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Charmonium spectrum and the color-octet
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The properties of quarkonia are discussed in the framework of the nonrelativistic potential approach based on the instanton-induced interac-
tions from the instanton vacuum. We have obtained the spectrum of charmonia and discuss the results. We also examine the instanton effects
on the color-octet heavy-quark potential.
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1. Introduction

A conventional quarkonium consisting of one heavy quark
and the corresponding heavy anti-quark is the simplest
hadron that provides a great opportunity to scrutinize various
theoretical methods. Since the constituents of the quarko-
nium are much heavier than those of light hadrons, poten-
tial models have been successfully applied for the description
of the quarkonium structure [1, 2]. The heavy-quark poten-
tial contains mainly two different terms: The Coulomb-like
one that originates from one-gluon exchange, and the con-
fining one that simulates the quark confinement. However,
the value of the strong coupling constant in the Coulomb-
like term rather deviates from that in perturbative quantum
chromodynamics (QCD), given the scale at the correspond-
ing mass of the heavy quark. Moreover, certain effects from
non-perturbative QCD are absent in this heavy-quark poten-
tial.

In the present talk, we introduce the non-perturbative con-
tribution arising from the instanton vacuum [3–5] and exam-
ine its effects on the charmonium spectrum [6, 7], in addi-
tion to the existing two terms mentioned previously. Further-
more, we also include yet another non-perturbative instanton
effect on one-gluon exchange. We will show that these non-
perturbative instanton effects allow one to use more physical
values of the parameters in the heavy-quark potential.

2. Heavy-quark potential from the instanton
vacuum

The direct non-perturbative effects on theQQ̄ potential were
discussed by Diakonov, Petrov and Pobylitsa [3]. Consid-
ering an instanton packing parameterλ to be very small
(λ = ρ4/R4 ∼ 0.01), which is defined as the fourth power
of the ratio of the average instanton sizeρ̄ and the instanton
inter-distanceR, they derived the central part of the heavy-
quark potential from the instanton vacuum systematically.
Recently, Musakhanovet al. [6] also took into account the
instanton effects on the Coulomb-like potential arising from
one-gluon exchange (OGE). They evaluated a Yukawa-type

heavy-quark potential, using the double expansion series in
terms of the strong coupling constantαs and the packing pa-
rameterλ. To keep the self-consistency, they found thatαs

should be proportional to
√

λ.
The background field of the gluon is defined as a sum

A(ξ) =
∑

i Ai(ξi), whereξi = (zi, Ui, ρi) denotes a collec-
tive coordinate of the instantons describing positionszi, Ui

the color orientations, andρi the sizes of the instantons. In
the largeNc limit, where the width of the instanton distri-
bution is of order1/Nc, ρi can be taken to be equal to the
average sizēρ, ρi = ρ̄. Having carried out lengthy manipu-
lations, we obtain the quark and antiquark Lagrangians [6]:

LQ = Q†(θ−1 − ga− gA + · · · )Q, (1)

LQ̄ = Q̄†(θ−1 − gā− gĀ + · · · )Q̄, (2)

wherea and A are perturbative gluon and instanton back-
ground fields, respectively. The dots are the next-to-leading
order terms in the expansion of the inverse heavy-quark mass.
〈t|θ|t′〉 = θ(t − t′) is given by the usual step functionθ, so
θ−1 = d/dt. The fieldsa andA represent the fourth compo-
nents of the fields,a = ia4 andA = iA4.

Following Ref. [6], we can define the heavy quark-
antiquark correlator in the instanton background as

W =
∫

Dξ exp


1

2

2∑

i 6=j=1

(
δ

δa
(i)
α

S
(ij)
αβ

δ

δa
(j)
β

)


× 1
D(1) − ga(1)

1
D(2) − gā(2)

∣∣∣∣
a=0

, (3)

which is identified as a Wilson loop. Here,S
(ij)
αβ is a gluon

propagator andDξ =
∏

i=1 dξi = V −1
∏

i=1 dzidUi. In the
heavy-(anti)quark propagator,D(i) = θ−1 − gA(i)(ξ). The
superscripts (1) and (2) in the propagators in Eq. (3) repre-
sent the lines along the time direction of the Wilson loop as
shown in Fig. 1.

To obtain the heavy-quark potential, one can use the
Pobylitsa equation [8] and the Fourier transformation [3]:

〈t(1)1 |W |t(2)1 〉 =
∫

dω

2π
eiω(t

(1)
1 −t

(2)
1 ) 1

W−1(ω)
, (4)



2 KI-HOON HONG, ULUGBEK T. YAKHSHIEV AND HYUN-CHUL KIM

FIGURE 1. The rectangular Wilson loop.T is a long time interval
andr is a distance between a quark and an antiquark.

wheret
(1)
1 andt

(2)
1 are−T/2 in L1 and−T/2 in L2, respec-

tively. Considering the infinite time limitT →∞ in Eq. (4),
we get

〈t(1)1 |W |t(2)1 〉 ≈ exp
[
−(V (dir)

I + V
(per)
I )T

]
, (5)

whereV
(dir)
I andV

(per)
I are the instanton-induced direct and

OGE potentials, respectively. They have forms

V
(dir)
I =

N

2V Nc

∑
±

3∫

d

z±

× Trc

(
1− P exp


i

∞∫
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dx4A±,4


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× P exp


i

∞∫

−∞
dy4A±,4




)
, (6)

V
(per)
I = g2 λa

2
λ̄a

2

(
1− 2r

π

∞∫

0

dqj0(qr)

× 3π2λK2
1 (qρ̄)

1 + 3π2λK2
1 (qρ̄)

)
. (7)

Here Mg(q) denotes the momentum dependent gluon
mass

Mg(q) =
2π

ρ̄

(
6λ

N2
c − 1

)1/2

qρ̄K1(qρ̄), (8)

whereK1 is the modified Bessel function of the second kind.
For more details, see Refs. [3, 6]. In Eq. (6), the singular
gauge instanton fieldA±,µ is defined as

A±,µ(x, z±) =
η∓µν(x− z±)µλaρ̄2

(x− z±)2((x− z±)2 + ρ̄2)
, (9)

whereη∓µν are the ’tHooft symbols.
One can see that the direct potential does not have any

color operators. We will show details in the next section. On

the other hand, the perturbative part has a prefactor defined
by a color state,e.g. in the singlet state, the factor is

(
λa

2
λ̄a

2

)

S

= −N2
c − 1
2Nc

,

while the factor becomes
(

λa

2
λ̄a

2

)

O

=
1

2Nc

in the octet state.

3. The direct color-octet potential from the in-
stanton vacuum

We use the insertion of the color exchange point to analyze
the direct octet potential from the instantons [9] (see Fig. 2).

Using the Wilson loop in Fig. 2, we can rewrite the cor-
relation function in Eq. (3)

W =
∫

Dξ exp


1

2

2∑

i 6=j=1

(
δ

δa
(i)
α

S
(ij)
αβ

δ

δa
(j)
β

)


× 1
D(1) − ga(1)

Tc
1

D(2) − gā(2)
Tc

∣∣∣∣
a=0

, (10)

where the repeated color indexc is not summed over. From
the average over the color orientations, one can rewrite
Eq. (10):

W =
〈 ∫

dUUi1i2W
(L2)
i2j1

(x2,∆t)U†
j1j2

(Tc)j2k1

× Uk1k2W
(L1)†
k2l1

(x1,∆t)U†
l1l2

(Tc)l2i1

〉
, (11)

whereUij andW (Li) denote a color-orientation operator and
Wilson line of Li, respectively. The integration over the
color-orientation gives [10]

FIGURE 2. Inserted color operatorTa is in the spatial direction of
the modified Wilson loop.
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∫
dUUi1i2U

†
j1j2

Uk1k2U
†
l1l2

=
1

N2
c − 1

{
δi1j2δk1l2

(
δj1i2δl1k2 −

1
Nc

δj1k2δl1i2

)

+δi1l2δk1j2

(
δj1k2δl1i2 −

1
Nc

δj1i2δl1k2

)}
. (12)

Then Eq. (11) becomes

W =
1

2(N2
c − 1)

〈TrcW
(L2)(x2, ∆t)TrcW

(L1)†(x1, ∆t)〉

− 1
2Nc(N2

c − 1)
〈TrcW

(L2)(x2, ∆t)W (L1)†(x1, ∆t)〉

≡ N2
c

2(N2
c − 1)

w(L2)w(L1) − 1
2(N2

c − 1)
Ws, (13)

whereWs corresponds to the averaged Wilson loop in the
color-singlet state andw(Li) is the averaged Wilson line
of Li. In the definition of Eq. (13), we assumed that
〈〈W (L2)〉〈W (L1)†〉〉 = 〈〈W (L2)〉〉〈〈W (L1)†〉〉 since each
Wilson line is isolated from the other line. From the defini-
tion of the heavy-quark potential, we can get the color-octet
potential

V
(dir)
O,I = − lim

T→∞
1
T

ln〈T |W |T 〉

= − lim
T→∞

d
dT 〈T |W |T 〉
〈T |W |T 〉 . (14)

The correlation function can be written as

〈T |W |T 〉 =
N2

c

2(N2
c − 1)

〈T |w(L2)| − T 〉〈−T |w(L1)|T 〉

− 1
2(N2

c − 1)
〈T |W |T 〉 =

N2
c

2(N2
c − 1)

e−2∆MT

− 1
2(N2

c − 1)
e−V

(NP)
S,I T .

(15)

From Eq. (13), one can get the result that is identical to the
free energy of a single-quark system from lattice calcula-
tion [11, 12]. Here the free energy2∆M is known as an
asymptotic value of heavy-quark and antiquark static poten-
tial from the instanton vacuum. From Eq. (14), we have

V
(dir)
O,I = V

(dir)
S,I ≡ V

(dir)
I . (16)

It means that the direct instanton effects are not affected by
the color-states.

4. Charmonium spectrum

In this section, we will show the charmonium spectrum fol-
lowing the definitions in Ref. [6]. Consequently, the direct

instanton induced Eq. (6) and instanton affected OGE Eq. (7)
potentials can be parametrized as

V
(dir)
I (r) =

4πλ

Ncρ
Idir

(
r

ρ̄

)
, (17)

V
(per)
S,I (r) = −4αs

3r

(
1− 2r

πρ̄
Iscr

[
r

ρ̄

])

≡ VC(r) + V
(scr)
S,I (r), (18)

where the interpolation functionsIdir andIscr are given as

Idir =Id
0

{
1 +
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i x
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3(−bd
3x)i

]
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i x2

+
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3

x
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, (19)
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0

{
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i x
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3(−bs
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i x2

+
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3

x

(
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)}

, (20)

with the parametersId,s
0 , as,d

i andbs,d
i [6]

Id
0 = 4.41625 , Is

0 = 0.578695,

ad =




−1
0.128702
−1.1047


 , as =




1
0.121348
2.71619


 , (21)

bd =




0.404875
0.453923
0.420733


 , bs =




0.144123
0.189758
0.144123


 . (22)

In Eq. (18), V
(scr)
S,I has the meaning of the screening poten-

tial, which screens the coulomb-like potentialVC(r) at large
distances.

The spin-dependent interactions have forms [13,14]

VSD(r) = VSS(r)SQ · SQ̄ + VLS(r)L · S
+ VT (r)[3(SQ · n̂)(SQ̄ · n̂)− SQ · SQ̄], (23)

where the radial parts are given by

VSS(r) =
2

3m2
Q

∇2VV , (24)

VLS(r) =
1

2m2
Qr

(
3
dVV

dr
− dVS

dr

)
, (25)

VT (r) =
1

3m2
Q

(
1
r

dVV

dr
− d2VV

dr2

)
. (26)

HereVV = V
(per)
S,I (r) andVS = kr + V0 are the vector and

the phenomenological scalar potential. The point-like spin-
spin interaction term can be represented by the Gaussian ap-
proximation:

VSS(r) =
32παs

9m2
Q

δ(r) ≈ 32αsσ
3

9m2
Q

√
π

e−σ2r2
, (27)
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whereσ is a fitting parameter. The spin-dependent parts of
the direct instanton potential is given in Ref. [13]

V I
SD(r) = V I

SS(r)SQ · SQ̄ + V I
LS(r)L · S,

+ V I
T (r)[3(SQ · n̂)(SQ̄ · n̂)− SQ · SQ̄], (28)

where the radial parts are defined as

V I
SS(r) =

1
3m2

Q

∇2VI(r), (29)

V I
LS(r) =

1
2m2

Q

1
r

dVI(r)
dr

, (30)

V I
T (r) =

1
3m2

Q

(
d2

dr2
− 1

r

d

dr

)
VI(r). (31)

HereVI(r) = V
(dir)
I (r). Then whole potential becomes

VQQ̄ = V
(per)
S,I + V

(dir)
I + VSD + V I

SD + VS . (32)

Next, by solving the Schrödinger equation with the sets in
Table I, we obtain the charmonium spectrum in Table II.

To fit the potential parameters in Table I, we use the 5 S-
wave states in Table II:J/ψ, ηc(11S0), ψ(23S1), ηc(21S0)
andψ(43S1). A similar study was conducted in Ref. [15] by
considering only 4 input states in the case of without instan-
tons. One can see that the spectrum can be obtained reason-
ably well with the small number of input data.

Let us analyze the value of the running coupling constant
αs. At the one-loop level in pQCD, it is given by the expres-
sion

αs(µ) =
4π

β0

1
ln(µ2/Λ2

QCD)
. (33)

TABLE I. Set of potential parameters. The results denoted by sets
“a” and “b” are obtained by usingV0 = 0 andV0 6= 0, respec-
tively. Sets I and II are evaluated by using the instanton parameters
“ ρ̄ = 1/3 fm andR = 1 fm” and “ρ̄ = 0.36 fm andR = 0.89 fm”,
respectively.

Set αs(-) k(GeV2) σ(GeV) mQ(GeV) V0(GeV)

SetIa 0.5141 0.1432 1.136 1.3634 0

SetIIa 0.4783 0.1375 1.174 1.3251 0

SetIb 0.5098 0.1444 1.166 1.3932 -0.0563

SetIIb 0.4773 0.1375 1.174 1.3211 0.0062

TABLE II. Charmonium spectrum.

State Exp SetIa SetIIa SetIb SetIIb

J/ψ(13S1) 3096.900± 0.006 3098 3097 3098 3097

ηc (11S0) 2983.9± 0.5 2985 2988 2985 2988

ψ (23S1) 3686.097± 0.025 3684 3685 3684 3685

ηc (21S0) 3637.6± 1.2 3638 3639 3638 3639

ψ (33S1) 4039± 1 4085 4086 4085 4086

ηc (31S0) 4053 4054 4053 4053

ψ (43S1) 4421± 4 4422 4420 4421 4421

ηc (41S0) 4396 4394 4396 4395

χc2 (13P2) 3556.17± 0.07 3550 3544 3550 3543

χc1 (13P1) 3510.67± 0.05 3511 3510 3512 3510

χc0 (13P0) 3414.71± 0.30 3414 3414 3415 3414

hc (11P1) 3525.38± 0.17 3519 3515 3520 3514

χc2 (23P2) 3927.2± 2.6 3970 3967 3970 3966

χc1 (23P1) 3936 3938 3937 3938

χc0 (23P0) 3862+26+40
−32−13 3873 3874 3873 3873

hc (21P1) 3941 3940 3942 3939

χc2 (33P2) 4318 4313 4318 4313

χc1 (33P1) 4286 4287 4287 4287

χc0 (33P0) 4236 4235 4235 4235

hc (31P1) 4290 4287 4290 4287

Hereβ0 = (11Nc − 2Nf )/3 andΛQCD = 0.217 GeV
[16]. If the scaleµ is very close to the charm-quark mass
mc = 1.275, then we getαs(µ) = 0.4258. One can see that
SetII instanton model gives quite reasonable values ofαs.

5. Summary and Outlook

In this work, we studied the charmonium spectrum, which
was derived by including the heavy-quark potential from the
instanton vacuum. The results showed that the instanton ef-
fects partially explain the origin of the strong coupling con-
stant and allow us to use the value closer to that from QCD,
compared with other phenomenological approaches.

We also discussed the color-octet potential, which was
derived from the instanton vacuum. It was shown that the di-
rect instanton potential was not affected by color states. The
octet potential is important in studies of the chromoelectric
polarizability.
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