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Heavy quark hybrid decays
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In order to understand the nature of the XYZ particles, theoretical predictions of the various XYZ decay modes are essential. In this work,
we focus on the semi-inclusive decay of heavy quarkonium hybrids into traditional quarkonium in the Born-Oppenheimer EFT (BOEFT)
framework. We find that our numerical results of the decay rates are different from the previous studies. We also develop a systematic
framework in which the theoretical uncertainty can be systematically improved.
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1. Introduction

In Standard Model (SM), the hadrons are described as bound
states of quarks and gluons bounded by strong interactions.
Traditionally in quark model, all known hadrons were clas-
sified as mesons (bound state of quark-antiquark pair) or
baryons (bound state of3-quarks). However, the theory of
strong interactions (QCD) also allows for existence of more
complex hadron structures known asexotic hadronssuch as
tetraquark (4-quark states), pentaquark (5-quark states), hy-
brids (hadrons with active gluonic degrees of freedom) and
glueballs (bound state of gluons). In the heavy-quark sector,
these exotic hadrons are known asXYZ states. These states
do not fit the traditional charmonium(cc̄) or bottomonium(
bb̄

)
spectrum and in some cases have exotic quantum num-

bers such as chargedZc andZb states. In 2003, the first exotic
stateX(3872) was discovered by the Belle experiment [1].
Since then, several of the new XYZ states have been observed
by the different experimental collaborations (see Ref. [2] for
recent review).

On the theoretical side, there has been several proposals
to understand the nature of the XYZ states. One possible
interpretation for at-least some of the XYZ states could be
quarkonium hybrids. The other possible interpretations are
hadroquarkonium, heavy meson molecule, tetraquark, and
diquark-diquark model, etc. However, no single model can
actually explain all the XYZ states. On the experimental side,
several new exotic states have been observed for which the
masses and the decay rates has been measured (see Ref. [3]).
Several of these exotic states have been discovered from their
decays to standard quarkonium. Therefore, a theoretical un-
derstanding of the decays of XYZ states might be an another
avenue for understanding their structure. In this work, our ob-
jective is to study the inclusive decays of heavy quark hybrids
to traditional quarkoniumi.e.Hm → Qn + X, whereHm is
a low-lying hybrid,Qn is a low-lying quarkonium state and
X denotes other final state particles.

Within QCD, one can use lattice studies and effective
field theories (EFTs) to describe the traditional quarkonium

and quarkonium hybrids and compute its spectra. Since the
heavy quarks in such system are nonrelativistic, the appropri-
ate framework to use is the NRQCD effective theory [4, 5].
More specifically, if one focuses only on the dynamics of
two heavy quarks (as in quarkonium), then the appropriate
framework is the pNRQCD effective theory [6, 7]. In the
case of quarkonium hybrids, there are well-separated energy
scales:mQ (mass of heavy quark)>> mQv (relative mo-
mentum scale)>> ΛQCD (energy scale for gluonic excita-
tions)>> mQv2 (dynamics of two heavy quark). The above
momentum hierarchy suggests of an energy gap between the
gluonic excitations and the excitations of the heavy quark-
antiquark pair that has also been confirmed by the lattice
data [8, 9]. This justifies the use of effective theory based
on Born-Oppenheimer approximation (BOEFT) to describe
the hybrids [10–14]. In this work, we will use the BOEFT
for the hybrids and pNRQCD for the low-lying quarkonium
states. In order to compute the decay rates, we perform a
matching calculation between BOEFT and pNRQCD to ob-
tain the imaginary terms in the BOEFT potential. In Sec. 2,
we compute the quarkonium and the hybrid spectrum, in
Sec. 3, we perform the matching calculation and compute the
decay rates and we conclude in Sec. 4.

2. Spectrum

2.1. Quarkonium

The conventional quarkonium states,(QQ̄) are color singlet
bound states of a heavy quark and antiquark in the ground
state static potentialVΣ+

g
(r). The shape of the static potential

VΣ+
g
(r) is well described by the Cornell potential. We use the

form of the potential from Ref. [11]

VΣ+
g
(r) = −κg

r
+ σgr + EQQ̄

g , (1)

whereκg = 0.489, and the string tension parameterσg =
0.187GeV2 are determined from the fit to the lattice data.
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The constantEQQ̄
g is different for both charmonium and bot-

tomonium and is determined by comparison to the experi-
mental spin-averaged mass from PDG 2020 [3]

Ecc̄
g = −0.254GeV, Ebb̄

g = −0.195GeV, (2)

where we have used the RS-scheme charm and bottom mass:
mc = 1.477GeV and mb = 4.863GeV to compute the
quarkonium spectrum.

2.2. Hybrids

Hybrid (QQ̄g) are color singlet bound states of a color octet
QQ̄ source coupled to gluonic excitations. In BOEFT de-
scription, theQQ̄ pair binds together in the background static
potential generated by gluons. The hybrid quantum numbers
are defined by the irreducible representations of theD∞h

symmetry group (like in diatomic molecules) in the static
limit. In this limit, the spectrum is characterized by gluonic
static energies that are nonperturbative quantities computed
on lattice. Inr → 0 limit, wherer is the relative coordinate
of QQ̄, the gluon static energies are degenerate and quan-
tum numbers are characterized by representations of symme-
try groupO(3) × C instead ofD∞h [6, 12, 13]. We focus
here on the low-lying hybrids coming fromΣ−u andΠu static
potentials and we closely follow the notations in Ref. [12].

In Ref. [12], the quarkonium hybrid spectrum was ob-
tained by solving the coupled Schrödinger equations that are
given by

∑

n=Σ, Π±
n̂′ ∗(θ, ϕ) ·

(
−∇2

r

mQ
+ E(0)

n (r)
)

× n̂(θ, ϕ) Ψ(m)
n (r) = Em Ψ(m)

n′ (r) , (3)

whereEm is the hybrid energy,E(0)
n denotes the gluon static

energies,Ψ(m)
n (r) denotes the wave-functions, the upper in-

dex (m) denotes the set of quantum numbers and the unit
vectorsn̂ (θ, φ) are the projection operators that correctly re-
produce the hybrid quantum numbers inD∞h representation.
We choosên (θ, φ) = r̂ for projecting onto theΣ−u state and

the unit vectorŝn (θ, φ) = r̂± =
(
θ̂ ± iφ̂

)
/
√

2 (whereθ̂

andϕ̂ are the usual spherical unit vectors) for projecting onto
the two components of theΠ±u state. Since, there are projec-
tion operators on both sides of∇2

r in Eq. (3), the contribu-
tions from Σ−u and Πu potentials mix together that results
in pairs of solutions with same angular momentum quantum
number but opposite parity [12]. The hybrid mass is given by
MQQ̄g = 2mQ + Em for Q = (c , b).

The static potential that we use for computing the hybrid
spectrum is split into a short-distance part and long-distance
part [12]:

E(0)
n (r) =

{
V RS

o (νf )+ΛRS
H (νf )+bnr2, r < 0.25 fm

V(r), r > 0.25 fm
, (4)

where for the short-distance part(r < 0.25 fm) we have
used the RS-scheme octet potentialV RS

o (r) up to orderα3
s

in perturbation theory and the RS-scheme gluelump mass
ΛRS

H = 0.87(15) GeV at the subtraction scaleνf = 1 GeV
[9, 15]. The form ofV RS

o (r) is given in Ref. [9]. The long-
distance(r > 0.25 fm) part of the potentialV(r) is given
by

V(r) =
a1

r
+

√
a2 r2 + a3 + a4. (5)

We choose this particular form so as to reproduce the short
and long distance behavior of the Cornell potential. The pa-
rametersbn in Eq. (4) anda1, a2, a3 anda4 in Eq. (5) are
different for bothΣ−u and Πu potentials. They are deter-
mined by performing a fit to the lattice data in Refs. [8,9] and
demanding that the short-range and the long-range pieces in
Eq. (4) are continuous upto first derivatives (see Ref. [12] for
details). The result for the spectrum is given in Table III of
Ref. [12].

We denote the hybrid wave-function by

Ψ(m)
λ (r) ≡ Ψ(mjls)

λ (r) = ψm
λ (r)Φ(jls)

λ (θ, φ) , (6)

where λ labels the projection vectors:λ = 0 for r̂ and
λ = ±1 for r̂± and m is the principle quantum number.
The quantum numberj is the eigenvalue of the total angu-
lar momentum operator:J = L + S, whereS is theQQ̄
spin (denoted by quantum numbers) andL = LQQ̄ +K (de-
noted by quantum numberL), whereK is the gluon angular
momentum, andLQQ̄ is the heavy quark angular momen-
tum. We denote the hybrid state by the spectroscopic notation
m 2s+1Lj , whereL = 0, 1, etc is represented byS,P, etc.,
Hybrid states with sameL and opposite parity (see Ref. [12])
will be denoted by a prime superscript such asS ′ .

3. Inclusive decay rate

We want to study the inclusive decays of low-lying quarko-
nium hybrids to traditional quarkonium,i.e.Hm → Qn +X,
where X denotes other final state particles. Let∆E =
Em − EQ

n denote the energy (mass) difference, whereEQ
n

is the quarkonium energy. For low-lying hybrid and quarko-
nium states, the following hierarchy of energy scale emerges:
mQv >> ∆E >> ΛQCD >> mQv2. The hierarchy sug-
gests that the theory at the scale∆E is the weakly coupled
pNRQCD (which is obtained from NRQCD by integrating
out gluons with momentum and energy of order∼ mQv
and quarks with energy of order∼ mQv). Hence, starting
with pNRQCD effective theory, we can integrate out gluons
with 4−momnetum of order∼ ∆E and∼ ΛQCD in loops
and match it to Born-Oppenherimer theory (BOEFT) that de-
scribes system at energy scalemQv2. This matching will
give rise to an imaginary potential in BOEFT that is related
to the inclusive decay rate of hybrids using optical theorem.

The pNRQCD Lagrangian upto NLO in multipole expan-
sion or in1/mQ is given by

Supl. Rev. Mex. Fis.3 0308038
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LpNRQCD =
∫

R

∫

r

(
Tr

[
S† (i∂0 − hs) S + O† (iD0 − ho)O

]
+ gTr

[
S†r ·E O + O†r ·E S

]

+
gcF

mQ
Tr

[
S†(S1 − S2) ·B O + O†(S1 − S2) ·B S

]
+ · · ·

)
, (7)

where
∫

R
≡ ∫

d3R, S andO denotes the singlet and the
octet fields and ellipses represents higher order terms as well
as terms including light quarks and gluons. The singlet and
octet Hamiltonian densities are given by

hs = −∇2
r/mQ + Vs(r), ho = −∇2

r/mQ + Vo(r), (8)

whereVs and Vo are the perturbative singlet and the octet
potentials. Ther ·E vertex in Eq. (7) is responsible for spin-
conserving decays of hybrid whereas theS · B vertex is re-
sponsible for spin-flipping decays. The BOEFT Hamiltonian
(HBO) that describes the hybrid states is given by

HBO =
∫

R

∫

r

Tr
[
Hi†

(
hoδ

ij + V ij
soft + ∆V δij

)
Hj

]
, (9)

whereV ij
soft = Λglue + bijr2 + · · · (ellipses represent higher

order terms in multipole expansion),Hi denotes the hybrid
fields (indexi is the vector index), and∆V is the effective
potential that is determined by matching condition. Using
the optical theorem, the decay rate is given byΓHm→Qn =
−2〈Hm|Im∆V |Hm〉.

Starting with pNRQCD, we want to integrate out gluons
with 4−momentum∼ ∆E and∼ ΛQCD in two steps, and
obtain the BOEFT theory atmQv2. This is implemented by
the matching condition and we do that by computing the two-
point function in both the theories and equating them. For
spin-conserving decays of hybrid to quarkonium, the two-
point function in pNRQCD is expanded up toO (

r2
)

in the
multipole expansion using the NLO pNRQCD Lagrangian
in Eq. (7) which is equated to the corresponding two-point
function in BOEFT computed using Eq. (9). For the spin-
flipping decay of hybrids, the two-point function is expanded
up toO (

1/m2
Q

)
using the pNRQCD Lagrangian in Eq. (7).

For the decay of hybridHm to a specific quarkonium state
ΦQ

n (r), the spin-conserving decay rate is thus given by (see
details of the calculation in Ref. [16])

Γ(m → n) =
∑

n′

∣∣∣∣
∫

d3r Φs†
n′(r)ΦQ

n (r)
∣∣∣∣
2

Γmn′ , (10)

where in the above expression we have included the over-
lap between the quarkonium

(
ΦQ

n

)
and the Coulomb singlet

(Φs
n′) wave-functions andΓmn′ is given by

Γmn′ ≡ 4αsTF

3Nc

∫
d3l

(2π)3

∫
d3l′

(2π)3

∫
d3r

∫
d3r′

∫
d3r′′

∫
d3r′′′

[
Ψi†

m(r)Φo
l (r)

] [
Φo†

l (r′)r′iΦs
n′(r

′)
]

×
[
Φs†

n′(r
′′)r′′iΦo

l′(r
′′)

] [
Φo†

l′ (r
′′′)Ψi

m(r′′′)
]
(Λglue + Eo

l /2 + Eo
l′/2− Es

n)3 , (11)

whereαs is evaluated at the scale∆E = Em − EQ
n , Ψi

m is
the hybrid wave-function given in Eq. (6) (i is the vector in-
dex), Φo

l is the octet wave-function,Eo
l is the octet energy,

Es
n is the singlet energy, andΛglue = 0.87(15)GeV in RS-

scheme. For octet wave-function, we use the RS-scheme po-
tentialV RS

o (r), while for Coulomb singlet wave-function, we
use Eq. (1) without the linear piece. For Coulomb singlet, the
constantEQQ̄

g in Eq. (1) is chosen such that we reproduce
spin-averaged1s charmonium and bottomonium mass.

Suppose we assume that the overlap between hybrid
and octet wave-functions

∫
d3r Ψi†

m(r)Φo
l (r) is nonzero only

for hybrid energyEm: Em ≈ Eo
l + Λglue (which holds

for short-distance approximation where contribution from
bijr2 piece in Eq. (9) is ignored), the overlap function
of quarkonium and Coulomb singlet wave-function satisfy∫

d3r Φs†
n (r)ΦQ

n (r) ≈ 1 and the singlet and quarkonium en-
ergy satisfyEQ

n ≈ Es
n, then Eq. (10) is simplified to

Γsim(m → n) ≈ 4αsTF

3Nc
T ij(T ij)∗ (Em − EQ

n )3 , (12)

T ij ≡
∫

d3r Ψi†
m(r)rjΦQ

n (r). (13)

The simplified decay rate in Eq. (12) is identical to Eq. (17) in
Ref. [11] and Eq. (62) in Ref. [17]. However, in Ref. [11], the
authors only consider the diagonal elementsT ii of the matrix
element instead of the full tensor structureT ij in Eq. (13).
This led to a selection rule that hybrid states withL = LQQ̄

does not decay. This is incorrect as such decays are allowed
by considering the tensor structureT ij of the matrix element
in Eqs. (10) and (12). The results are shown in table below.

In Table I, we see that for most of the cases, the values of
the decay rate obtained using the simplified expression in

Supl. Rev. Mex. Fis.3 0308038
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TABLE I. Inclusive decay rate (spin-conserving) for hybrid decays to traditional quarkonium states:Hm → Qn + X. The hybrid states are

denoted bym
(
LQQ̄

)
L

whereas the quarkonium states are denoted bynL
′
. The decay rate in third column is computed using Eq. (12) and

in last column using Eq. (10). The upper error bar is from changing the scale to∆E/2 in αs while the lower error bar is from changing the
scale to2∆E in αs.

m
(
LQQ̄

)
L
→ nL

′
∆E (GeV) Γsim (MeV) Γ (MeV)

charmonium hybrid decay

1p0 → 1s 1.522 327+137
−71 117+49

−25

1p0 → 2s 0.912 194+118
−53 71+43

−19

2p0 → 1s 1.986 45+16
−9 15+5

−3

1p1 → 1s 1.218 156+76
−37 146+71

−35

2p1 → 1s 1.599 65+27
−14 9 +4

−2

2(s/d)1 → 1p 1.013 113+63
−29 7 +4

−2

4(s/d)1 → 1p 1.381 99+44
−22 8 +4

−2

bottomonium hybrid decay

1p0 → 1s 1.622 69+28
−14 102+41

−22

1p0 → 2s 1.055 159+86
−40 20+11

−5

2p0 → 1s 1.909 34+12
−7 15+5

−3

2p0 → 2s 1.342 42+19
−10 63+29

−14

3p0 → 1s 2.174 19+6
−4 12+4

−2

3p0 → 2s 1.607 20+4
−8 25+10

−5

4p0 → 1s 2.421 12+4
−2 7 +2

−1

4p0 → 2s 1.854 11+4
−2 30+11

−6

1p1 → 1s 1.404 29+13
−7 80+35

−18

2p1 → 1s 1.617 28+11
−6 26+11

−6

3p1 → 1s 1.828 22+8
−4 16+6

−3

2(s/d)1 → 1p 1.068 15+8
−4 163+87

−41

3(s/d)1 → 1p 1.264 73+35
−17 90+43

−21

3(s/d)1 → 2p 0.907 22+14
−6 83+51

−23

4(s/d)1 → 1p 1.300 155+72
−36 103+48

−24

Eq. (12) and the general expression (involving several overlap
expressions) in Eq. (10) differs with each other even consid-
ering the error bars. This raises the questions on the valid-
ity of the approximations that were used to obtain the sim-
plified expression in Eq. (12). We find that the overlap be-
tween hybrid and octet wave-function

∫
d3r Ψi†

m(r)Φo
l (r) is

nonzero over wide range of octet energies, if we don’t assume
Em ≈ Eo

l + Λglue (which holds for short-distance approxi-
mation. See Ref. [16]). Also, we find that the approximation
about the singlet and quarkonium energyEQ

n ≈ Es
n is only

valid for 1s charmonium and bottomonium.

4. Conclusions

In this work, we use the framework of nonrelativistic effec-
tive theory to study the inclusive decays of heavy quark hy-
brids to traditional quarkonium, We obtain an expression of

the decay rate (Eq. (10)) by doing one-loop matching be-
tween pNRQCD and BOEFT. The decay rate depends on
the overlap function of hybrid, octet, Coulomb singlet and
quarkonium wave-functions. We find that using certain as-
sumptions, the decay rate in Eq. (10) reduces to a sim-
plified expression in Eq. (12) that was earlier derived in
Refs. [11, 17]. However, the results in Table I raises ques-
tions on the validity of those approximations.
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