two-body scattering states in the wavefunction of the bound
state. These quantities follow the weak-binding relation [8,9]

a0 = R

{
2X

1 + X
+O

(
Rtyp

R

)}
, (1)

whereR = 1/
√

2µB is the length scale by the binding en-
ergy with the reduced mass of the systemµ. Rtyp is the typ-
ical length scale of the two-body system, which will be dis-
cussed in detail below. The weak-binding relation (1) shows
that the compositenessX can be determined from the observ-
ablesa0 andR (or B) when the binding energy is so small
that the correction terms ofO (Rtyp/R) are negligible.

Let us now discuss the length scaleRtyp. In Refs. [8, 9],
the relation (1) is derived using the nonrelativistic effec-
tive field theory with contact interactions, and the correction
terms appear from the finite cutoffΛ of the momentum inte-
gration. Because the inverse of the momentum cutoff corre-
sponds to the length scale where the contact interaction the-
ory is applicable, it gives the interaction range of the micro-
scopic theory,Rint ∼ 1/Λ. From this observation, the length
scaleRtyp was estimated in Refs. [8, 9] by the interaction
range as,

Rtyp = Rint. (2)

3. Range correction

We notice that the interaction rangeRint is not the only length
scale of the system. For instance, the effective rangere intro-
duces the additional length scale in the scattering amplitude.
Let us define the length scaleReff as the largest length scale
in the effective range expansion of the scattering amplitude.
In usual cases,Reff is of the same order withRint. This is
however not always guaranteed, becauseReff is essentially
different fromRint. The cutoffΛ is introduced for the inte-
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gration of the off-shell momentum. In other words,Rint ex-
presses the length scale in the off-shell nature of the system.
On the other hand,Reff is defined through the effective range
expansion of the on-shell scattering amplitude, and hence ex-
presses the length scale of the on-shell nature of the system.

According to the discussion in Refs. [10, 11], we intro-
duce the range correction in the weak-binding relation by the
redefinition of the length scaleRtyp in the correction term as

Rtyp = max {Rint, Reff} , (3)

namely, the larger one amongRint andReff . In fact, using
the effective range model [14], we explicitly construct a sys-
tem which does not follow the weak-binding relation with
the correction term (2), but is consistent only with the im-
proved correction term (3) [10, 11]. We also show that the
range correction should be introduced in the correction term,
by analyzing the origin of the effective range [11].

To examine the applicability of the weak-binding rela-
tions, we perform numerical calculations with the effective
range model with a finite cutoff [14]. In this model, the ex-
act value of the compositeness of the bound state is fixed as
X = 1 because there is no channel coupling to other states.
In addition, the finite cutoffΛ provides the scale of the inter-
action rangeRint, and the values of the scattering lengtha0

and the effective rangere can be arbitrarily chosen by adjust-
ing the bare parameters. Hence, we can examine the appli-
cability of the weak-binding relation by varying theRint and
Reff = |re| in the model. We find that the improved relation
with the correction term (3) has larger applicability than that
with the previous relation with Eq. (2) [10].

4. Application

4.1. Bound states and two-body systems

We now apply the weak-binding relations to the bound
states summarized in Table I. As a representative exam-
ple of experimentally established states, we consider the
deuteron (d) near the threshold of the proton-neutron (pn)
system. Among recently observed exotic hadron candidates,
we chooseX(3872) near theD0D̄∗0 threshold (in this no-
tation, linear combination with the charge conjugate pair is
implicit). In recent lattice QCD studies, existence of a shal-
low bound state is predicted in several systems. Here we

study the structure of theNΩ dibaryon [15] and of theΩΩ
dibaryon [16]. Weakly bound states can also be found in nu-
clear systems. Let us choose the hypertriton3

ΛH near the
dΛ threshold. We further consider atomic systems. A well
known example of shallow bound states is the4He dimer.
Masses of hadrons are taken from PDG [1] except for the
NΩ andΩΩ dibaryons where the lattice hadron masses are
used, and the mass of the4He atom is taken from Ref. [17]
for the calculation of the reduced mass of the system.

Comments on the Coulomb interaction and the decay ef-
fects are in order. Most of the two-body systems considered
are free from the Coulomb interaction, because they include
at least one electrically neutral particle. For theNΩ system,
we can choose the neutronn to avoid the Coulomb effect.
While the Coulomb interaction is unavoidable in theΩΩ sys-
tem, here we use the values of the scattering parameters ob-
tained only by the strong interaction, and study the property
of the dibaryon in the absence of the Coulomb interaction.
Note also that theΩΩ dibaryon is shown to remain bound
even if the Coulomb repulsion is included [16].

While the weak-binding relation (1) should be applied
to stable bound states,X(3872) and theNΩ dibaryon are
the unstable states which decays via the strong interaction
to the lower energy coupled channels. The experimental
decay width ofX(3872) is experimentally determined as
1.19 ± 0.21 MeV [1] which is significantly smaller than the
typical decay width of the excited hadrons (O(100) MeV).
TheNΩ dibaryon hasJP = 2+ and decays into theΛΞ and
ΣΞ channels ind wave. In fact, the decay width is obtained as
∼ 1 MeV by the explicit calculation in the meson-exchange
model [18]. We thus ignore the decay effects of theX(3872)
and theNΩ dibaryon, and apply the weak-binding relation
for the stable bound states (1).

Next, we summarize the scattering lengtha0 and the
effective rangere of the two-body system, and the bind-
ing energy of the bound stateB shown in Table I. For the
deuteron,a0 andre of thepn(3S1) scattering, together with
the deuteron binding energyB are taken from the CD-Bonn
potential [19]. TheD0D̄∗0 scattering parameters and the
binding energy ofX(3872) are taken from Ref. [20] based
on the Flatt́e analysis by the LHCb collaboration [21] (note,
however, the ambiguity of the determination ofre discussed
in Ref. [22]). The parametersa0, re and B for the NΩ
andΩΩ dibaryons are taken from the lattice QCD analysis

TABLE I. Properties of the bound states near the threshold of the two-body system. The scattering lengtha0, the effective rangere, and the
interaction rangeRint of the two-body system are shown. The binding energy of the bound stateB is measured from the threshold of the
two-body system in this table. B.R. stands for the Bohr radius.

Bound state Two-body system a0 re Rint B

d pn(3S1) 5.42 fm 1.75 fm 1.43 fm 2.22 MeV

X(3872) D0D̄∗0 28.5 fm −5.34 fm 1.43 fm 18 keV

NΩ dibaryon nΩ(5S2) 5.30 fm 1.26 fm 0.676 fm 1.54 MeV

ΩΩ dibaryon ΩΩ(1S0) 4.6 fm 1.27 fm 0.949 fm 1.6 MeV
3
ΛH dΛ 16.8 fm 2.3 fm 4.31 fm 0.13 MeV

4He dimer 4He4He 189 B.R. 13.8 B.R. 10.2 B.R. 1.30 mK
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[15,16]. In both cases,a0, re andB are determined by solv-
ing the Schr̈odinger equation with the lattice hadron masses
which are slightly heavier than the physical ones (mlat

N = 955
MeV andmlat

Ω = 1712 MeV). For theΩΩ dibaryon, we use
the binding energyB obtained without Coulomb potential,
as discussed above. The hypertriton binding energy from
the Λd threshold (separation energy intoΛd) is taken from
the emulsion data [23]. We adopt the scattering parameters
a0, re from the effective field theory analysis [24]. As for the
4He dimer, we usea0, re, B shown in Ref. [25] which are
obtained by solving the LM2M2 potential.

Finally, we estimate the interaction length scaleRint in
each system. In contrast toa0, re and B, the interaction
range is not a direct observable. It is therefore needed to esti-
mateRint from the longest possible length scale by consider-
ing the underlying interaction mechanisms. For the deuteron
(d) andX(3872), the pion exchange is possible in the corre-
sponding two-body systems. Because the pion is the lightest
hadron which can be exchanged, we estimate the interaction
rangeRint by the pion Compton wavelengthRint ∼ 1/mπ.
In Ref. [15], theNΩ potential is parametrized by Gaussian
+(Yukawa)2 form with the lattice pion massmlat

π = 146
MeV for the Yukawa term. Because this potential is expo-
nentially suppressed beyond the distance1/2mlat

π , we esti-
mateRint ∼ 1/2mlat

π = 0.676 fm (the range of the Gaussian
part is∼ 0.1 fm). As for thedΛ system, we estimate the
interaction rangeRint by the radius of the deuteron. The in-
teraction range of the4He dimer is estimated by the van der
Waals lengthRint ∼ lvdW = (mC6/~2)1/4 with the coeffi-
cientsC6 calculated in Ref. [26].

4.2. Evaluation of the compositeness

In Table I, we find that the scattering length is the largest
length scale,a0 > |re|, Rint in each system. This justifies
the use of the weak-binding relation to study the composite-
ness of these bound states, even though the length scale of
the strong interaction (fm) is completely different from that
in the atomic system (̊A). In addition, except for the hyper-
triton, the magnitude of the effective range is larger than the
estimated interaction rangeRint.

Comparing with the applicability of the weak-binding re-
lations with respect toReff andRint, we find thatX(3872)
lies in the region where only the improved weak-binding re-
lation with Eq. (3) can be applied. Also, theNΩ dibaryon
lies close to the boundary of the applicability of the previous
relation with Eq. (2). This implies that the range correction is
particularly important for these cases, and the weak-binding
relation with the previous correction term (2) might fail to
estimate the compositeness.

Following the uncertainty estimation procedure proposed
in Ref. [9], we apply the weak-binding relations to the bound
states in Table I. In Table II, we show the estimated values of

TABLE II. Estimation of the compositeness of bound statesX by
the weak-binding relation withRtyp = Reff (second column) and
Rtyp = Rint (third column). The fourth column shows the results
by the improved correction term (3) together with the constraint
from the definition0 ≤ X ≤ 1.

Bound state Rtyp = Reff Rtyp = Rint This work

d 1.68+3.19
−0.943 1.68+2.14

−0.823 0.738 ≤ X ≤ 1

X(3872) 0.743+0.282
−0.213 0.743+0.0675

−0.0627 0.530 ≤ X ≤ 1

NΩ dibaryon 1.40+1.20
−0.600 1.40+0.523

−0.364 0.801 ≤ X ≤ 1

ΩΩ dibaryon 1.56+1.95
−0.773 1.56+1.22

−0.626 0.791 ≤ X ≤ 1
3
ΛH 1.35+0.531

−0.366 1.35+1.241
−0.603 0.745 ≤ X ≤ 1

4He dimer 1.08+0.179
−0.152 1.08+0.129

−0.115 0.926 ≤ X ≤ 1

the compositeness of the bound stateX including the uncer-
tainties with the typical length scaleRtyp = Reff = |re| and
Rtyp = Rint, separately. The previous weak-binding relation
with Eq. (2) gives the results in the columnRtyp = Rint,
while for the improved one with Eq. (3), the results with
Rtyp = Reff are adopted except for3ΛH. We find that the
lower bound of the compositeness of theNΩ dibaryon is 1.04
for Rtyp = Rint. This contradicts with the definition of the
compositeness of the bound state0 ≤ X ≤ 1. Namely, the
previous weak-binding relation (Rtyp = Rint) cannot be used
for theNΩ dibaryon. On the other hand, the lower bound is
0.801 withRtyp = Rint, and therefore the improved relation
with Rtyp = Reff provides the compositenessX consistent
with the definition.

Taking into account the definition of the compositeness
0 ≤ X ≤ 1, the results of the weak-binding relation with the
improved correction term (3) are shown in the fourth column
of Table II. The results show that the composite component
dominates the internal structure of the bound states studied
here. In particular, more than 90% of the4He dimer consists
of the composite component. On the other hand, while the
composite dominance holds forX(3872), the lower bound
around 0.5 indicates the nonnegligible mixing of the compo-
nents other than theD0D̄∗0 one.

5. Summary

Based on the discussion of the length scales, we propose a
range correction in the weak-binding relation by modifying
the correction term. From the hadrons, nuclei, and atomic
systems, we list the weakly bound states with the sizable ef-
fective range. The compositeness of these bound states is
quantitatively evaluated by using the weak-binding relations.
It is shown that the range correction of the weak-binding re-
lation is necessary for the meaningful estimation of the com-
positeness of theNΩ dibaryon. These results indicate the
importance of the range correction for the study of the inter-
nal structure of hadrons.
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