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We give a pedagogical review to alternative, first quantised approaches to calculating graviton scattering amplitudes, giving an introduction
to string inspired approaches and presenting more recent work based on the worldline formalism of quantum field theory that is motivated
by these historic results. We describe how these first quantised techniques can greatly simplify the determination of such amplitudes, in
particular reducing the number of Feynman-like diagrams that enter the computation and leading to compact results.
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1. Introduction

The standard approach to perturbative quantum field theory
(QFT), based on the Feynman diagram expansion that organ-
ises contributions according to the number of (virtual) loops,
has been hugely successful, providing high-precision predic-
tions for scattering processes involving fundamental parti-
cles. However, efforts to push calculations to higher loop
orders are usually complicated by the factorial growth in the
number of diagrams and the increasing difficulty in carrying
out the resulting multi-dimensional integrals over virtual mo-
menta. Despite this the resulting amplitudes often turn out to
be much simpler than intermediate calculations would seem
to anticipate and can involve orders of magnitude cancella-
tions between diagrams to yield a relatively small final result.

This is well illustrated by the famous example of the
electron anomalous magnetic moment: Schwinger’s seminal
1948 one-loop calculation [1] involves only one Feynman di-
agram, which was extended to the 7 diagram two-loop calcu-
lation just 9 years later [2, 3]. It took until 1996 for the 72
three-loop diagrams to be calculated [4], while the four-loop
result followed a majestic computation of 891 diagrams, pub-
lished 21 years later [5] (some groups have analysed the five-
loop diagrams numerically [6, 7]). Yet as is summarised in
Table I, the coefficients multiplying powers of the natural ex-
pansion parameter (α/π, whereα, the fine structure constant,
is defined in terms of the electric charge,e, asα ≡ e2/4π)
end up being close to small half-integers thanks to spectacu-
lar cancellations between Feynman diagrams.

There are also cancellations of spurious UV divergences
between diagrams influenced by gauge symmetry, which one
might reasonably also connect to the subtle cancellations that
leave behind such small finite parts mentioned above. Indeed,
this has motivated Cvitanović to propose grouping diagrams
into so-called “gauge sets,” whereby sets of gauge invariant
diagrams are both UV finite and give contributions that are
close to being integer multiples of±1/2 multiplied by the
appropriate power of the perturbative expansion parameteri.
The issues of factorial growth and cancellation of divergences
is all the more complicated in the case of graviton amplitudes,
as we shall outline below, which is a significant motivation
for the approaches presented in this contribution.

Indeed, these considerations suggest that it may be advan-
tageous to consider alternative calculational techniques that
avoid the Feynman diagram machinery. If such methods were
better able to manifest the gauge symmetry of the theory, one
may hope that intermediate calculations could be cleaner and
it may be easier to understand the origins of the finiteness
and numerical value of the final result. Here we present two
such approaches, both of which based onfirst quantisedrep-
resentations of field theory, as a pedagogical review: astring
inspiredtechnique developed by Bern, Dunbar and Shimada
(BDS) [9], extending the so-called Master Formula obtained
for QCD by Bern and Kosower [10, 11] from an infinite ten-
sion limit of string theory to the case of graviton amplitudes;
and theworldline formalism, pioneered by Strassler [12] fol-
lowing initial suggestions by Feynman [13,14].

TABLE I. Contributions to the electrong − 2 at various loop orders (QED).

Order Complexity Result (added tog−2
2

) Timeline

1-loop 1 Diagram 1
2

α
π

1948 — Schwinger [1]

2-loop 7 Diagrams −0.328 . . .
(

α
π

)2
1957 — Petermann [2] / Sommerfeld [3]

3-loop 72 Diagrams +1.181 . . .
(

α
π

)3
1996 — Laporta, Remiddi [4]

4-loop 891 Diagrams −1.912 . . .
(

α
π

)4
2017 — Laporta [5]

5-loop 12672 Diagrams −− −−
· · · · · · · · · · · ·
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The outline of this contribution is as follows: in Sec. 2
we discuss the difficulties in calculating graviton amplitudes
in the standard approach and compare to the analogous scat-
tering of photon and graviton states in open and closed string
theory. We follow by outlining the worldline approach to
photon scattering in QED in Sec. 3, which will provide the
base from which to present two alternatives to determining
graviton amplitudes within first quantisation in Sec. 4. We
end with some summarising conclusions.

2. Graviton amplitudes

Continuing the thread of the introduction, the rapid growth in
number and complexity of Feynman diagrams is even more

apparent in the case of graviton amplitudes. This can be seen
– at least superficially – by expanding the Einstein-Hilbert
action, which to fix our conventions will be taken as

SEH =
2
κ2

∫
dDx

√−gR , (1)

where R is the Ricci scalar,κ2 = 32πGN is the cou-
pling constant derived from Newton’s constant,GN and
g ≡ det(gµν), about flat space, for which we setgµν(x) →
ηµν + κhµν(x). The complete diffeomorphism symmetry
of the full action appears as a residual symmetry for the
metric perturbationhµν . If we work in de Donder gauge
(∂αhαµ − (1/2)∂µh = 0 with h ≡ ηµνhµν = Tr(h)) then
the expansion of the action takes the following form:

SEH =
∫

dDx
[
∂µhρσ∂µhρσ − 1

2
∂µh∂µh + κ

(
hρσ∂µhρσ∂µh− hρσ∂ρhµν∂σhµν

− 2hρσ∂µhρ
ν∂µhνσ +

1
2
h∂µhρσ∂µhρσ + 2hρσ∂µhνρ∂σhµν − 1

4
h∂µh∂µh

)
+ . . .

]
, (2)

where the additional terms indicated by the ellipsis involve
progressively higher orders inhµν (and the coupling,κ).

Now the first two terms, quadratic in the metric pertur-
bation, imply a graviton propagator (inverse to the4-index
symmetric kinetic operator) as usual. It is a straightforward
calculation to derive this propagator in momentum space,

Pµν,αβ(k)=
1
2

i

k2+iε

[
ηµαηνβ+ηµβηνα

− 2
D − 2

ηµνηαβ

]
. (3)

For later comparison to string theory, we note here that the
final piece of the expression in brackets (trace term) makes
the organisation of the perturbative expansion rather differ-
ent from the way in which graviton amplitudes turn out on
the string worldsheet where this piece is missing. This point,
and a means of removing this part of the propagator are dis-
cussed in Ref. [9].

We deduce the (tree-level) multi-graviton vertices from
the remaining terms in the expansion. It becomes clear
that in contrast to QED (3-point vertex) or QCD (3- and
4-point vertices), graviton amplitudes involve Feynman di-
agrams with an infinite number of vertices (that couple an
arbitrary number of gravitons), whose tensor structures be-
come progressively more complex – indeed, even the sim-
plest, three point vertex contains around100 terms in mo-
mentum space. Some examples of the multi-graviton ver-
tices are illustrated in Fig. 1. It is easy to see, then, that the
Feynman diagram expansion for graviton amplitudes will be
combinatorically far more complicated than in gauge theo-
ries. To give just a few examples, generic four graviton (e.g.
gg → gg) diagrams (see Fig. 2) will involve at leastO(1020)
terms already at3-loop order, rising toO(1026) by 4-loop

FIGURE 1. Examples of3-, 4-, 5- and6-point graviton vertices
generated by expanding the Einstein-Hilbert action, (1), in the weak
field limit – see (2) for the terms providing the3-point contribution.

FIGURE 2. Examples of3-, 4-, and5- loop diagrams for a2 → 2

graviton scattering process involving only3-graviton vertices.

and toO(1031) terms at5-loop order, making such calcula-
tions essentially impossible using standard techniques.

On the other hand, in recent years various alternative
techniques for studying graviton amplitudes have been de-
veloped that strongly suggest they are simpler than might
appear in the Lagrangian formulation. Double copy rela-
tions relating gravity to “the square” of gauge theory [15,16],
originally uncovered in the context of (first quantised) string
theory, combined with modern recursion relations, unitarity
methods and related techniques [17–21] show that physical,
on-shellgraviton amplitudes can be constructed from appro-
priate kinematic and colour factors derived from diagrams in-
volving only3-pointvertices. In this contribution we shall re-
turn to older relations, again inspired by string theory, which
arrive at the same conclusion, making both the enumeration
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FIGURE 3. Schematic illustration of two-loop Feynman diagrams
for φ3 theory produced in the infinite tension limit of a genus two
string theory process – adapted from [25].

of graviton amplitude diagrams and their eventual evaluation
feasible.

2.1. String theory amplitudes

To understand the benefits of a string based approach, we
recall that it is well-known that the infinite tension limit of
string theory amplitudes is related to scattering amplitudes in
corresponding field theories (below we shall give a precise
example for photon scattering in the context of the worldline
formalism of QFT) – see, amongst others, [22–24]. More-
over, the reorganisation of field theory amplitudes within
the string theory means that the contributions from multiple
field theory Feynman diagrams can be obtained from a single
string diagram, as illustrated in Fig. 3 for a generic theory.

Before presenting the worldline description of photon
scattering amplitudes inspired by this correspondence we re-
vise here how scattering amplitudes between string states are
calculated. Using Polyakov’s representation of string theory
(bosonic strings for simplicity) we write the amplitude as a
path integral over worldsheet embeddings,X: Σ → RD, and
geometries described by metricsh. Defining the worldsheet
action by (α′ is the inverse string tension)

S[X, h] :=
1

4πα′

∫

Σ

d2σ
√

hhαβ∂αX · ∂βX , (4)

an external string state is represented by a vertex operator
V (k, ε) under the path integral according to (d2σ ≡ dτdσ)

〈∏

i

Vi(ki, εi)
〉 ∼

∫
Dh(τ, σ)

×
∫

DX(τ, σ)
∏

i

Vi(ki, εi) e−S[X,h] . (5)

The states in the amplitude should be from the string spec-
trum. For open strings, these could be the spin-zero scalar,
φ, (tachyon), or spin-one photon,γ, whose vertex operators
involve integrals along the worldsheet boundary (σ±, const.),

V φ[k] :=
∫

∂Σ

dτ eik·X(τ,σ±) , k2 = − 1
α′

,

V γ [k, ε] :=
∫

∂Σ

dτ ε · Ẋ(τ, σ±) eik·X(τ,σ±) ,

k2 = 0 = k · ε . (6)

The graviton (spin-two) is part of the closed string spec-
trum and its vertex operator allows this state to be inserted
over the whole worldsheet (we have defined the combinations
∂ ≡ ∂τ + i∂σ and∂̄ ≡ ∂τ − i∂σ)

V g[k, ε] :=
∫

Σ

d2σ ∂X(τ, σ) · ε · ∂̄X(τ, σ) eik·X(τ,σ) ,

k2 = 0 and k · ε = 0 = ε · k . (7)

In the preceding vertex operators the mass-shell and transver-
sality conditions follow from the requirement of evading the
Weyl anomaly (in the critical dimension) – see [26].

The path integral also sums over topologies of the world-
sheet. With the above conditions satisfied, on a given Rie-
mann surface the reparameterisation and conformal symme-
tries of the Polyakov theory, (4), allow the metric to be gauge
fixed to be conformally flat and, assuming the critical dimen-
sion, the path integral over metrics,

∫
Dh(τ, σ), eventually

reduces to a Riemann integral over a finite space of confor-
mal equivalence classes. On this gauge slice the matter path
integral overX(τ, σ) is Gaussian and so (5) can be computed
using Wick’s theorem. Here we restrict attention to open
strings – on the annulus the fundamental contraction is the
simple function inverting the Laplacian along its boundaries

〈Xµ(τ1)Xν(τ2)〉 ≡ ηµνG(τ1 − τ2; τ), (8)

G(τ1−τ2; τ)=−
[
log

∣∣2 sinh(τ1−τ2)
∣∣− (τ1−τ2)2

τ

− 4e−2τ sinh2
(
τ1 − τ2

)]
+O(q2) , (9)

where the modular parameter,q = e−2τ , the square of the ra-
tio of the annulus’ radii is written in terms of the length of the
boundary,τ , to be integrated over its fundamental domain.

Now, following [10,11] the infinite tension limit,α′ → 0,
corresponds toτ → ∞, |τi − τj | → ∞, so that the ratio of
the radii tends to1 (Fig. 3). In this limit the Green function
and its derivative give the leading contributions (σ is the sign
function, returning the sign of its argument)

G(τ1−τ2; τ) ∼ const−
[
|τ1−τ2|− (τ1−τ2)2

τ

]
+ . . . ,

Ġ(τ1−τ2; τ) ∼ −
[
σ(τ1 − τ2)− 2

τ1−τ2

τ

]
+ . . . . (10)

Focussing on one-loopN -photon (easily extended toN -
gluon [10, 11]) scattering, then, one can derive the Bern-
Kosower (BK) rules that give a prescription for constructing
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FIGURE 4. One-loopN -photon scattering amplitudes of the type
produced byKN – so far agnostic regarding the particle in the loop.

an integral representation of the amplitude based on a Kine-
matic Factor,KN , derived from

〈∏N
i=1 V γ [ki, εi]

〉
as in

Eq. (5),ii

KN ∼
∫ N∏

i=1

dui

∏

i<j

exp
[
Gijki · kj

+ iĠij(ki · εj − kj · εi) + G̈ijεi · εj

]
, (11)

which plays the role of a kind of generating function for the
one-loop amplitudes of Fig. 4; in fact the accompanying “re-
placement rules” (see below) allow this same Kinematic Fac-
tor to be reused to generate scattering amplitudes for various
theories (i.e. different particles running in the loop).

Even for photon / gluon amplitudes the Bern-Kosower
rules have important advantages over perturbation theory.
Combining multiple Feynman diagrams into one (Fig. 4)
leads to a better organisation of gauge invariance, helped fur-
ther by the fact that loop momentum integrals are already
done leaving fewer kinematic invariants in intermediate cal-
culations. It is also a universal basis for applying the replace-
ment rules for different field theories that allow it to combine
nicely with internal or space-time symmetries. We shall ex-
plain the rules for manipulating the Kinematic Factor below,
where we shall use it to generate graviton amplitudes based
only on cubic vertices, but first we digress to explain how the
Kinematic Factor can be derived purely within field theory.

3. Worldline formalism

The idea of a first quantised representation of field theory
processes goes back to Feynman [13,14] and development of
what is now called the worldline approach in [12] was mo-
tivated by the BK results discussed above. Here we briefly
describe the worldline formalism for one-loopN -photon am-
plitudes in scalar QED – for reviews see [25,27,28].

The effective action of scalar QED is defined by integrat-
ing out the matter degrees of freedom of the complex Klein-
Gordon field,Φ, that is minimally coupled to the Maxwell
potential,Aµ, according to (Euclidean space)

eΓ[A]≡
∫

DΦ̄(x)DΦ(x) e−
∫

dDx Φ̄(x)(−D2+m2)Φ(x), (12)

= Det−1
(−D2 + m2

)
, (13)

whereDµ ≡ ∂µ + ieAµ is the covariant derivative. Using the
(functional) identitylog Det(Ô) = Tr log(Ô) for operators

Ô, with the Schwinger proper time trick to exponentiate the
operator, we then evaluate the trace in position space:

Γ[A] = −Tr log
(−D2 + m2

)
, (14)

=

∞∫

0

dT

T

∫
dDx

〈
x
∣∣e−T (−D2+m2)

∣∣x〉
. (15)

The transition amplitude in the last line admits a natural path
integral representation, over an auxiliary relativistic point
particle,x(τ), traversing closed loops in proper timeT , so

Γ[A] =

∞∫

0

dT

T
e−m2T

∮

PBC

Dx(τ) e−S[x] , (16)

(PBC means periodic boundary conditions) where the
worldline action, inherited from the evolution-like operator
e−T (−D2) in (15), is given by

S[x] =

T∫

0

dτ
[ ẋ2

4
+ eA(x(τ)) · ẋ(τ)

]
. (17)

We can interpret (16) as producing quantum corrections to
the dynamics of the gauge field, generating all one-loop dia-
grams involving an arbitrary number of couplings toAµ.

3.1. Photon amplitudes

The one-loopN -photon amplitudes are extracted from the ef-
fective action by specialising the background field to a sum of
plane waves representing external states of fixed polarisation,
εi, and momentum,ki, so that

Aµ(x) =
N∑

i=1

εiµeiki·x , (18)

and then selecting fromΓ[A] the part multi-linear in the po-
larisations. This provides a path integral representation of the
amplitudes in analogy to the string theory case, (5),

ΓN [{ki, εi}] = (−ie)N

∞∫

0

dT

T
e−m2T

×
∮

PBC

Dx(τ) e−
∫ T
0

ẋ2
4

N∏

i=1

V γ [ki, εi] , (19)

where the vertex operator has the same form as in string the-
ory, (6), but now integrating along the particle’s trajectory:

V γ [k, ε] =

T∫

0

dτ ε · ẋ(τ)eik·x(τ) . (20)

Note, however, that we havenot been forced to impose on-
shell or transversality conditions. At this stage the path in-
tegral is Gaussian, so we can evaluate it using Wick’s theo-
rem after separating off the constant zero mode. Expanding
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GRAVITON SCATTERING AMPLITUDES IN FIRST QUANTISATION 5

about the loop centre of mass,xµ(τ) → xµ
0 + qµ(τ) replaces∮

PBCDx(τ) −→ ∫
dDx0

∫
SI Dq(τ) with “String-Inspired”

boundary conditions on the deviation,qµ(0) = 0 = qµ(T )
and

∫ T

0
dτ qµ(τ) = 0, and in this space orthogonal to the

zero mode the Green function for the kinetic term is
〈
qµ(τi)qν(τj)

〉
⊥ = −GBijη

µν , (21)

GBij ≡ GB(τi, τj) = |τi − τj | − (τi − τj)2

T
. (22)

Note that this Green function coincides with the leading or-
der behaviour of the string theory Green function in Eq. (10)
up to an irrelevant constant. For a formal determination of the
path integral we borrow yet another string theory trick, expo-
nentiating the prefactor of the vertex operator asV γ [k, ε] =∫ T

0
dτ eik·x(τ)+ε·ẋ(τ)

∣∣
ε
, retaining only the linear part inε.

Then, completing the square in the exponent of the path inte-
gral we recover the Bern-Kosower Master Formula, still valid
even off-shell, containing the Kinematic Factor,KN

ΓN [{ki, εi}] = (−ie)N (2π)DδD

(∑

i

ki

) ∞∫

0

dT

T
(4πT )−

D
2 e−m2T

N∏

i=1

×
T∫

0

dτi e
1
2

∑N
i,j=1 GBijki·kj−2iĠBijεi·kj+G̈Bijεi·εj

∣∣∣
ε1...εN

, (23)

where the momentum conservingδ-function arose from in-
tegrating overx0. The notation at the end of the second
line indicates that one should expand to multi-linear order
in the εi. After this, the eventual integral over proper time,
T , produces the familiar Feynman parameter denominator
[m2 −∑N

i<j=1 ki · kjGBij ](D/2)−N , but in a way that uni-
fies the different orderings of insertions of the external pho-
tons around the loop – see Fig. 4, or [29] for progress ex-
ploiting this property under the parameter integrals. Having
thus shown how to arrive at the Kinematic Factor, we shall
now describe its generalisation to graviton amplitudes and
attempts to extend the procedure to off-shell processes.

4. Bern-Dunbar-Shimada rules

The extension of the Bern-Kosower rules to gravity was sys-
tematically studied in Ref. [9], building upon [30, 31] and
was subsequently applied by Dunbar and Norridge to deter-
mine 4-graviton amplitudes at one-loop order for all helic-
ity assignments [32]. Here we recapitulate their construction
before mentioning some efforts towards extending the tech-
nique using the worldline formalism.

The major difference with respect to photon or gluon
amplitudes is the graviton vertex operator, (7), inserted on
closed string worldsheets where there are two “sectors” that
contribute to the amplitude, corresponding to left- and right-
moving string modes. This also implies that the worldsheet
Green function (analogous to (9)) becomes a genuine func-
tion of two variables,σ± := τ ± iσ, for these sectors. Then
starting fromG(σ+, σ−) we follow the notation of [9,32]:

• We useĠ andG̈ for σ+ derivatives ofG.

• We use ˙̄G and ¨̄G for σ− derivatives ofG.

• We denote byH the derivative ofG with respect to one
left- and one right-moving variable.

Finally, we also decompose the on-shell graviton polarisa-
tion tensor,ε, into the two sectors by settingεµν −→ εµε̄ν

and later reconstruct it by identifyingεµε̄ν ≡ εµν at the end.

4.1. N -graviton rules

The one-loopN -graviton amplitudes are then generated from
some “primordial Feynman diagrams” involving only the cu-
bic vertices produced by the string splitting process according
to the following (simplified) steps developed in [9]:

Step 1

Draw all one-loop diagrams havingΦ3 topology withN ex-
ternal legs with appropriate labels, such as those in Fig. 5.

All permutations of external legs should be included and
labelled as in conventional perturbation theory (in contrast
to gluon amplitudes there is no need to worry about colour
ordering). To internal legs attached to “external trees,” as-
sign a label equal to the smallest label of the external legs it
opens up to. However, wedo ignore “tadpole” diagrams or
diagrams involving loops onexternallegs such as in Fig. 6.

FIGURE 5. PrimordialΦ3 diagrams for a4-graviton process [9].

FIGURE 6. Tadpoles and isolated loops on external legs are ignored
(they are renormalised or vanish in dimensional regularisation).

Supl. Rev. Mex. Fis.3 020729
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Step 2

We calculate the contribution from each diagram by a reduction process. To each diagram we associate an integral (in dimen-
sional regularisation we takeD = 4− 2ε)

D = i
(−κ)N

(4π)2−ε
Γ
[
`− 2 + ε

] 1∫

0

du`−1

u`−1∫

0

dx`−2 · · ·
u2∫

0

du1
Kred[ ∑

i<j Ki ·KjGij

]`−2+ε
, (24)

wherel is the number of lines attached to the (massless) loop. Here the ordering of the parameter integrals over theui should
match the ordering of these lines about the loop and we have introduced the momentaKi entering the loop at pointi, being just
the sum of the external momenta entering the trees that join to the loop there. Finally, the graviton Reduced Kinematic Factor,
Kred, that survives the field theory limit of string theory is to be constructed from the generalised Kinematic Factor formed by
multiplying contributions from the left- and right-moving sectors:

KN =
∫ N∏

i=1

duidūi

N∏

i<j

eki·kjGij e(ki·εj−kj ·εi)Ġij−εi·εjG̈ij e(ki·ε̄j−kj ·ε̄i)
˙̄Gij−ε̄i·ε̄j

¨̄Gij e−(εi·ε̄j+εj ·ε̄i)Hij

∣∣∣
ε1ε̄1···εN ε̄N

, (25)

which is somewhat reminiscent of the double copy relations discussed above (see [33] for an in depth study of this relation).
This Factor is to be expanded to multi-linear order in each of theεi andε̄i and is reduced to determine the Reduced Kinematic
Factor in the following step:

Step 3: Integration by parts

After expandingKN to multi-linear order, we integrate by
parts to remove all̈Gij and ¨̄Gij – this is what makes it possi-
ble to reduce the calculation of the amplitude to diagrams
with purely cubic vertices. In this process the functions
Gij and its second derivatives are taken to be symmetric in
their indices whilst first derivatives are anti-symmetric. The
“crossed derivatives” are handled according to the relations

∂

∂uk

˙̄Gij = (δki − δkj)Hij ,
∂

∂ūk
Ġij = (δki − δkj)Hij ,

∂

∂uk

¨̄Gij = 0 ,
∂

∂ūk
G̈ij = 0 . (26)

Achieving this, the leading exponential factor in (25) involv-
ing theGij and the parameter integrals can be dropped (they
are already included inD), which leaves behindKred. We
now transform this according to so-calledreplacement rules:

Step 4a:Tree replacement rules

The particle loop may have external legs attached via trees,
whose “branches” we now remove. Working from theoutside
in, we pinch away the trees by the replacement

(Ġij)( ˙̄Gij) −→ 1
2ki · kj

(i < j) , (27)

replacing other powers of these derivatives to zero – see
Fig. 7. In the remaining expression, setj → i in any other
factors of theGjk and iterate until only the loop remains; this
isolates the on-shell poles in theS-matrix.

So far we have not been specific about the type of particle
running in the loop, fixed with the next replacement rules.

FIGURE 7. The Tree Replacement Rule pinches off a branch of a
tree attached to the loop.

Step 4b:Loop replacement rules

To fix the field theory coupled to the gravitons we now trans-
form the Reduced Kinematic Factor depending on which par-
ticle(s) will circulate in the loop. These rules are in fact in-
dependent implementations of the BK Replacement Rules for
gauge theory amplitudes in the left- and right-moving sectors.

For the simplest case of a scalar running in the loop,
the replacements correspond to reintroducing the worldline
Green function, (22), after rescalingτi → Tui, as follows:

Gij → GBij = |ui − uj | − (ui − uj)2

= (ui − uj)(1− (ui − uj)),

Ġij → −1
2
ĠBij = −1

2
(σ(ui − uj)− 2(ui − uj)),

˙̄Gij → −1
2
ĠBij = −1

2
(σ(ui − uj)− 2(ui − uj)),

Hij → 1
2T

, (28)

where we used the ordering of parameter integrals in (24) and
ignored aδ-function inHij that does not contribute on-shell.
For a complex scalar running in the loop,Kred should be mul-
tiplied by2 for degrees of freedom. Now at this stage, the
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GRAVITON SCATTERING AMPLITUDES IN FIRST QUANTISATION 7

TABLE I. Loop replacement rules, based on transformations F=
S+ CF and V = S+ CV , where[A, B] indicates the replacements
A in the left-movingĠ sector and B in the right-movinġ̄G sector.

Replacement Rule Field Theory

[S, S] Real Scalar

2[S, S] Complex Scalar

-2[S, F] Weyl Fermion

2[S, V] Vector Boson

-4[V, F] Gravitino+ Weyl Fermion

4[V, V] Graviton + Complex Scalar

4[V, V] - 2[S, S] Graviton

-4[V, F] + 2[S, F] Gravitino

reduced kinematic factor has been transformed to a genuine
function of the external momenta and parametersui, so it can
be substituted intoD for the diagram in question to compute
its contribution to the amplitude.

We should note that the loop replacement rules can be
generalised to allow other particles in the loop. They are
conveniently described with the notation [32] F= S + CF

and V= S+ CV , where S stands for the scalar loop replace-
ment, (28), and CF and CF areCycle Replacement Rulesthat
act on “closed cycles” oḟG and ˙̄G such asĠijĠjk · · · Ġsi to
transform them into functional expressions.iii

4.2. Example application

As this submission is a pedagogical introduction, we present
here an application of the rules to4-graviton scattering, de-
scribing how the amplitudeA (1, 2, 3, 4) was calculated in
[9] for an illustrative helicity assignment. Actually, the rules
combine nicely with spinor helicity techniques [34] applied
to the graviton polarisation tensor, where for fixed helicity we
decomposeε±±µν → ε±µ ε̄±ν — then good choices of the refer-
ences spinors for theε± andε̄± can significantly simplify the
exponent ofKN and lead to more compact expressions.

We limit ourselves to the Maximally Helicity Violating
amplitudeA (1−, 2+, 3+, 4+), which in the standard formal-
ism would involve 12 types of diagram totalling54 diagrams
based on vertices withO(100) terms. With the string inspired
approach and judicious choice of reference vectors that is re-
duced to just the5 diagrams withΦ3 topology, illustrated in
Fig. 8, that will have the appropriate factors ofĠ ˙̄G to survive
the tree replacement rules (Step 4a).

The kinematic factor for these diagrams does not contain
any second derivatives so we immediately get:

Kred = S (Ġ13 − Ġ12)(Ġ24 − Ġ23)(Ġ34 + Ġ23)

× (Ġ34 − Ġ24)( ˙̄G13 − ˙̄G12)( ˙̄G24 − ˙̄G23)

× ( ˙̄G34 + ˙̄G23)( ˙̄G34 − ˙̄G24) , (29)

FIGURE 8. The appropriately labelled five diagrams that contribute
to the4-graviton processA (1−, 2+, 3+, 4+) [32].

where

S =
(

s2t

4

)2 (
[24]2

[12]〈23〉〈34〉[41]

)2

.

We show how to apply the BDS rules to two of these dia-
grams to arrive at a compact, simple Lorentz invariant ex-
pression for this amplitude.

Diagram (a)

Since there are no trees we can move directly to the loop re-
placement rules (Step 4b). For scalars, these lead to

K(a)
red = 2S u2

2(1− u3)2(u3 − u2)4 . (30)

For this diagramD is finite in D = 4 so in terms of the tra-
ditional Mandelstam variables we have

Da =
2iκ4

(4π)2
S

1∫

0

du3

u3∫

0

du2

u2∫

0

du1

× u2
2(1− u3)2u4

32[
su1u32 + tu21(1− u3)

]2 , (31)

where we used the shorthanduij = ui − uj . Calculating the
integral and repeating the process for the similar diagrams (b)
and (c) it is straightforward to verify the results

Da =
2iκ4

(4π)2
S

840st
, Db =

2iκ4

(4π)2
S

840ut
,

Dc =
2iκ4

(4π)2
S

252su
. (32)

Diagram (d)

This time there is a1-2 tree attached to the loop, so the tree
replacement rules (Step 4a) are invoked on the term inKred

involving Ġ12
˙̄G12, transforming (29) by

Kred→ −S

s
(Ġ24 − Ġ23)(Ġ34 + Ġ23)(Ġ34 − Ġ24)

×( ˙̄G24 − ˙̄G23)( ˙̄G34 + ˙̄G23)( ˙̄G34 − ˙̄G24) . (33)

Supl. Rev. Mex. Fis.3 020729
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The loop replacement rule (Step 4b) is now applied to turn
this into an authentic function, which yields the finite integral

Dd = − 2iκ4

(4π)2
S

s

1∫

0

du3

u3∫

0

du2

× u2
2(1− u3)2(u3 − u2)2

s(u3 − u2)
. (34)

Evaluating this integral and repeating the process for diagram
(e) provides the partial amplitudes

Dd =
2iκ4

(4π)2
S

360s2
, De =

2iκ4

(4π)2
S

360u2
. (35)

Summing up these results, then, the procedure has success-
fully determined the complete amplitude to be [32]

A (1−, 2+, 3+, 4+) =
iκ4

(4π)2
s2t2

2880u2
(u2 − st)

×
(

[24]2

[12]〈23〉〈34〉[41]

)2

, (36)

which would be far more difficult to get using standard tech-
niques. Checks that (36) is consistent with appropriate cross-
ing relations, symmetries, unitarity and other constraints [32]
show this method to be a powerful alternative that bypasses
prohibitively complicated field theory calculations.

4.3. Worldline approach

Despite its successes there are some drawbacks, most notably
the requirement that the gravitons be on-shell, built into the
string theory early on (in contrast to the photon/gluon case
where it does not really matter in the infinite tension limit, as
we saw in the worldline formalism in Sec. 3) and the fact that
we specialised to massless field theories.

Worldline attempts to generalise the BDS construction to
off-shell amplitudes with massive particles in the loop focus

on the irreducible diagrams, since BDS can produce the re-
ducible contributions. The worldline representation of one-
loopN -graviton amplitudes for the scalar case is [35,36]

1
2

(−κ

4

)N
∞∫

0

dT

T

× (4πT )−
D
2 e−m2T

〈
V g[k1, ε1] . . . V g[kN , εN ]

〉
, (37)

where the graviton vertex operator is, similarly to (7),

V g[k, ε] =

T∫

0

dτ ẋ · ε · ẋ eik·x . (38)

Note that, unlike in string theory, there is no intrinsic separa-
tion of the vertex into left- and right-moving modes. Efforts
to mimic this on the worldline and exploit integration by parts
algorithms and other worldline techniques are hoped to per-
mit an efficient extension of the BDS procedure that will be
a viable alternative tool for studying graviton amplitudes.

5. Conclusion

We have discussed the complexity of calculating amplitudes
using standard perturbation theory to motivate alternative ap-
proaches that simplify their determination and then presented
two string inspired techniques that, at least partially, realise
this. For gauge theories such as QED or QCD, we already
understand the string-based Bern-Kosower method via the
worldline formalism, and we have described how this same
formalism may be able to shed new light on the Bern-Dunbar-
Shimada rules for graviton amplitudes. The advantages of
producing Master Formulas that combine various Feynman
diagrams and unify different field theories, distinguished only
by appropriate Replacement Rules, are clear. Ongoing work
on the worldline should extend these rules to massive, off-
shell amplitudes in the same unifying framework.

i. This raises the possibility of a softer growth of the (quenched)
QED coefficients and perhaps a finite radius of convergence for
this series [8].

ii. One must also subtract contributions divergent asq → 0 pro-
duced by tachyonic scalars running in the loop.

iii. For CV the substitution isGi1i2Gi2i3 · · ·Gini1 −→ (1/2)
(
1+

δn,2

)
. For CF it is Gi1i2Gi2i3 · · ·Gini1 −→ −( −

1/2
)n ∏n

k=1 σ(uik − uik+1).
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