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Semi-vortices and cluster-vorticity: new concepts in the
Berezinski-Kosterlitz-Thouless phase transition
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The BerezinsKiKosterlitz-Thouless (BKT) essential phase transition in the 2d XY model is revisited. Its mechanism is usually described
by the (un)binding of vortex—anti-vortex (V-AV) pairs, which does, however, not provide a clear-cut quantitative criterion for criticality.
Known sharp criteria are the divergence of the correlation length and a discontinuity of the helicity modulus. Here we propose and probe a
new criterion: it is based on the concepts of semi-vortices and cluster vorticity, which are formulated in the framework of the multi-cluster
algorithm that we use to simulate the 2d XY model.
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1. The 2d XY model H AT DL I RS

A . T T O e P
We consider the 2d XY model, or 2d O(2) model, on square / » » = = = >~ % X % %\ %\ u = = r 5 f
lattices of sizeL. x L. At each lattice siter = (4, ), P e~y AN NN s A
i,j € {1,..., L} there is a classical spin variahige € S*, ¥ b op sk ko R T
i.e.¢, € R?and|e,| = 1, Vz. It can be parameterizedas + + + % x # # # 4 t ¥ P X b &
€r = (cos @y, sin p,), v, € R. In lattice units, the Hamilton TR R T P N
function, or Hamiltonian, of a spin configuratid¢d] is given NNN SN =g ff e N X
by L N TV AV aP b ol e T

R .4 B A e L ¢

He] =~ Z € €y, (1) FIGURE 1. Prototypes of a vortex (V, left) and an anti-vortex (AV,
(zy) right) in the centers of the plots. They show subsets of possible

I . . . configurations in some region.
where(zy) indicates the nearest-neighbor lattice sites; we see g g

that the spins are coupled fe_rromag_netic_?aIWne modelhas  \yhere/ is a lattice unit vector in the-direction. Note that
a global O(2) symmetry, which inspires its application in the,;e 5re using a non-standard modulo operation, which min-
description of films of superfluitHe and of superconductors imizes the absolute value (the ambiguous cAsg, ., =

(although there the/(1) = O(2) symmetry is local). ~ +x has measure zero). Each plaquette carries a vorticity
We assume periodic boundary conditions in both direcy, mper

tions, i.e. the volume has the structure of a torus. As usual,

the partition functionZ and the thermal expectation value of 1

. ectaic v = o= (A gri + APpiiariss
some observabld[¢] are given by the functional integrals =7 g \TFeatl T OPetlotiv

7= / Dee VT (4) = / D& Afg)eMEVT e+ Ave,) €101 @)
v, = 1 means that a vortex (V) is located on this plaquette,
whereT is the temperature, cf. footnote for v, = —1 it is an anti-vortex (AV), and fow, = 0 the

Of particular interest argorticesin the spin configura-  plaquette is neutral (free of vorticity).
tions. In order to define them, we consider the relative angle  Due to Stokes’ Theorem, the periodic boundary condi-
between two nearest-neighbor spins, tions imply that the total vorticity of any configuration van-

ishes,Y " v, = 0, hence there is always the same number of
A‘)Oac,aﬁﬂl = (‘pm+ﬂ - @w) mod 27 € (—7T77T') ) (2) V and AV.

i We do not include a coupling constant, because what matters below is just thé{yafiowhereT is the temperature, which we scale such that it
absorbs this coupling. In lattice units (with lattice spacing 1) the dimensioh&afd 7" are not manifest.
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At the critical temperaturd’, this model undergoes an
essential phase transition, BBerezinskiKosterlitz-Thouless
(BKT) transition[1,2]. For a comprehensive overview, we re-
fer to Ref. [3]. BKT transitions have been experimentally ob-
served in superfluidHe [4], in various superconductors [5],
and recently also in a frustrated magnet [6].

In contrast to finite-order phase transitions, the corre-
lation length¢ does not diverge with a power-lavg, o
(T —T.)~", but its behavior ai” 2 T is exponential,

FIGURE 2. Typical configurations a8 = 1.12 > (. (left) and

onst B = 0.6 < G (right), with V and AV indicated by red (bright) and

£ ~exp (Cb) , 4) blue (dark) plaquettes, respectively (afict 1/7"). We see bound
(T —Tc)v V-AV pairs on the left, and free V and AV on the right.

wherev, = 0.5 [7] is an exponential critical exponetitin

Ehrenfest’s scheme, this is a phase transition of infinite orded..1. Constraint lattice Hamiltonian

i.e. very smooth. It is not related to any spontaneous sym- ) _ ) )

metry breaking (the spontaneous breaking of the O(2) global "anks touniversality, this model — like other models —
symmetry is excluded il = 2 by the Mermin-Wagner- €an be formulatgd with gn_(lnfmlte_) variety of lattice Hamilto-
Coleman Theorem, so we avoid the expressions “order” anflians. The continuum limit — which correspondste- oo,

“disorder”). AtT < T, the system remains critical, covering SO that the lattice spacing vanishes in unitg @fs an intrin-
a variety of universality classes. sic scale — is always the same (if suitable conditions are

fulfilled, such as locality), hence they all describe the same
hysics.

Constraint lattice Hamiltonians for @) models have a
simple structure, without any derivatives [11]: there is just a
é:onstrain'ré for all angles between nearest-neighbor spins,

The critical temperature was numerically measured in nu
merous works. High precision results were reported in Refs?
[8], which are in agreement with. = 1/7, = 1.1199(1).

In a sequence of famous papers [1, 2], Berezinakd
later Kosterlitz and Thouless assigned this transition to th
vortex dynamics: . 0 if [Apyarnl <6, Ya,u

He] = { 400 otherwise. ®)
e At T < T, the V and AV appear in pairs close to each ] )
other (“bound pairs”): for a given number of V and AV, Instead of temperature one varies the constraint angied
this structure minimizes the free enetfy= —T'lnz,  the BKT transition occurs in the 2d XY model a =
which implies an attractive force between near-by v 1-775(1) [12]. We confirmed that it is in the BKT univer-
and AV. Such localized pairs do not significantly affect sality class by numerically measuring the exponential critical

the long-range correlations, so we are in thassless €xponent. = 0.503(7), which is compatible with Koster-
phase litz’ prediction [7]. Further evidence for the BKT universality

class is based on the step-scaling function [12,13].

In Ref. [14] we studied in particular the (un)binding
) . : _ mechanism, by considering various options for a cutoff dis-
fect: _the attr_agtlye force Iqses !ts dominance OVeltance between the nearest V and AV, for being considered
the high multiplicity of conﬁgurauqns where Vv an.d. a “bound pairs”. Indeed, the celebrated mechanism is con-
AV are S_E)iread over the volume“ W'tr,],OUt any Spemflcfirmed again. However, the argument with the free energy
St”%"“%rez: _We denot_e them as “free” V and AV, and does not apply in this formulation, which does not really
t_he|r3|gn_|f|cant d_en5|ty doe_s affect long-range COrrela'agree with the established picture: the (un)binding mecha-
tions, which entails thenassive phase nism seems to be a pure entropy effect after all.

e At T > T, these pairs “unbind” as an entropy ef-

In 2016 Kosterlitz and Thouless were awarded the Nobel > Helicity modulus
Prize (sadly Berezinskt had passed away in 1980, at the
age of only 44) — at that occasion, their work was reviewedA short-coming of the (un)binding mechanism is that it does
in Ref. [10]. not provide a clear-cut quantitative criterion fay. In par-

i Here the relationv means that this is the term which dominates the divergence, even if there may be a pre-factor with some (¥oweT of.

77 Schematically we see this by writing the free energffas= Ey — T'S = (7 — 2T) In L, whereExy; is the (estimated) energy requirement for
inserting one V or AV into a “smooth background”, adds the entropy, as reviewed in Ref. [10].

iv His work particularly inspired Polyakov to introduce his famous “dislocations” in gauge theory, with the hope to explain the confinement—deconfinement

transition [9].
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ticular, the distinction between “bound pairs” and “free” V and for the standard Hamiltoniet)the convergence towards
and AV is not clearly defined. this value for increasind. is very slow: even al. = 2048,
We have mentioned the divergence of the correlatioril’ = T, it is still 6.6% too high [8]. The constraint Hamil-
length forT \ T, as one clear criterion. Another one refers tonian behaves much better: At= 64, 6 = 4., it already
to the helicity modulug(or spin stiffnesk it quantifies how agrees with the theory to a precision below 1% [14], which
the free energy’ reacts to an (infinitesimal) change of the was the first convincing numerical confirmation of the pre-
boundary conditions. Say in tHedirection they are general- diction (9). In Fig. 3 we show new simulation results with
ized from periodic to twisted, the standard Hamiltonian, which are consistent with Ref. [8],
though we are limited td, < 512.
N COos «x
oLl = ( sin «v

In terms of thetwist anglec, the helicity modulusl’ — and

its dimensionless counterpaft— are given by
0*F
T:=—

0a?’

For the standard Hamiltoniad)(one obtain%
_ 1 L
=7 < D ew+i>
xT

~ e (e -

—sina ) e, . ©6)

COs «x

2. Proposal for a new criticality criterion

Let us now proceed to our suggestion for a new criterion to

@) identify the critical temperaturg,. It is based on the Wolff
cluster algorithm [19], which is not only most efficient to
simulate this model, but it also allows us to introduce physi-
cal quantities, like semi-vortices [20]. The idea is related to
the stochastic formulation of merons (semi-instantons) in the
2d O(3) model [21].

Let us begin by sketching the multi-cluster algorithm. A
configuratior|é] is efficiently updated by the following steps:

- 1
T'_TT'

6562)6(1)1))2> 7 8)

e 1. Choose a random vectgre S* with uniform probabil-

hence this quantity can be numerically measured without ever
moving away froma = 0 (this is not the case for the con-
straint Hamiltonian [14]). Theory predicts a discontinuous

ity. The line orthogonal te’ through the origin is denoted as
the Wolff line. “Flipping” a spin variable, means that it is
reflected in the Wolff line.

jump of Y [16], which agrees with the observed jump in the
density of superfluidHe films [4] and in a trapped, ultracold
2d Bose gas [17],

e 2. Check all links between nearest-neighbor lattice sites, say
x andz + [i (possibly across the periodic boundaries). We
consider putting a “bond” which “attaches” the spin variables
€, ande, ;. If we flip one of these two spins, the contribu-
tion of this spin pair to the Hamiltonial changes by some
amount that we call\H.

If AH < 0, we do not put a bond. In particular, this means
that we never put a bond &, andé,4, point to opposite
sides of the Wolff line.

If AH > 0, we put a bond with probability — e=2"/7",

. - 2
Bon XT) = (1~ 16077) = 0.6365

(T >T.) =0, 9)

(the small exponential correction to the jump height was dis-
covered in Ref. [18]). This formula refers to infinite volume,

e 3. All spins which are (directly or indirectly) connected by
bonds form oneluster. We identify all the clusters; thus the
entire configuration is divided into a set of clusters.

e 4. Each cluster is flipped with probability/2: in this case,
all the spins of a cluster are flipped collectively.

e Returnto 1.

This algorithm fulfills the required conditions of detailed
balance and ergodicity [19]. It turns out that the cluster size
] ) distribution scales with the correlation length to some frac-
py 2 L — - tal dimensionD, i.e. the histogram stabilizes as a function of

T (cluster size)¢?, thus exhibiting a universal behavior [20].

Let us assume the steps 1 toi.8. we have a “map” of

clusters. The V and AV can only be located at the boundaries

between the clusters; for a plaquette inside a cluster all spins

FIGURE 3. Simulation results for the dimensionless helicity mod-
ulus Y, obtained with the standard Hamiltoniét),(and the theo-
retically predicted jump in infinite volume.

v There is some confusion about the correct term, but it has been reproduced carefully in Refs. [15].
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FIGURE 5. Cluster vorticity(V¢) as a function of3. It coincides
FIGURE 4. The temperature-dependent density of free semi-V, asto high accuracy for different lattice sizés

defined in this section, in volumds x L, with 3 = 1/T.

point to the same side of the Wolff line, hence these plaque- .

ttes are neutral. It turns out that a V or AV on a plaguette can
only involve spins belonging to exactly two clusters [15, 20].

This inspires the assignment of a vorticity contribution of s
some plaquette to a given clustérwe call itv, ¢. Flipping >~
the clusterC (while keeping all other clusters fixed) changes . 4
the configuratiori¢’] to another configuratiofg” |, and it may
change the vorticity of the plaquettes at its boundary. We de-
fine

vee =3 (alf] —wal@']) € {~3,0,5},  (10) : ST
FIGURE 6. Cluster vorticity susceptibilityyy as a function of3,

which introduces the concept dafemi-vortices(semi-V, ; R
for various lattice size&.

vg,c = 1/2) andsemi-anti-vorticegsemi-AV, v, ¢ = —1/2)

[20]. Note thatv, ¢ does not depend on the flipping orienta-
tion of the other clusters, which is important for the concept
to be sensible. Thus a V is split into two semi-V associated.

: . ion,
with two clusters (and the same for an AV). The vorticity of

a plaquette is retrieved ag = ) . v, c. Ve = Nsemi-v = Nsemi-AV - (11)
For a configuration withV¢ clusters, all the cluster flips

provide an ensemble @< configurations. In two of them

all the spins are on the same side of the Wolff line, these ar

Next we define the vorticity of a clustérby the number
f semi-V generated by its flip out of a reference configura-

Fora configl_Jration withV¢ clusters we obtain the mean clus-
'éer vorticity Ve, and the mean squatg -,

thereference configurationsf we start from a reference con- ~ 1 Xe ~ 1 Xe
figuration and flip just one cluster, some semi-V may appear Ve =+~ > Ve, Veo= No V¢ (12
at its boundary, and the same number of semi-AV — they are € k=1 € k=1
alternatingly ordered along the boundary [20]. This takes us to theluster vorticity susceptibility
This provides a sharp criterion to define whether or not a - .
V—AV pair is bound: this is the case if its semi-V and semi- xv = {Vez) = (Ve)™ (13)

AV are associated with Only two clusters. Under cluster ﬂipS,Figure 5 ShOWg]}C% which hard|y depends on the volume,
they can only appear or disappear simultaneously, and thefind which increases significantly belofy, like the free
signs can only change simultaneously. Here, the binding doesemi-V density, but again with a smooth behavior.
not refer to their distance, but to their fate under cluster ﬂlpS Hence its peak locatiof,,.x l00ks promising as a nhew
The remainindgree semi-\are therefore supposed to drive criticality criterion. Figure 7 illustrates its thermodynamic
the BKT phase transition. Figure 4 shows that — for decreasextrapolation: we show a 3-parameter fit of the data points to
ing temperaturél’ — a significant density of free semi-V the functiona/L¢ + b (Fit 1); it leadsb = 1.0959(62), with
does set in around, but this density looks like a smooth a good fitting quality ofy?/dof = 1.36, which misses the
function of T: for increasing sizd. it does not approach the consensus of the literature [8}, = 1.1199(1), by 2.14 %,
behavior like an order parameter (zerdlat> T, non-zero or 3.87¢. We add another fit to the same function, which
atT < Tp). includes 3. (Fit 2):

Supl. Rev. Mex. Fis3 020724
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FIGURE 7. Two thermodynamic extrapolations Bf..x, the peak
location ofxy.

0.008 0.010

it still has a decent quality, with the ratig? /dof = 2.65,
which means that it is still conceivable tfg,.. converges to
B in the largef. limit. We are in the process of testing this
hypothesis with simulations on larger lattices.

3. Final remarks

5

peak close td, with a height that rises with the volunie’.
So far it seems that a natural thermodynamic extrapola-
tion of the peak temperature — based on data up te 264
— slightly missesl.. However, we should keep in mind that
finite-size effects tend to be very persistent in this model, in
particular for the standard Hamiltoniét) ( We saw this prop-
erty in the case of the helicity modulus, and the same holds
for the magnetic susceptibility,,: at T, it is predicted to
scale asy,,, o« L™/*(In L)'/ [7], but even sizd, = 2048 is
not sufficient to numerically confirm these exponents [8].
Hence, we hope for the largepeak location ofy,, to
agree withT,, which would provide a new criterion for the
BKT transition.
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