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Quenched glueballs in the DSE/BSE framework∗
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The spectrum of glueballs with quantum numbersJPC = 0±+, 2±+, 3±+, 4±+ is calculated in quenched quantum chromodynamics (QCD)
from bound state equations. The input is taken from a parameter-free calculation of two- and three-point functions. Our results agree well
with lattice results where available and contain also some additional states. For the scalar glueball, we present first results for the effects of
additional diagrams which turn out to be strongly suppressed.
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1. Introduction

The determination of the spectrum of bound states consist-
ing dominantly of gluonic constituents is challenging both
for theory and experiment, see,e.g., [1-5]. Prominent can-
didates for scalar and tensor glueballs are the measuredf0

andf2 states. Their gluonic content as determined from ra-
diativeJ/ψ decays was discussed recently in Refs. [6-8]. On
the theory side, the benchmark has been lattice simulations of
the glueball spectrum [9-12]. However, the most reliable cal-
culations were done for quenched QCD, viz., with all quark
contributions suppressed. The inclusion of dynamical quarks
remains a challenge, see,e.g., [13-15].

Functional methods are an alternative nonperturbative
method that can be used to calculate the hadron spectrum.
The determination of mesons and baryons is an active field,
see,e.g., [16,17]. Often, an effective interaction is employed
in such calculations. Such an approach was also employed
for glueballs [18-21]. Alternatively, one can determine the
input in a self-contained way and eliminate the need for any
model parameters. This was achieved for the first time in
Ref. [22] where we observed that the self-consistency of the
employed input is crucial. The original work for spinJ = 0
was extended to higher spin in Ref. [23]. An extension of this
setup for the pseudoscalar glueball was presented in Ref. [24]
where the effect of further diagrams was investigated and
found to be subleading. Here, we study the same effect for the
scalar glueball. Besides the calculation of the spectrum from
bound state equations, other functional approaches exist like

the calculation from correlation functions of gauge invari-
ant operators based on,e.g., an infrared momentum analysis
[25,26] or a direct calculation [27]. Also Hamiltonian many
body methods [28,29] or chiral Lagrangians [30,31] can be
used.

In this contribution we review the results for the quenched
glueball spectrum [22-24] and present first results taking into
account additional diagrams for the scalar glueball. We will
first present the functional equations used to calculate the
glueball spectrum and discuss how to solve them in Sec. 2.
The results are shown in Sec. 3 which is followed by a sum-
mary.

2. Methodology

We use the Bethe-Salpeter equation (BSE) for a two-gluon
bound state as derived from the 3PI effective action truncated
to three loops [32,33] as described in Ref. [22]. Details on
the method can be found in Refs. [34-36]. This yields the
equations and the corresponding kernels depicted in Figs. 1
and 2, respectively.

As input, two and three-point functions of gluons and
ghosts are required. We take them from Ref. [37] where
they were calculated from the same action. Note that in this
setup no model parameters exist. There is only one parame-
ter which is the physical scale. We set the scale by comparing
the gluon propagator with corresponding lattice results. For
the comparison with the lattice glueball results, we finally
adjust the scale to the same value of the Sommer parameter
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FIGURE 1. The coupled set of BSEs for a glueball made from two gluons and a pair of Faddeev-Popov (anti-)ghosts. Wiggly lines denote
dressed gluon propagators, dashed lines denote dressed ghost propagators. The gray boxes represent interaction kernels given in Fig. 2. The
Bethe-Salpeter amplitudes of the glueball are denoted by gray disks.

FIGURE 2. Interaction kernels from the three-loop 3PI effective action. All propagators are dressed; black disks represent dressed vertices.
In our main calculation, we include the diagrams inside the red rectangles. For the extended calculation, all diagrams of the gluon-gluon
interaction kernel (first line) are included.

r0 = 0.472 fm taken from [12]. Figures 3 and 4 show the
employed propagator and vertex results together with lattice
results. We want to stress that we do not have to rely only on
the good agreement of the functional with the lattice results
as an indicator of the reliability of the input, but there are ad-
ditional tests that attest to its quality. Obvious checks of a
truncation are assessments of the effects of extensions. Here,
we have several such extensions there were performed and
found to be quantitatively subleading, among them the inclu-
sion of further four-point functions [38,39] and the use of the
full three-gluon vertex basis [40], see [41] for an overview.
Last but not least, the agreement with results from the func-
tional renormalization group [42] is also a nontrivial test, as it
provides a completely independent set of equations. Similar
extensions of the truncation can be done for the BSE which
we discuss in a moment.

It should be noted that several solutions can be realized
that differ in the infrared, see,e.g., [41,43-49]. However,
physically these solutions seem to be equivalent and they

might be related [44,46] to the Gribov problem [50-52]. We
tested that explicitly for the scalar and pseudoscalar glueballs
where we found that the masses obtained from different so-
lutions agree within errors [23]. We thus continue here with
one solution.

The full BSE splits into two parts which we call glueball-
part and ghostball-part, see Fig. 1. The respective kernels
derived from the 3PI effective action truncated at three loops
are shown in Fig. 2. In Refs. [22,23], the diagrams in the
red boxes were included which lead to one-loop expressions
for the BSE. For a self-consistent solution of the BSE, the
two-loop diagrams are also required. They are computation-
ally much more expensive, which is why we calculate them
with reduced precision. We checked that this does not affect
the ground and first excited states but it can affect the second
excited state. Their inclusion is easiest for the pseudoscalar
glueball, because it does not contain a ghostball-part (there
is no corresponding amplitude with negative parity). As it
turned out, the two-loop diagrams are completely sublead

FIGURE 3. Gluon and ghost dressing functionsZ(p2) andG(p2), respectively, (left) and gluon propagatorD(p2) (right) in comparison to
lattice data [58].
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FIGURE 4. Left: Ghost-gluon vertex dressing function (full kinematic dependence) in comparison toSU(2) lattice data [59]. Right: Three-
gluon vertex dressing function at the symmetric point in comparison to lattice data [60,61]), see Refs. [62,63] for similar results.

ing in this case [24]. There is no significant effect on the
masses, as the eigenvalues change by less than 0.1‰. Here
we continue this study for the scalar glueball. We include
the full gluon-gluon interaction kernel. Since the glueball-
part is dominant for the determination of the scalar glueball
mass, the resulting two-loop diagrams are expected to yield
the largest correction to the original calculation. For the other
interaction kernels, their one-loop expressions are used.

The BSE is solved as an eigenvalue equation for the
Bethe-Salpeter amplitudeΓ(P, p) which depends on the to-
tal and relative momenta of the constituents,P and p, re-
spectively. A glueball massM2 = −P 2 is found when the
eigenvalueλ(P 2) equals one. The lowest mass corresponds
to the ground state and higher ones to excited states. To solve
the equation for time-like momentaP , the input needs to be
known in the complex plane. In our case, the input is only
available for Euclidean momenta. Corresponding direct cal-
culations of correlation functions only exist for less advanced
truncations [53-55]. Instead of extrapolating the input into

FIGURE 5. Extrapolation exemplified with a meson of massM =
2.62 GeV. The red dots represent the exact solutions for the eigen-
values, the star the physical one. The orange line is the averaged
extrapolation with errors indicated by the band. The horizontal er-
ror bars represent the errors for specific mass values. Below2 GeV,
the agreement is so good that the points lie on top of each other.

the complex momentum plane, we solve the BSE for real
and positiveP 2 and then extrapolate the resulting eigenvalue
curves to time-likeP 2. To this end, we use Schlessinger’s
continued fraction method, which has recently found many
applications in hadron physics,e.g., [56,57]. To assess its
reliability, we discussed a test case that can be solved for
time-like P 2 in Ref. [22]. Up to2 GeV, the extrapolation
is extremely reliable as can be seen in Fig. 5. Beyond that,
deviations are observed in the test case. Their size is esti-
mated by sampling over several different extrapolations, see
[22] for details.

3. Results

The results for the quantum numbersJCP = 0±+, 2±+, 3±+,
4±+ are shown in Fig. 6 and Table I. We also solved the BSE
for spinJ = 1 but did not obtain sensible solutions. We want
to stress that this is a consequence of the dynamics of the two-
body equation and not of the Landau-Yang theorem [64,65]
which does not apply in this framework, because the gluons
are not on-shell [23]. As next step to obtainJ = 1 glueballs,
one would solve a three-body bound state equation. For the
lighter states, there is good agreement with lattice results. In
some cases, we find even second excited states. For heavier
states, the uncertainty due to the extrapolation increases. We
denote this uncertainty in the plots and the table by∗. Also,
heavy states can decay which is, however, not captured by the
employed truncation.

For the scalar glueball, we can compare different levels
of truncation. Originally, all one-loop diagrams were in-
cluded [22]. Here we compare that to a calculation where
the two-loop diagrams for the glueball-part are included. Al-
though this has only a very small effect (less than a per mille)
on the individual eigenvalues, their extrapolation towards the
physical mass is shifted slightly. These shifts, however, are
still much smaller than the total extrapolation error. For the
ground state, the mass is one percent higher, for the first ex-
cited state two percent. For the second excited state we could
not make a comparison. The reason is that for the two-loop

Supl. Rev. Mex. Fis.3 0308086
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FIGURE 6. Results for glueball ground states and excited states for the indicated quantum numbers from lattice simulations [10,12] and
functional equations. In the left plot, we display the glueball masses on an absolute scale set byr0 = 1/(418(5) MeV). In the right plot, we
display the spectrum relative to the ground state. Masses with† are conjectured to be the second excited states. Masses with∗ come with
some uncertainty in their identification in the lattice case or in the trustworthiness of the extrapolated value in the BSE case.

TABLE I. Ground and excited state massesM of glueballs for various quantum numbers. Compared are lattice results from [10-12] with the
functional results of [22,23]. For [10,11], the errors are the combined errors from statistics and the use of an anisotropic lattice. For [12],
the error is statistical only. In our results, the error comes from the extrapolation method and should be considered a lower bound on errors.
All results use the same value forr0 = 1/(418(5) MeV). The related error is not included in the table. Masses with† are conjectured to be
the second excited states. Masses with∗ come with some uncertainty in their identification in the lattice case or in the trustworthiness of the
extrapolated value in the BSE case.

[10] [11] [12] This work

State M [MeV] M/M0++ M [MeV] M/M0++ M [MeV] M/M0++ M [MeV] M/M0++

0++ 1760(50) 1(0.04) 1740(60) 1(0.05) 1651(23) 1(0.02) 1850(130) 1(0.1)

0
∗++ 2720(180)∗ 1.54(0.11)∗ – – 2840(40) 1.72(0.034) 2570(210) 1.39(0.15)

0
∗∗++ – – – –

3650(60)† 2.21(0.05)†
3720(160) 2.01(0.16)

3580(150)† 2.17(0.1)†

0−+ 2640(40) 1.50(0.05) 2610(50) 1.50(0.06) 2600(40) 1.574(0.032) 2580(180) 1.39(0.14)

0
∗−+ 3710(60) 2.10(0.07) – – 3540(80) 2.14(0.06) 3870(120) 2.09(0.16)

0
∗∗−+ – – – –

4450(140)† 2.7(0.09)†
4340(200) 2.34(0.19)

4540(120)† 2.75(0.08)†

2++ 2447(25) 1.39(0.04) 2440(50) 1.40(0.06) 2376(32) 1.439(0.028) 2610(180) 1.41(0.14)

2
∗++ - - - - 3300(50) 2(0.04) 3640(240) 1.96(0.19)

2−+ 3160(31) 1.79(0.05) 3100(60) 1.78(0.07) 3070(60) 1.86(0.04) 2740(140) 1.48(0.13)

2
∗−+ 3970(40)∗ 2.25(0.07)∗ - - 3970(70) 2.4(0.05) 4300(190) 2.32(0.19)

3++ 3760(40) 2.13(0.07) 3740(60) 2.15(0.09) 3740(70)∗ 2.27(0.05)∗ 3370(50)∗ 1.82(0.13)∗

3
∗++ - - - - - - 3510(170)∗ 1.89(0.16)∗

3
∗∗++ - - - - - 3970(220)∗ 2.14(0.19)∗

3−+ - - - - - - 4050(290)∗ 2.19(0.22)∗

4++ - - - - 3690(80)∗ 2.24(0.06)∗ 4140(30)∗ 2.23(0.15)∗

4−+ - - - - - - 3240(300)∗ 1.75(0.2)∗

calculation we had to reduce the numeric precision which,
as we tested explicitly, is harmless for the first two states
but not the second excited state. We thus conclude that the
two-loop diagrams from the gluon-gluon interaction kernel
are severely suppressed. The neglected two-loop diagrams
from the ghost-gluon and ghost-ghost interaction kernels are

expected to be even more irrelevant as the ghostball-part it-
self is subleading. Neglecting it decreases the mass only by
approximately three percent for the groundstate and fourteen
percent for the first excited state.
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4. Summary

We presented results for the glueball spectrum of quenched
QCD calculated from the 3PI effective action. We obtain
good agreement with lattice results where they are available
and add more states. For the scalar glueball, we extended the
calculations from [22,23] by including two-loop diagrams.
As opposed to the pseudoscalar glueball, where these dia-
grams are totally negligible [24], we do find a nonzero effect
for the scalar glueball. However, it is smaller than the ex-
trapolation error. This provides further evidence that the em-
ployed truncation is quantitatively reliable. For the inclusion
of quarks, as planned in future work, a similar truncation is
thus promising.
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