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Unveiling the pole structure of S-matrix using deep learning
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Particle scattering is a powerful tool to unveil the nature of various subatomic phenomena. The key quantity is the scattering amplitude
whose analytic structure carries the information of the quantum states. In this work, we demonstrate our first step attempt to extract the
pole configuration of inelastic scattering using the deep learning method. Among various problems, motivated by the recent new hadron
phenomena, we develop a curriculum learning method of deep neural network to analyze coupled channel scattering problems. We show
how effectively the method works to extract the pole configuration associated with resonances in theπN scattering.
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1. Introduction

The past decades saw the proliferation of new peak structures
in hadronic scattering cross-sections with properties eluding
the conventional quark model [1–6]. Specifically, most of
these peaks appear close to some two-hadron threshold, lead-
ing to a variety of possible interpretations of its nature. Some
enhancements are claimed to be candidates of the conven-
tionalqqq or qq̄ resonant excitation [7,8], or one of the novels
multi-quark states like pentaquarks or tetraquarks [9,10]. The
proximity of peaks to the two-hadron threshold suggests that
the coupled channel interaction in theS-wave of two hadrons
plays a significant role [11]. For instance, the observed peaks
may be generated by the two-hadron interaction, which may
lead to either a hadronic molecule or a virtual state [12–14].
On the other hand, peaks can also be interpreted as kinemati-
cal threshold effects where the presence of a dynamical phys-
ical state is not relevant. These kinematical effects can be
attributed to either the two-body threshold cusp or the three-
body triangle singularity [15–17]. Identifying which of the
observed near-threshold peaks correspond to resonances is
crucial to our ongoing quest to understand the mechanism of
color confinement.

For the model-dependent treatment, the pole position is
obtained by fitting the parameters of a model to the experi-
mental data. In a coupled-channel analysis, the model con-
tains some channel coupling parameters that can be switched

off. This model’s feature allows us to determine the nature
of enhancement by tracing the origin of the pole in the zero-
coupling limit [18–21]. Alternatively, a model-independent
analysis is possible by using the effective range expansion
around some threshold of interest. Specifically, a pole-
counting method was proposed in Refs. [22, 23] which re-
lates the number of near-threshold poles on different unphys-
ical sheets to the nature of enhancement. It was later shown
in Ref. [24] that the pole-counting method is consistent with
Weinberg’s compositeness criterion [25]. It follows that the
identification of pole configuration, which we define to be the
number of poles in each sheet associated with the enhance-
ment, is a crucial starting point in a model-independent anal-
ysis of near-threshold phenomena. The task is now reduced
to a classification problem. For this purpose, the deep learn-
ing approach is one of the best ways to be employed. Here,
we show how to extract the pole configuration of the S-matrix
using deep learning.

Deep learning is a versatile tool used in the physical sci-
ences [26]. The availability of a large dataset is essential to
improve the performance of a deep neural network (DNN)
model. Unlike in other fields, experimental data in hadron
physics is limited and with statistical uncertainties. It is,
therefore, imperative to introduce a general method to gen-
erate the teaching dataset containing a large number of sim-
ulated amplitudes with known pole configurations. Here, the
simulated amplitudes are mock data generated from the gen-
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eral properties of the S-matrix. The generation of teaching
dataset is followed by the construction and improvement of
the DNN model, which is then applied to the experimental
data. We have demonstrated in Ref. [27] the feasibility of
using deep learning in the analysis of single-channel scatter-
ing where a generic S-matrix is used to generate the teaching
dataset. Here, we extend our method to the coupled-channel
case.

In this paper, we present a deep learning approach to
study the coupled-channel scattering with near-threshold en-
hancement. We design a classification DNN that determines
the S-matrix pole configuration when an input partial-wave
amplitude is given. In doing so, we introduce a general S-
matrix, with controlled Riemann sheet poles, to generate the
teaching dataset. Our present method achieves two signif-
icant improvements - the inclusion of energy resolution in
the DNN design and the utilization of amplitude’s error bars
in the final DNN inference. The simulated energy resolu-
tion, which is done by using random energy points, intro-
duces noise in the teaching dataset. We find that the presence
of noise requires the curriculum method to initiate the learn-
ing process. As a concrete example, we treat the GW-SAID
elasticπN scattering analysis in Ref. [28–30] as the experi-
mental data. It must be emphasized that our method can only
determine the Riemann sheets where the poles are located,
but the method does not tell their positions. Our approach
can be extended to general resonance analysis, not only in
hadron physics but also in nuclear or atomic physics, where
low-energy scattering reveals interesting universal features.

2. S-matrix poles

Let us consider the two-hadron scattering with two channels
where the relative momentum of theith channel (i = 1, 2) is
pi, with reduced massµi, and threshold atTi. Specifically,
we set theπN system as channel 1 and theηN as channel
2. Aside from theπN and ηN thresholds, there are also
the KΛ and KΣ as shown in Fig. 1. We justify the two-
channel analysis as follows. On the one hand, there is no
significant threshold effect with the opening of theKΛ chan-
nel and, thus, can be ignored [31]. On the other hand, we can
avoid the possible effect ofKΣ channel [32] by not going
beyond theKΣ threshold. Hence, it suffices to consider two
channels for the present study.

Now, the non-relativistic relation between the scattering
energyE and channel momentumpi is

E =
p2

i

2µi
+ Ti. (1)

The non-relativistic treatment will suffice in our present pur-
pose since we restrict our analysis around the second thresh-
old. The smooth variation of the lower channel can be ap-
proximated by Eq. (1) wherep1 serves as a label toE for
the lower channel. Using analyticity, unitarity, and hermitic-
ity in the relevant energy region [33, 34], the lower channel
S-matrix takes the form

FIGURE 1. The elasticπN amplitude of the GW-SAID in
Ref. [28]. The two-hadron thresholds are shown as vertical thin
lines. Only theπN andηN channels are considered in the present
study. TheKΛ andKΣ thresholds are shown for reference pur-
poses only.

S11(p1, p2) =
D(−p1, p2)
D(p1, p2)

, (2)

with the scattering amplitudeT11(p1, p2) obtained viaS11 =
1 + 2iT11. The functionD(p1, p2) contains all the pole sin-
gularities ofS11(p1, p2).

In the generation of simulated amplitudes, we have to
consider the general case of more than one pole. To do this,
we expressD(p1, p2) as a product of independentDj(p1, p2)
such thatDj(p1, p2) = 0 is satisfied by one assignedjth
pole,E = E

(j)
pole, on a chosen Riemann sheet. Here, the as-

signed poleE(j)
pole can be one of the poles related to the ob-

served peaks in the scattering region. The form ofDj(p1, p2)
can be deduced by hermiticity, where the conjugate pair of
energy poles is implied. That is, ifE = E

(j)
pole is a solution

to Dj(p1, p2) = 0 on one Riemann sheet, so is its complex
conjugateE = E

(j)∗
pole on the same sheet. Thus, we can write

Dj(p1, p2) in a form where the conjugate partner is explicitly
included, and the Riemann sheet is transparently shown:

Dj(p1, p2) =
[
(p1 − iβ

(j)
1 )2 − α

(j)2
1

]

+ λ
[
(p2 − iβ

(j)
2 )2 − α

(j)2
2

]
, (3)

where the absolute values ofα
(j)
i andβ

(j)
i for i = 1, 2 are de-

termined by the assignedjth energy poleE = E
(j)
pole through

Eq. (1). The Riemann sheet ofE(j)
pole can be chosen arbitrar-

ily by choosing the signs ofβ(j)
1 andβ

(j)
2 . The parameter

λ is chosen to control the other set of conjugate solutions to
Dj(p1, p2) = 0 (called the shadow pole) so that they will
not appear on the physical sheet and will remain far from the
relevant scattering region. This ensures thatE

(j)
pole is the only

nearby pole produced byDj(p1, p2). For a more detailed dis-
cussion of shadow pole related to Eq. (3), we refer the reader
to Ref. [35].
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FIGURE 2. Schematic operation of our DNN model where (a) is one of the simulated amplitudes (b) is the DNN model and (c) is one of the
representative output pole configuration. For (b),©s are for input nodes,⊗s are for bias nodes®s are for hidden layer nodes and•s are for
output nodes. The dashed lines in (c) are connected to each other.

3. Development of DNN

The parametrization that we have introduced allows us to
generate simulated amplitudes on arbitrary energy points.
However, it is always the case that the experimental data has
energy resolution and error bars for the amplitude. The res-
olution can be accommodated in the design of DNN as fol-
lows. We start by determining the region of interest, which in
this study is fromπN to theKΣ thresholds. The GW-SAID
data has 37 points within the mentioned region, so we split
theπN -KΣ into 37 bins. Anticipating that the energy points
may not be equally spaced, we randomly select a represen-
tative energy point in each bin using a uniform probability
distribution. Then, we calculate the amplitude on the ran-
domly picked energy points. Proper labels can be assigned to
each simulated amplitude because we have complete control
of the poles. The amplitude’s error bars are utilized in the last
stage of deep learning analysis.

The relevant structures in the GW-SAID data are seen
only on some finite interval of the scattering region, as shown
in Fig. 1. It is, therefore, practical to count only the poles
that are within the rangeT2 − 50 ≤ ReEpole ≤ T2 + 200,
below the real axis(−200 ≤ ImEpole < 0) of the [bt] or
[bb] and poles above real axis (0 < ImEpole ≤ 200) of the
[tb]. Here, the energy units are in MeV. We do not have to
count the conjugate poles because they do not correspond to
different independent states. Also, remote background poles
are randomly added, by inserting extraD` 6=j(p1, p2) factor
in D(p1, p2), but are also not counted. In addition, we re-
strict the maximum number of nearby poles in any unphysical
sheet to four since there are only two prominent structures in
theπN scattering amplitude. The constraint gives us a total
of 35 possible configurations ranging from no nearby poles to
at least one pole in each unphysical Riemann sheet. We ran-
domly generate poles inside the counting region to produce
an equal number of simulated amplitudes per configuration,
giving us a total of around1.8×106 simulated amplitudes for
the teaching dataset. An independent3.5 × 104 set of simu-

lated amplitudes is produced to measure the performance of
the DNN and to check for possible overfitting.

Figure 2 shows the schematic diagram of our DNN
model’s operation. Given an input amplitude in Fig. 2a), our
DNN will take the random energy points and the amplitude’s
real and imaginary parts as the37×3 input-node values. The
output nodes are configured to match the total number of pos-
sible pole configurations. If the weights and biases (lines in
Fig. 2b)) are already optimized, then the DNN can give its
output, which is schematically represented in Fig. 2c). It must
be emphasized that our DNN can only count the number of
poles in each Riemann sheet and not give the exact pole po-
sitions. Now, the performance of our DNN model can be
improved in a training loop. Here, all the simulated ampli-
tudes are fed in a forward pass to estimate the cost function,
and some variant of stochastic gradient descent is used to do
the backpropagation. We trained six different architectures
and found that none of them learn the classification problem.
In particular, after around 500 epochs, the training accuracies
are only around2.86%, which is the accuracy if one makes a
random guess out of the 35 possibilities. Our preliminary nu-
merical experiment suggests that our classification problem
is too complex for our DNN models, perhaps due to the noise
present in the dataset. Thus, to initiate the learning process,
we use the curriculum method.

The basic idea of the curriculum method is to recognize
the easy examples of a complex dataset and use them for ini-
tial training of the model [36]. For most classification pro-

TABLE I. Chosen DNN Architecture.

Layer Number of nodes Activation Function

Input 111+1

1st 200+1 ReLU

2nd 200+1 ReLU

3rd 200+1 ReLU

Output 35 Softmax
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blems, an additional procedure is expected since one has to
identify which part of the dataset is less complicated than
the other [37–39]. For our case, an additional procedure is
needed. We choose the at-most-1-pole configuration as the
easy dataset and slowly add multi-pole classifications until
all the datasets are introduced. We measure our models’ per-
formance on the easy classification set and then devote our
computing resources to the best-performing model for the
complete curriculum learning [35]. We have chosen the DNN
model with specifications given in Table I.

Except for the easy dataset, one new classification is
added every after 100 epochs. We also vary the mini-batch
size in each epoch as we saw fit. The smaller mini-batch size
is optimal in the early part of the new-classification-epoch
while the large ones are better for the later part. After 3,200
epochs, we now have a pre-trained DNN model that can de-
tect up to four nearby poles on any Riemann sheet with train-
ing accuracy of63.5% and testing accuracy of68.3%. We
further train the model up to 31,050 epochs, obtaining a fi-
nal performance of76.5% for the training and80.4% for the
testing.

4. Results and discussion

The GW-SAID amplitude in Fig. 1 is used as the experimen-
tal data in the following discussions. Note that the proper
description of experimental data must include the uncertain-
ties, and the deep learning approach is no exception here. In
addition, we should be able to estimate the confidence of the
trained DNN’s prediction once the experimental data is fed.
To accomplish these, we first interpret the error bars of the
amplitude as a collection of points weighted by some prob-
ability distribution. The most natural choice is to treat each
error bar as one standard deviation of a Gaussian distribu-
tion. We produce a collection of106 amplitudes by combin-
ing the points in each error bar. Finally, the amplitudes are
fed directly to the trained DNN models, and the outputs are
counted. The output with the highest count is the possible
pole configuration of the experimental data.

Out of the 35 possibilities, our trained DNN linked only
four-pole configurations to theπN scattering amplitude. As
shown in Table II, the structures in Fig. 1 are due to one pole

TABLE II. Result of the DNN inferences on the GW-SAIDπN
scattering amplitude. The error bar is interpreted as one standard
deviation to generate106 amplitudes from the experimental data.

Percentage bt bb tb

44.6% 1 1 2

34.1% 1 1 1

16.4% 0 1 3

4.9% 0 1 2

in [bt], one pole in[bb] and at most two poles in[tb]. Note that
no assumptions are made on any of the detected poles since
they are produced independently in the training dataset. It is
now up to some dynamical model to interpret their origin and
explain how they relate to each other.

Our approach can go beyond the conventional model-
fitting scheme, where the error bar is typically interpreted
as one standard deviation of a Gaussian distribution. In the
Ref. [35], we showed that the choice of a probability dis-
tribution for the description of error bars does not affect the
outcome of DNN inference. In particular, the same set of con-
figurations is obtained, and the configuration with the high-
est count remains no matter which error bar interpretation is
used. This observation demonstrates that our deep learning
approach gives a statistically robust interpretation of experi-
mental data.

5. Conclusion and Outlook

In this paper, we have shown for the first time how to im-
plement deep learning in the study of coupled-channel scat-
tering with near-threshold enhancement. The DNN model
is designed to accommodate the energy resolution of the ex-
perimental data and the error bars, which are utilized in the
final DNN inference. As a result, the confidence of DNN’s
inference can be estimated by counting the output, with the
highest count being the best description of experimental data.

The deep learning approach used in this paper can be ex-
tended to any peak analysis of the experimental data. In the
present study, we focused only on identifying the pole con-
figuration that best describes a near-threshold enhancement.
No a priori assumption is made on the detected poles; they
are independently produced in the generation of the teach-
ing dataset. However, to further identify the nature of near-
threshold phenomena, we need to employ a suitable dynami-
cal model to reproduce the detected poles. We can then deter-
mine the origin of enhancements by using the obtained pole
configuration and tracing their trajectories through the cou-
pling mechanism of a dynamical model.
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