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Semi-vortices and cluster-vorticity: new concepts in the
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The Berezinskiı̆-Kosterlitz-Thouless (BKT) essential phase transition in the 2d XY model is revisited. Its mechanism is usually described
by the (un)binding of vortex–anti-vortex (V–AV) pairs, which does, however, not provide a clear-cut quantitative criterion for criticality.
Known sharp criteria are the divergence of the correlation length and a discontinuity of the helicity modulus. Here we propose and probe a
new criterion: it is based on the concepts of semi-vortices and cluster vorticity, which are formulated in the framework of the multi-cluster
algorithm that we use to simulate the 2d XY model.
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1. The 2d XY model

We consider the 2d XY model, or 2d O(2) model, on square
lattices of sizeL × L. At each lattice sitex = (i, j),
i, j ∈ {1, . . . , L} there is a classical spin variable~ex ∈ S1,
i.e. ~ex ∈ R2 and |~ex| = 1, ∀x. It can be parameterized as
~ex = (cos ϕx, sin ϕx), ϕx ∈ R. In lattice units, the Hamilton
function, or Hamiltonian, of a spin configuration[~e ] is given
by

H[~e ] = −
∑

〈xy〉
~ex · ~ey , (1)

where〈xy〉 indicates the nearest-neighbor lattice sites; we see
that the spins are coupled ferromagneticallyi. The model has
a global O(2) symmetry, which inspires its application in the
description of films of superfluid4He and of superconductors
(although there theU(1) = O(2) symmetry is local).

We assume periodic boundary conditions in both direc-
tions, i.e. the volume has the structure of a torus. As usual,
the partition functionZ and the thermal expectation value of
some observableA[~e ] are given by the functional integrals

Z =
∫
D~e e−H[~e ]/T , 〈A〉 =

1
Z

∫
D~e A[~e ]e−H[~e ]/T ,

whereT is the temperature, cf. footnotei.
Of particular interest arevortices in the spin configura-

tions. In order to define them, we consider the relative angle
between two nearest-neighbor spins,

∆ϕx,x+µ̂ = (ϕx+µ̂ − ϕx) mod 2π ∈ (−π, π) , (2)

FIGURE 1. Prototypes of a vortex (V, left) and an anti-vortex (AV,
right) in the centers of the plots. They show subsets of possible
configurations in some region.

whereµ̂ is a lattice unit vector in theµ-direction. Note that
we are using a non-standard modulo operation, which min-
imizes the absolute value (the ambiguous case∆ϕx,x+µ̂ =
±π has measure zero). Each plaquette carries a vorticity
number

vx =
1
2π

(
∆ϕx,x+1̂ + ∆ϕx+1̂,x+1̂+2̂

+∆ϕx+1̂+2̂,x+2̂ + ∆ϕx+2̂,x

)
∈ {1, 0,−1}. (3)

vx = 1 means that a vortex (V) is located on this plaquette,
for vx = −1 it is an anti-vortex (AV), and forvx = 0 the
plaquette is neutral (free of vorticity).

Due to Stokes’ Theorem, the periodic boundary condi-
tions imply that the total vorticity of any configuration van-
ishes,

∑
x vx = 0, hence there is always the same number of

V and AV.

i We do not include a coupling constant, because what matters below is just the ratioH/T , whereT is the temperature, which we scale such that it
absorbs this coupling. In lattice units (with lattice spacing 1) the dimensions ofH andT are not manifest.
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At the critical temperatureTc this model undergoes an
essential phase transition, theBerezinskĭı-Kosterlitz-Thouless
(BKT) transition[1,2]. For a comprehensive overview, we re-
fer to Ref. [3]. BKT transitions have been experimentally ob-
served in superfluid4He [4], in various superconductors [5],
and recently also in a frustrated magnet [6].

In contrast to finite-order phase transitions, the corre-
lation length ξ does not diverge with a power-law,ξ ∝
(T − Tc)−ν , but its behavior atT & Tc is exponential,

ξ ∼ exp
(

const.
(T − Tc)νe

)
, (4)

whereνe = 0.5 [7] is an exponential critical exponent.ii In
Ehrenfest’s scheme, this is a phase transition of infinite order,
i.e. very smooth. It is not related to any spontaneous sym-
metry breaking (the spontaneous breaking of the O(2) global
symmetry is excluded ind = 2 by the Mermin-Wagner-
Coleman Theorem, so we avoid the expressions “order” and
“disorder”). At T < Tc the system remains critical, covering
a variety of universality classes.

The critical temperature was numerically measured in nu-
merous works. High precision results were reported in Refs.
[8], which are in agreement withβc ≡ 1/Tc = 1.1199(1).

In a sequence of famous papers [1, 2], Berezinskiı̆ and
later Kosterlitz and Thouless assigned this transition to the
vortex dynamics:

• At T < Tc the V and AV appear in pairs close to each
other (“bound pairs”): for a given number of V and AV,
this structure minimizes the free energyF = −T ln Z,
which implies an attractive force between near-by V
and AV. Such localized pairs do not significantly affect
the long-range correlations, so we are in themassless
phase.

• At T > Tc these pairs “unbind” as an entropy ef-
fect: the attractive force loses its dominance over
the high multiplicity of configurations where V and
AV are spread over the volume without any specific
structure.iii We denote them as “free” V and AV, and
their significant density does affect long-range correla-
tions, which entails themassive phase.

In 2016 Kosterlitz and Thouless were awarded the Nobel
Prize (sadly Berezinskiı̆iv had passed away in 1980, at the
age of only 44) — at that occasion, their work was reviewed
in Ref. [10].

FIGURE 2. Typical configurations atβ = 1.12 > βc (left) and
β = 0.6 < βc (right), with V and AV indicated by red (bright) and
blue (dark) plaquettes, respectively (andβ ≡ 1/T ). We see bound
V–AV pairs on the left, and free V and AV on the right.

1.1. Constraint lattice Hamiltonian

Thanks touniversality,this model — like other models —
can be formulated with an (infinite) variety of lattice Hamilto-
nians. The continuum limit — which corresponds toξ →∞,
so that the lattice spacing vanishes in units ofξ as an intrin-
sic scale — is always the same (if suitable conditions are
fulfilled, such as locality), hence they all describe the same
physics.

Constraint lattice Hamiltonians for O(N ) models have a
simple structure, without any derivatives [11]: there is just a
constraintδ for all angles between nearest-neighbor spins,

H[~e ] =
{

0 if |∆ϕx,x+µ̂| < δ, ∀x, µ
+∞ otherwise. (5)

Instead of temperature one varies the constraint angleδ, and
the BKT transition occurs in the 2d XY model atδc =
1.775(1) [12]. We confirmed that it is in the BKT univer-
sality class by numerically measuring the exponential critical
exponentνe = 0.503(7), which is compatible with Koster-
litz’ prediction [7]. Further evidence for the BKT universality
class is based on the step-scaling function [12,13].

In Ref. [14] we studied in particular the (un)binding
mechanism, by considering various options for a cutoff dis-
tance between the nearest V and AV, for being considered
a “bound pairs”. Indeed, the celebrated mechanism is con-
firmed again. However, the argument with the free energy
does not apply in this formulation, which does not really
agree with the established picture: the (un)binding mecha-
nism seems to be a pure entropy effect after all.

1.2. Helicity modulus

A short-coming of the (un)binding mechanism is that it does
not provide a clear-cut quantitative criterion forTc. In par-

ii Here the relation∼ means that this is the term which dominates the divergence, even if there may be a pre-factor with some power of(T − Tc).

iii Schematically we see this by writing the free energy asF = EV − TS = (π − 2T ) ln L, whereEV is the (estimated) energy requirement for
inserting one V or AV into a “smooth background”, andS is the entropy, as reviewed in Ref. [10].

iv His work particularly inspired Polyakov to introduce his famous “dislocations” in gauge theory, with the hope to explain the confinement–deconfinement
transition [9].
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ticular, the distinction between “bound pairs” and “free” V
and AV is not clearly defined.

We have mentioned the divergence of the correlation
length forT ↘ Tc as one clear criterion. Another one refers
to thehelicity modulus(or spin stiffness): it quantifies how
the free energyF reacts to an (infinitesimal) change of the
boundary conditions. Say in thê1-direction they are general-
ized from periodic to twisted,

~ex+L1̂ =
(

cos α − sinα
sinα cos α

)
~ex . (6)

In terms of thetwist angleα, the helicity modulusΥ — and
its dimensionless counterpartῩ — are given by

Υ :=
∂2F

∂α2
, Ῡ :=

1
T

Υ . (7)

For the standard Hamiltonian (1) one obtainsv

Ῡ =
1

TL2

〈 ∑
x

~ex · ~ex+1̂

〉

− 1
(TL)2

〈( ∑
x

(e(1)
x e

(2)

x+1̂
− e(2)

x e
(1)

x+1̂
)
)2〉

, (8)

hence this quantity can be numerically measured without ever
moving away fromα = 0 (this is not the case for the con-
straint Hamiltonian [14]). Theory predicts a discontinuous
jump of Ῡ [16], which agrees with the observed jump in the
density of superfluid4He films [4] and in a trapped, ultracold
2d Bose gas [17],

lim
T↗Tc

Ῡ(T ) =
2
π

(1− 16e−4π) ' 0.6365 ,

Ῡ(T ≥ Tc) = 0, (9)

(the small exponential correction to the jump height was dis-
covered in Ref. [18]). This formula refers to infinite volume,

FIGURE 3. Simulation results for the dimensionless helicity mod-
ulus Ῡ, obtained with the standard Hamiltonian (1), and the theo-
retically predicted jump in infinite volume.

and for the standard Hamiltonian (1) the convergence towards
this value for increasingL is very slow: even atL = 2048,
T = Tc, it is still 6.6% too high [8]. The constraint Hamil-
tonian behaves much better: atL = 64, δ = δc, it already
agrees with the theory to a precision below 1% [14], which
was the first convincing numerical confirmation of the pre-
diction (9). In Fig. 3 we show new simulation results with
the standard Hamiltonian, which are consistent with Ref. [8],
though we are limited toL ≤ 512.

2. Proposal for a new criticality criterion

Let us now proceed to our suggestion for a new criterion to
identify the critical temperatureTc. It is based on the Wolff
cluster algorithm [19], which is not only most efficient to
simulate this model, but it also allows us to introduce physi-
cal quantities, like semi-vortices [20]. The idea is related to
the stochastic formulation of merons (semi-instantons) in the
2d O(3) model [21].

Let us begin by sketching the multi-cluster algorithm. A
configuration[~e ] is efficiently updated by the following steps:

• 1. Choose a random vector~r ∈ S1 with uniform probabil-
ity. The line orthogonal to~r through the origin is denoted as
the Wolff line. “Flipping” a spin variable~ex means that it is
reflected in the Wolff line.

• 2. Check all links between nearest-neighbor lattice sites, say
x andx + µ̂ (possibly across the periodic boundaries). We
consider putting a “bond” which “attaches” the spin variables
~ex and~ex+µ̂. If we flip one of these two spins, the contribu-
tion of this spin pair to the HamiltonianH changes by some
amount that we call∆H.

If ∆H ≤ 0, we do not put a bond. In particular, this means
that we never put a bond if~ex and~ex+µ̂ point to opposite
sides of the Wolff line.

If ∆H > 0, we put a bond with probability1− e−∆H/T .

• 3. All spins which are (directly or indirectly) connected by
bonds form onecluster.We identify all the clusters; thus the
entire configuration is divided into a set of clusters.

• 4. Each cluster is flipped with probability1/2: in this case,
all the spins of a cluster are flipped collectively.

• Return to 1.

This algorithm fulfills the required conditions of detailed
balance and ergodicity [19]. It turns out that the cluster size
distribution scales with the correlation length to some frac-
tal dimensionD, i.e. the histogram stabilizes as a function of
(cluster size)/ξD, thus exhibiting a universal behavior [20].

Let us assume the steps 1 to 3,i.e. we have a “map” of
clusters. The V and AV can only be located at the boundaries
between the clusters; for a plaquette inside a cluster all spins

v There is some confusion about the correct term, but it has been reproduced carefully in Refs. [15].
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FIGURE 4. The temperature-dependent density of free semi-V, as
defined in this section, in volumesL× L, with β = 1/T .

point to the same side of the Wolff line, hence these plaque-
ttes are neutral. It turns out that a V or AV on a plaquette can
only involve spins belonging to exactly two clusters [15,20].

This inspires the assignment of a vorticity contribution of
some plaquette to a given clusterC, we call itvx,C . Flipping
the clusterC (while keeping all other clusters fixed) changes
the configuration[~e ] to another configuration[~e ′ ], and it may
change the vorticity of the plaquettes at its boundary. We de-
fine

vx,C = 1
2 (vx[~e ]− vx[~e ′ ]) ∈ {− 1

2 , 0, 1
2} , (10)

which introduces the concept ofsemi-vortices(semi-V,
vx,C = 1/2) andsemi-anti-vortices(semi-AV,vx,C = −1/2)
[20]. Note thatvx,C does not depend on the flipping orienta-
tion of the other clusters, which is important for the concept
to be sensible. Thus a V is split into two semi-V associated
with two clusters (and the same for an AV). The vorticity of
a plaquette is retrieved asvx =

∑
C vx,C .

For a configuration withNC clusters, all the cluster flips
provide an ensemble of2NC configurations. In two of them
all the spins are on the same side of the Wolff line, these are
thereference configurations. If we start from a reference con-
figuration and flip just one cluster, some semi-V may appear
at its boundary, and the same number of semi-AV — they are
alternatingly ordered along the boundary [20].

This provides a sharp criterion to define whether or not a
V–AV pair is bound: this is the case if its semi-V and semi-
AV are associated with only two clusters. Under cluster flips,
they can only appear or disappear simultaneously, and their
signs can only change simultaneously. Here, the binding does
not refer to their distance, but to their fate under cluster flips.

The remainingfree semi-Vare therefore supposed to drive
the BKT phase transition. Figure 4 shows that — for decreas-
ing temperatureT — a significant density of free semi-V
does set in aroundTc, but this density looks like a smooth
function ofT : for increasing sizeL it does not approach the
behavior like an order parameter (zero atT ≥ Tc, non-zero
atT < Tc).

FIGURE 5. Cluster vorticity〈V̄C〉 as a function ofβ. It coincides
to high accuracy for different lattice sizesL.

FIGURE 6. Cluster vorticity susceptibilityχV as a function ofβ,
for various lattice sizesL.

Next we define the vorticity of a clusterC by the number
of semi-V generated by its flip out of a reference configura-
tion,

VC = Nsemi-V = Nsemi-AV . (11)

For a configuration withNC clusters we obtain the mean clus-
ter vorticity V̄C , and the mean squarēVC,2,

V̄C =
1

NC

NC∑

k=1

VCk
, V̄C,2 =

1
NC

NC∑

k=1

V2
Ck

. (12)

This takes us to thecluster vorticity susceptibility

χV = 〈V̄C,2〉 − 〈V̄C〉2 . (13)

Figure 5 shows〈V̄C〉, which hardly depends on the volume,
and which increases significantly belowTc, like the free
semi-V density, but again with a smooth behavior.

Hence its peak locationβmax looks promising as a new
criticality criterion. Figure 7 illustrates its thermodynamic
extrapolation: we show a 3-parameter fit of the data points to
the functiona/Lc + b (Fit 1); it leadsb = 1.0959(62), with
a good fitting quality ofχ2/dof = 1.36, which misses the
consensus of the literature [8],βc = 1.1199(1), by 2.14%,
or 3.87σ. We add another fit to the same function, which
includes βc (Fit 2):

Supl. Rev. Mex. Fis.3 020724



SEMI-VORTICES AND CLUSTER-VORTICITY: NEW CONCEPTS IN THE BEREZINSKIĬ-KOSTERLITZ-THOULESS. . . 5

FIGURE 7. Two thermodynamic extrapolations ofβmax, the peak
location ofχV .

it still has a decent quality, with the ratioχ2/dof = 2.65,
which means that it is still conceivable theβmax converges to
βc in the large-L limit. We are in the process of testing this
hypothesis with simulations on larger lattices.

3. Final remarks

We have reviewed some aspects of the BKT transition in the
2d XY model, and we arrived at the recently suggested con-
cept of semi-vortices. We search for a new quantity which
clearly detects the critical temperatureTc. The cluster vor-
ticity susceptibilityχV of Eq. (13) looks promising: it has a

peak close toTc, with a height that rises with the volumeL2.
So far it seems that a natural thermodynamic extrapola-

tion of the peak temperature — based on data up toL = 264
— slightly missesTc. However, we should keep in mind that
finite-size effects tend to be very persistent in this model, in
particular for the standard Hamiltonian (1). We saw this prop-
erty in the case of the helicity modulus, and the same holds
for the magnetic susceptibilityχm: at Tc it is predicted to
scale asχm ∝ L7/4(ln L)1/8 [7], but even sizeL = 2048 is
not sufficient to numerically confirm these exponents [8].

Hence, we hope for the large-L peak location ofχV to
agree withTc, which would provide a new criterion for the
BKT transition.
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