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Ratios of partial wave amplitudes in the decays ofJ = 1 and J = 2 mesons

V. Shastry
Institute of Physics, Jan Kochanowski University,

ul. Uniwersytecka 7, P-25-406 Kielce, Poland.

Received 25 December 2021; accepted 19 January 2022

We study the two-body decay of mesons using the covariant helicity formalism. We find that to explain the ratio of partial wave amplitudes
(PWAs) of the decay, the Lagrangian must include derivative interactions in addition to contact interactions. We estimate the ratios of the
coupling constants for the vector decays of the axial-vector, pseudovector and pseudotensor meson, and the tensor decays of the pseudotensor
mesons by fitting the ratios of the PWAs to the available data and predict the ratios to some new decays.
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1. Introduction

Meson spectroscopy has been dealt with in great detail, using
a multitude of techniques in the past decades. In the light me-
son sector, the quark models have been successful not only in
explaining the properties of the mesons, but also in predict-
ing new states - both conventional and exotic, and their decay
schemes [1, 2]. Low energy hadronic effective field theories
have been successful not only in studying the decays of the
mesons but have also been used to study the electromagnetic
properties of baryons, [3,4].

Often, the coupling constants of the meson-meson inter-
actions are estimated using the partial widths of the respective
decays. To this end, most of the models employ Lagrangians
that involve the lowest order interactions. When a meson of
spin J decays to a meson with the same spin and another
spinless meson, the lowest order interaction is the contact in-
teraction. Such simple Lagrangian models are capable of ex-
plaining the width of the given decay. However, they do not
capture the complexity and the structure of the interacting
states.

In this work (based on Ref. [5]) we show that even though
the lowest order interactions reproduce the decay widths, are
not sufficient to explainall the properties of a decay process.
To this end, we analyse the partial wave structure of the de-
cays of mesons using the covariant helicity formalism advo-
cated by Chung [6–8]. We proceed to calculate the ratios of
the various partial wave amplitudes (PWAs) and use them to
estimate the ratios of the coupling constants.

This paper is organized into the following sections: in
Sec. 2, we briefly discuss the partial wave analysis of two-
body of decays; in Sec. 3 we apply the covariant helicity for-
malism to the decays ofa1(1260), b1(1235), andπ2(1670).
Finally we the summarize the paper in Sec. 4.

2. Partial wave analysis of two-body decay

The decay of a meson (A) into two (massive) states (B and
C) proceeds via the angular momentum channels according
to the rules of the addition of the angular momenta. IfJA,

JB , andJC are the spins of the states involved, and` is the
relative angular momentum, then,

~JA = ~JB + ~JC + ~̀. (1)

Since all the decays that we have studied involve one pseu-
doscalar meson as a product,JC can be taken to be0.
Hence, the angular momentum can take the values` =
|JA − JB |, . . . , JA + JB . However, not all these values of
` are allowed. The angular momentum must also satisfy the
following relation,

(−1)PA = (−1)`+1(−1)PB , (2)

wherePA and PB are the parity quantum numbers of the
statesA andB. The exponent̀ +1 is due to the angular mo-
mentum` and the parity of the pseudoscalar meson. Thus, if
the statesA andB have the same parity, then only odd val-
ues of` are allowed and vice versa. In the next subsection
we discuss the conventional partial wave analysis using the
spherical harmonics. In the subsequent discussions, we do
not assume thatJC = 0.

2.1. Partial wave expansion

To expand the decay amplitude in terms of the spherical har-
monics, one should first decouple the angular momentum
from the spin of the states involved. We note that the spin
of the decaying meson is given by,

|JA,MA〉=|S, ms〉 ⊗ |`,m`〉, (3)

where|S,ms〉 = |JB ,MB〉 ⊗ |JC ,MC〉 is the spin of the
two-body final state, and|`,m`〉 represents the relative an-
gular momentum carried by the decay products. The sym-
bol ⊗ represents the outer product between the correspond-
ing states. The addition of the spin and the relative angular
momentum is carried out using the rules of the addition of the
angular momenta. Accordingly, we get,

|JA,MA〉=
∑

ms,m`

|`,m`, S, ms〉〈`,m`, S,ms|JA,MA〉, (4)
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where the summation overms(m`) runs from−S(−`) to
S(`), and 〈`,m`, S, ms|JA,MA〉 represents the Clebsch-
Gordan coefficient that relates the state|JA,MA〉 with the
states|`,m`, S,ms〉. Thus, we can write the amplitude as [9],

iM(θ, φ; MA)= i
∑

`

∑̀

m`=−`

GSH
` 〈`, m`, S, ms|JA,MA〉

× Y`m`
(θ, φ), (5)

whereY`m`
(θ, φ) are the spherical harmonics, and the coef-

ficients (GSH
` ) of the spherical harmonics are proportional to

the amplitudes of the corresponding partial waves.
For the frame of reference where the decay products

move along thez-axis, θ = 0 = φ. The Eq. (5) takes the
form,

iM(0, 0; MA)= i
∑

`

∑̀

m`=−`

GSH
` 〈`,m`, S,ms|JA, MA〉

×
√

2` + 1
4π

δm`0, (6)

where we have used the relationY`m`
(0, 0) =√

(2` + 1)/4πδm`0.

2.2. Covariant helicity formalism

Alternatively, one can extract the PWAs from the decay am-
plitudes using the covariant helicity formalism [6–8]. To do
so, we write the amplitude for the decay process as

iMA→BC(θ, φ; MA) = DJA∗
MAMB

(φ, θ, 0) F JA

MBMC
, (7)

where DJA

MAMB
(φ, θ, 0) is the Wigner D-matrix, and

F JA

MBMC
are the helicity amplitudes. The helicity amplitude

is related to the PWAs through the relationi

F JA

MB0 =
∑

`S

GJA

`S

√
2` + 1

2JA + 1

× 〈`, 0, JB ,MB −MC |JA,MB −MC〉
× 〈JB ,MB , JC ,−MC |S, MB −MC〉, (8)

whereGJA

`S is the`S−coupling amplitude. It should be noted
that the PWAs derived using the covariant helicity formalism
follow the relation

∑

spin

|iMA→BC |2 =
∑

`

|GJA

`S |2. (9)

For the decays we have studied, the PWAs derived using the
covariant helicity formalism are related to the ones derived
using the conventional partial wave expansion through the re-
lation,

GSH
` =

√
4π

2JA + 1
GJA

`S . (10)

In a theoretical study, since we are deriving the decay ampli-
tude from the corresponding Lagrangian, helicity amplitudes
would automatically be derived from the polarization tensors
and hence, be Lorentz invariant. This is evident from the fact
that the helicity amplitudes are dependent only on the ratio
E/m (or, equivalently,k/m), whereE andm are the energy
and mass of the decay product. Thus, it would be logical to
use the covariant helicity formalism in a theoretical study of
the partial wave structure of the decays. In the next section,
we apply the covariant helicity formalism to the decays of the
axial-vector, pseudovector, and pseudotensor mesons. In the
subsequent discussions, weuse the notationG` to represent
the PWAsGJA

`S .

3. Application to meson decays

In this section, we apply the covariant helicity formalism to
the strong decays of the1++, 1+−, and2−+ mesons. We
restrict the discussion to the decays of the isovector mesons.

3.1. J=1

The Lagrangian describing theb1(1235) → ωπ decay is
given by,

L = igc
B〈b1,µωµπ〉+ igd

B〈b1,µνωµνπ〉, (11)

where gc
B and gd

B are the coupling constants,b1,µν =
∂µb1,ν − ∂νb1,µ, ωµν = ∂µων − ∂νωµ, and〈 〉 represents
trace over the isospin. The first term in the Lagrangian rep-
resents the (local) contact interactions. The second term rep-
resents the (nonlocal) derivative interactions. The amplitude
for this decay can be written as,

iM = igc
B εµ(0, MA)εµ∗(~k, MB) + i2gd

B

(
k0 · k1 εµ(~0, MA)ε∗µ( ~k1, MB)

−kν
0 k1,µ εµ(~0,MA)ε∗ν( ~k1,MB)

)
= −i





gc
B + 2gd

B Mω Eω MA = MB = ±1

γ(gc
B + 2gd

B Mω Eω − 2gd
B Mω βk) MA = MB = 0

, (12)

whereγ =
√

1− β2 =
√

1− k2/M2
ω, Mω andEω are respectively the mass and energy of theω, andk is the 3-momentum

of the ω. The PWAs can be extracted using Eqs. (7) and (8). We note here that the contact interaction alone can produce
higher partial waves. From Eq. (12), we see that forMA = MB = 0, the contact interaction gives a factor ofγ. When the
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3-momentum is smaller than the mass of the meson,γ = 1−k2/(2M2
ω)+ . . .. The presence of higher powers of 3-momentum

implies the presence of the higher partial waves.
The experimental value of the ratio of the PWAs is0.277±0.027 [11]. Using this value, we obtain the ratio of the coupling

constants to begd
B/gc

B = −0.687 GeV−2. This value is in close agreement with the value obtained in Ref. [9]. In the absence
of the derivative interactions, the ratio of the PWAs is independent of the coupling constant, and takes the value−0.043.
This value is much lower than the experimental value indicating that the derivative interactions are essential to describe the
b1(1235) → ωπ decay. Further, we observe that

∣∣∣gd
B/gc

B

∣∣∣ ≈ 1/M2
b1

indicating that the derivative interactions are as dominant
as the contact interactions and the two interfere destructively during the decay.

An interesting deviation from this behavior is that of thea1(1260) → ρπ decay. The Lagrangian describing this decay is
similar to the Lagrangian given in Eq. (11). The masses of the mesons involved in both these decays and the 3-momentum
carried by the decay products are nearly identical. Thus, one would expect the two decays to have similarG2/G0 ratios.
However, the corresponding experimental value for thea1(1260) → ρπ decay isG2/G0 = −0.062 ± 0.020 [11]. This value
can be obtained without using the derivative interactions. If we include the derivative interactions and analyse the decay, we
find that the ratio of the coupling constants isgA

d /gA
c = −0.082 which is much smaller than1/M2

a1
. This indicates that the

derivative interactions are less significant in thea1(1260) → ρπ decay.

3.2. J=2

In this subsection, we study theπ2(1670) → f2π (tensor mode) andπ2(1670) → ρπ (vector mode) decays. To study the
tensor mode we use the Lagrangian,

Lf2π = cos θT

(
gc

PT 〈π2,µνfµν
2 π〉+ gd

PT 〈π2,αµνfαµν
2 π〉) , (13)

whereπ2,αµν = ∂απ2,µν − ∂µπ2,αν , fαµν
2 = ∂αfµν

2 − ∂µfαν
2 , andθT (= 5.7◦) is the angle of mixing between the2++

iso-singlets [12]. The decay amplitudes are given by,

iM=i cosβt

(
gc

PT εµν(~0,MA)εµν∗(~k, MB)+2gd
PT

×
[
k0 · k1εµν{~0,MA}εµν∗{ ~k1,MB}−k0,αkν

1 εµν{~0, MA}εαµ∗{ ~k1,MB}
])

, (14)

= i cos βt





gc
PT

(M2
f2

+ 2E2
f2

)
3M2

f2

+ 2gd
PT

Mπ2

M2
f2

Ef2 MA = MB = 0

gc
PT

Ef2

Mf2

+ gd
PT

Mπ2

Mf2

(k2 + 2M2
f2

) MA = MB = ±1

gc
PT + 2gd

PT Mπ2Ef2 MA = MB = ±2

. (15)

The PWAs for this decay can be extracted similar to the case of the decay of theJ = 1 mesons. The PDG listsG2/G0 =
−0.18 ± 0.06 for the tensor mode [11]. Using this value, we find that the ratio of the coupling constants is,gd

PT /gc
PT =

−0.209 GeV−2. In addition to theS−wave and theD−wave, the tensor decay mode also involves the` = 4(G) wave.
However, the amplitude of theG−wave is very small compared to theS−wave. We obtain the ratio of the ratio of the
corresponding PWAs as,

G4

G0
= 0.0042± 0.0014. (16)

Also, theG−waves have the same phase as theS−waves. Using the values of the coupling constants obtained, we can derive
the ratios of the PWAs for theπ2(1670) → f ′2π decay. We get the values,

G2

G0
= 0.0093± 0.0031,

G4

G0
= −(7.49± 2.7)× 10−6. (17)

The very small values for the ratios is due to the fact that the 3-momentum carried by the decay products is very small.
We now move on to the vector mode of the decay ofπ2(1670). We use the Lagrangian given by,

Lρπ = igv
PT 〈π2,µνρµ∂νπ〉+ igt

PT 〈π2,αµνραµ∂νπ〉 (18)
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to study this decay. Here,gv
PT and gt

PT are the coupling constants for the vector and tensor iteractions respectively and
ρµν = ∂µρν − ∂νρν . The decay amplitude is given by,

iM = −gv
PT εµν(~0,MA)εµ∗( ~k1,MB)kν

2 − gt
PT

×
[
2k0 · k1εµν(~0,MA)εµ∗( ~k1,MB)kν

2 − 2k0,µkα
1 εαν(~0,MA)εµ∗( ~k1, MB)kν

2

]
, (19)

=
k√
2





(gv
PT + 2gt

PT Mπ2Eρ) MA = MB = ±1

2√
3

(
Eρ

Mρ
gv

PT + 2gt
PT Mπ2Mρ

)
MA = MB = 0

. (20)

For this decay, the PDG lists the ratio of the PWAs asG3/G1 = −0.72±0.16 [11]. This is a rather high value indicating that the
` = 3 (F ) wave is nearly as strong as the` = 1 (P ) wave. The ratio of the coupling constants isgt

PT /gv
PT = −0.255 GeV−2.

We see that the ratios of the coupling constants for tensor mode as well as the vector mode of the decay of theπ2(1670) are of
the order of1/M2

π2
. Using this ratio of the coupling constants, we estimate the ratio of the PWAs for theπ2(1670) → K∗K

decay as,

G3

G1
= −0.447± 0.099. (21)

The decays of theπ2(1670) also exhibit properties similar to those for the decay ofb1(1235), viz. the lower order interactions
are insufficient to reproduce the experimental values of the ratios of PWAs, and the higher order interactions play equally
important role in the decay process.

4. Summary and Outlook

Summarizing, we have studied the partial wave structure of
some of the decays of the axial-vector, pseudovector, and
pseudotensor mesons. We find that higher order (nonlocal)
interactions are necessary in order to explain the experimen-
tal data on the partial wave structure of the two-body de-
cays of these mesons. The lower order interactions and the
higher order interactions interfere destructively as indicated
by the relative minus sign between the coupling constants.
The higher order interactions contribute as much as the lower
order interactions to the decays. Also, the contributions of
the higher partial waves decrease as the 3-momentum carried
by the decay product decreases.

The formalism described in this paper can be extended
to the decays of the kaons and the isoscalars of the nonets.
The mixing between the isoscalars due to the axial anomaly
is an interesting topic in itself [13–17]. The behavior of the
meson nonets under theSU(3)L × SU(3)R transformations
seems to be related to the extent of the mixing between the
isoscalars necessitated by the axial anomaly [18]. The most
common theoretical approach to derive the mixing angle is
to use the Gell-Mann-Okubo (GMO) mass relations. How-
ever, this leads to situations where the isoscalar mixing an-
gles become dependent on the corresponding kaonic mixing
angles, as in the case of the1++ and1+− isoscalars [19]. In
the absence of precise information on the kaonic mixing an-
gle [20], the isoscalar mixing angles extracted from the GMO
relations become unreliable. Further, the GMO relations ig-
nore the loop corrections, which can give large contributions

if the meson is a broad state (e.g., a1(1260), h1(1170),
K1(1400), etc). An alternative is to study the decays of
these isoscalars. Since the non-strange components of the
isoscalars decay predominantly to isovector states and the
strange component to the kaonic states, the ratio of the par-
tial widths of these two decay channels will be proportional
to functions of the mixing angle. The angle of mixing be-
tween the isoscalars of the1++, 1+− and2−+ nonets have
been studied by incorporating the higher order interactions
in Ref. [5]. This can be extended further to the study of the
isoscalars of the other nonets.

The decays of other nonets can also be studied using this
formalism. For example, the PDG lists theD/S−ratio for the
decay of the exoticπ1(1600) to b1(1235)π [21]. The rather
high value of this ratio indicates that derivative interactions
are needed to fully explain the properties of this state. The
ratio of PWAs for the decays of the higherJ mesons can also
help in constraining the parameters of their interactions and
decays [22, 23]. Similar data exist in the baryon sector also.
An in depth study of the partial wave structure of the decays
of hadrons in general can reveal vital information about their
nature and interactions.
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i. The details of this derivation are given in the papers [6, 7] and
the report [10].
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