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An estimation of non-valence contributions to form factors of heavy-light mesons
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Instituto Carlos I de F́ısica Téorica y Computacional Universidad de Granada,

E-18071 Granada, Spain.

O. Heger

ILF Consulting Engineers Austria GmbH, A-8074 Graz, Austria.

W. Schweiger

Institute of Physics, University of Graz, A-8010 Graz, Austria.

Received 30 December 2022; accepted 5 February 2022

We study the influence of non-valence quark-pair contributions in weak transition form factors of heavy-light mesons. Form factors are first
calculated for spacelike momentum transfers in a reference frame where such contributions are suppressed. Analytic continuation to the
timelike region and a comparison with the direct decay calculation, done with pure valence degrees of freedom, provides an estimate of the
role that quark-pair contributions may play. We use the point form of relativistic quantum mechanics, which is particularly useful when
treating heavy-light systems.
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1. Introduction

The point-form [1] of relativistic quantum mechanics has
been successfully employed to calculate hadron form factors
within the framework of constituent quark models [2-12]. In
this formalism the physical process in which a particular form
factor is measuered is described in a Poincaré invariant way
by means of the Bakamjian-Thomas construction [13]. In
the point-form version of the Bakamjian-Thomas construc-
tion the (interacting) four-momentum operatorP̂µ can be ex-
pressed as a product of an interaction-dependent mass opera-
tor and a free four-velocity operator,

P̂µ = M̂ V̂ µ
free =

(
M̂free + M̂int

)
V̂ µ

free , (1)

whereas the rest of the generators of the Poincaré algebra (ro-
tations and boosts) remain free of interactions. This makes
it particularly simple to add angular momenta and to boost
wave functions, in contrast to other forms of relativistic dy-
namics.

With the velocity operator being free of interactions, the
entire dynamics of the system is encoded in the mass operator
M̂. In order to account for a flavor change and the emission
and absorption of gauge bosons in the description of elec-
troweak processes, we adopt a coupled-channel framework
in which the mass operator̂M acts on a direct sum of mul-
tiparticle Hilbert spaces. The diagonal matrix elements of
M̂ represent the kinetic energies of the elementary particles
in the corresponding channel, while the non-diagonal entries
are vertex operatorŝKi→j andK̂j→i = K̂†

i→j that account
for the emission or absorption of gauge bosons and, therefore,
the transition from one channel to another.

The most convenient basis to represent opera-
tors within this framework consists ofvelocity-states
|V ;~ki, µi〉 [14]. These are multiparticle states at rest
|~ki, µi〉 ≡ |~k1, µ1;~k2, µ2; ...;~kn, µn〉 , with

∑n
i=1

~ki = 0
and withµi being thez-projection of the (canonical) spin,
which are boosted with the overall velocityV µ (V µVµ = 1)
by means of a rotationless boost,i.e.

|V ;~ki, µi〉 := ÛBc(V )|~ki, µi〉 . (2)

Matrix elements of vertex operators are defined by means
of the corresponding Lagrangian densities via [6,9,15]

〈V ′;~k′i, µ
′
i|K̂|V ;~ki, µi〉 = NV 0δ3(~V−~V ′)

× 〈~k′i, µ′i|L̂int|~ki, µi〉, (3)

where the factorN is a normalization factor determined by
the normalization of the velocity states. The delta function
guarantees the conservation of the overall velocity of the
system at every interaction vertex, which is demanded by
Eq. (1).

It has been argued [16] and shown [10,11] that the point
form of relativistic dynamics is particularly suitable for the
description of heavy-light systems. Hadronic systems with
a constituent much heavier than the other(s) exhibit an addi-
tional symmetry known as heavy-quark symmetry [17]. In
such systems the velocity of the heavy-light bound state is
approximately conserved and it is thus no longer a dynamical
degree of freedom [17,18].

The present work addresses the description of form fac-
tors of heavy-light mesons within the context of constituent
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quark models. In particular, we want to study the influ-
ence of a(Qq̄)(q′q̄′) non-valence Fock component on weak
decay form factors. A non-valence(Qq̄)(q′q̄′) Fock com-
ponent in the decaying meson may give rise to a vector-
meson-dominance-like decay mechanism in which theW
does not directly couple to the heavy quark of the valence
Fock state, but the non-valence Fock state rather splits into
the valence component of the final meson and an intermedi-
ate vector meson which subsequently is converted into theW
boson. This kind of contribution, often termed as “Z-graph”,
is by no means negligible as compared to the pure valence
contribution, in particular if one approaches the zero-recoil
point. Semileptonic weak decays provide information on
meson transition form factors for timelike momentum trans-
fers, with neutrino-meson scattering one rather explores the
spacelike momentum-transfer region. For spacelike momen-
tum transfers the Z-graph contribution plays a minor role as
compared to timelike momentum transfers. One can even
find a reference frame, the so-calledinfinite-momentum frame
(IMF), in which it is suppressed and the valence Fock-state
provides already a complete description of the form factors.
Similarly, the Z-graph contribution is also suppressed in the
heavy-quark limit, in which the masses of the heavy quarks
go to infinity and heavy-quark symmetry is restored. In the
front form of relativistic dynamics, the Z-graph contribution
is eliminated by choosing aq+ = 0 Drell-Yan-West frame.
The IMF is a particular example for such a frame. For time-
like momentum transfers, however, one always hasq+ > 0
and thus it is not possible to exploit the advantages of the
q+ = 0 Drell-Yan-West frame or of the IMF and one has to
be concerned about the Z-graph contribution.

Since an explicit calculation of the Z-graph contribu-
tion would require additional modeling, we rather follow an-
other strategy to estimate its size in the timelike momentum-
transfer region:

1) Extract analytic expressions for the meson transition
form factors from the neutrino-meson scattering am-
plitude in the IMF, where the valence contribution is
supposed to provide already a fairly complete descrip-
tion.

2) Continue these form factor expressions analytically to
timelike momentum transfers. Provided that the ana-
lytic continuation is done correctly, it should also pro-
vide a complete description of the decay form factors.

3) Compare the numerical results from analytic continua-
tion with those from the direct decay calculation done
within the pure valence-quark picture to estimate the
possible role of non-valence contributions.

2. WeakB → D transition form factors

We illustrate our procedure by means of theB → D transi-
tion. For a more comprehensive study, the interested reader
may consult Ref. [8].

2.1. Spacelike momentum transfer

First of all, we studyB → D transition form factors for
space-like momentum transfers,Q2 = −q2 < 0, as can
be measured in neutrino-meson scattering,νeB

− → e−D0.
This reaction involves the exchange of aW boson. Tak-
ing into account all states that occur in the course of the
scattering process,i.e. |νe, b, ū〉, |e,W+, b, ū〉, |e, c, ū〉 and
|νe, W

−, c, ū〉, one ends up with a four-channel eigenvalue
problem for the mass operator. The diagonal matrix elements
of the mass operator contain the kinetic energies of the par-
ticles and, in addition, an instantaneous confining force be-
tween the quark and the antiquark. Eliminating the two chan-
nels containing aW by means of a Feshbach reduction, on
ends up with an optical1W -exchange potential that describes
the transition from theνebū to theecū channel. Taking ma-
trix elements of this optical potential between the incoming
|νeB

−〉 and the outgoing|e−D0〉 states, gives already the
νeB

− → e−D0 scattering amplitude in leading order of
the weak coupling. The weak hadron transition current can
then easily be extracted from this scattering amplitude in a
unique way. It is an overlap integral containing theQq̄ wave
functions of theB and theD, the weak quark current and
some kinematical factors. The wave functions contain also
a Wigner-rotation factor as a result of boosting the mesons
at rest to their respective momenta [8]. Knowing the expres-
sion for the hadronic current as a function of the incoming
and outgoing momentaJµ(pD, pB), the form factors can be
extracted from a covariant decomposition of the current:

J̃ν
B→D(pD; pB) =

(
(pB + pD)ν − m2

B −m2
D

q2
qν

)

× F1(q2, s) +
m2

B −m2
D

q2
qνF0(q2, s) . (4)

At this point it is necessary to mention that the Bakamjian-
Thomas construction, in particular the conservation of the
overall velocity in Eq. (3), gives rise to wrong cluster proper-
ties. This drawback is common to all forms of dynamics, and
not a particular problem of the point form [19]. As a con-
sequence, the gauge-boson-hadron vertices do not only de-
pend on the incoming and outgoing boson momenta, but also
on the lepton momenta. The form factors are thus not only
functions of the 4-momentum transfer squared, but they also
exhibit a dependence on Mandelstams, the invariant mass
squared of the neutrino-meson system. This fact can be also
interpreted as a frame dependence of theWB → D sub-
process. One may then consider two particularly interesting
frames. Taking the minimum value ofs necessary to reach a
particularq2 < 0, one ends up with the so-called Breit frame
(BF). The other frame, corresponding tos → ∞, is the IMF
mentioned already, .

In order to perform numerical calculations we use a
harmonic-oscillator quark-antiquark wave function and adopt
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the parameters of an analogous calculation performed within
the front form of relativistic dynamics [20]:

ψα(κ) =
2

π
4
2 a

3
2
α

e
− κ2

2a2
α , (5)

with aB = 0.55 for theB meson andaD = 0.46 for theD
meson.

An extended numerical study performed in Ref. [8] shows
small differences between the IMF and the BF predictions
for B → D transition form factors. Numerical results ob-
tained for other reactions indicate that the frame dependence
decreases if the size of the three-momentum of the final-
state meson increases. In our approach there are two obvious
sources for this frame dependence: on the one hand wrong
cluster properties, on the other hand a missing Z-graph con-
tribution in frames different form the IMF. Our studies, like
foregoing work [3,6,11], suggest that the frame dependence
of the form factors goes away with increasing value of the
Mandelstams. The form factors extracted in the IMF there-
fore seem to provide the most realistic picture of the elec-
troweak meson structure for spacelike momentum transfers
as long as one sticks to a pure valence-quark description.

2.2. Timelike momentum transfer

Weak transition form factors for timelike momentum trans-
fers, q2 ≥ 0, are experimentally measured in semileptonic
weak decay processes,e.g. for theB → D transition in the
B− → D0e ν̄e decay. Since scattering amplitudes are func-
tions of Mandelstams andt = q2, it is possible to continue
analytically fromq2 ≤ 0 to q2 ≥ 0 in the expressions for the
currents and the form factors. Provided that the analytic con-
tinuation is done correctly, analytic continuation of the form
factors extracted in the IMF should already give physically
sensible form factor results for time-like momentum trans-
fers. In order to estimate the size of the Z-graph contribution
and possible cluster-separability violating effects – both be-
come negligible in the IMF – for time-like momentum trans-
fers, we can then compare with the outcome of a direct decay
calculation done within the pure valence-quark picture.

It is straightforward to describe decays in our coupled-
channel formalism. One has to define a mass operator which
acts on|ūb〉, |ūcW 〉, |ūbWeν̄e〉, |ūceν̄e〉 states and calculate
the decay amplitude in leading order of the weak coupling (in
analogy to the scattering amplitude). Again, the decay cur-
rent can be extracted from the decay amplitude in a unique
way and from the decay current the form factors are identified
using the covariant decomposition (4). Form factors calcu-
lated for timelike momentum transfers in this way are, how-
ever, just functions of the momentum transfer squared; there
is no s-dependence in this case, since the invariant mass of
the decaying system is the massmB of the decaying meson,
which is fixed. There is no freedom in this case for choos-
ing the decay kinematics, apart of rotations or boosts, which,
however, do not affect the covariant decomposition (4).

3. Numerical analysis

Predictions for the weakB → D transition form factors
F0 and F1, as resulting from analytic continuation of the
IMF calculation and the decay calculation, are compared in
Fig. 1. Since the Z-graph and cluster-separabilty-violating
effects vanish in the IMF, the analytically continued IMF re-
sults are supposed to provide a more complete description of
the timelike form factors than the direct decay calculation.
The differences therefore give us an estimate of the size of
such effects in the timelike momentum transfer region. They
become larger with increasingq2.

Whereas the left panel shows results for physical quark
and meson masses, the right panel exhibits predictions for
upscaled masses of the heavy quarks and the mesons. This
allows us to check, whether the form factors exhibit the ex-
pected behavior in the heavy-quark limit. One knows from
heavy-quark symmetry arguments [11,17] that Z-graphs in-
volving heavy quarks should be suppressed in the heavy
quark limit. This is reflected in our results and illustrated in
the right panel of Fig. 1. When the constituent quark masses
are multiplied by a factor 6 and the meson masses are set
equal to the heavy quark masses, the differences attributed
to the Z-graph contribution and possible cluster-separability
violating effects tend to vanish for both form factorsF0 and
F1.

In order to provide some numerical comparison with ex-
periment, we consider the slope ofF1 as a function of the
product of four-velocitiesvB · vD at zero recoil:

ρ2
D := −F ′1(vD · vB = 1)

F1(vD · vB = 1)
, (6)

whereF ′1 means differentiation with respect tovD · vB . The
experimental value for this quantity,ρ2

D exp = 1.131±0.033 ,
provided by the heavy-flavor averaging group [21], is very
close to our result obtained in the IMF by analytic continu-
ation: ρ2

D IMF = 1.07 . It is worth noticing that this result
differs considerably from the result obtained in the direct de-
cay calculation, which involves only valence degrees of free-
dom, ρ2

D direct = 0.55. This supports our argument that the
physically most complete description within a pure valence-
quark picture is achieved in the IMF. It remains to be checked
whether the direct decay calculation can be reconciled with
the IMF result by adding the Z-graph contribution.

3.1. Meson pole

A more extended record of results including decay processes
different from B → D is given in Ref. [8]. This study
showed that the difference between the IMF result and the
direct decay calculation becomes even larger when the mass
of the final-state meson becomes smaller. For instance, for
B → π andD → π transitions a pronounced pole-like be-
havior is observed for the IMF result near the zero recoil
point,q2

max = (mB(D)−mπ)2. Within our constituent-quark
model such a behavior can be understood, if one allows for a
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FIGURE 1. WeakB → D transition form factorsF0 andF1 as resulting from analytic continuation of the IMF result (solid lines) and from
the direct decay calculation (dashed lines). Left figure: Physical meson and quark masses. Right figure: Heavy quark masses are multiplied
by a factor 6 and meson masses are taken to be equal to the heavy quark masses. The shaded area indicates the order of magnitude of the
Z-graph contribution, which is missing in the direct decay calculation.

non-valenceQq̄q′q̄′ component in the decaying meson. Tak-
ing into account confinement, such a component can decay
into the final stateq′q̄ meson and aQq̄′ vector meson which
fluctuates into theW boson giving rise to a vector-meson-
dominance like decay mechanism. Such a decay mechanism
was also considered in Ref. [22]. The authors analyzed the di-
rect decay (involving the valence Fock state) and the vector-
meson-dominance like decay mechanism separately for the
semileptonicB → π decay. They found that the sum of
both contributions is well approximated in the whole range
0 ≤ q2 ≤ q2

max by a function of the form

F pole
1 (q2) =

F1(0)(
1− q2

m2
pole

)α , (7)

with α = 2.0 and mpole = 5.6 − 5.8 GeV, depending on
the strength of theB∗Bπ coupling. They observed that the
valence contribution toF1 dominates atq2 = 0, wheras the

FIGURE 2. The thick, blue line shows the transition form factorF1

for space- and timelike momentum transfers obtained by analytic
continuation of the infinite-momentum-frame result. The red thin
line is the pole fit, Eq. (7) with α = 1.55 andmpole = mB∗c ≈
mBc = 6.274 GeV. The dashed lines indicate the position ofq2

max

andm2
pole.

the non-valenceB∗ pole contribution was dominant near the
zero-recoil pointq2

max. Following Ref. [22] and using our
result at zero momentum transferF1(0) = 0.70 we have
parameterized our IMF results employing Eq. (7) . But we
fixed the pole mass to the lightest vector-meson mass and
just left the powerα as a free parameter. The outcome of
this parametrization is shown in Fig. 2 for theB → D decay.
We find that the parameterization (7) with mpole = mB∗c ≈
mBc = 6.274 GeV andα = 1.55 reproduces the analytically
continued IMF result surprisingly well. This holds also for
other decay processes [8]. The form factor tends to exhibit
a monopole-like behavior, the closer the pole is to the zero
recoil point.

4. Conclusions

It is very remarkable that the analytic continuation of the IMF
results provides a behavior of the timelike meson-transition
form factors that resembles a vector-meson-dominance like
decay mechanism, although we started with a pure valence
picture and did not include any additional dynamical input.
How this can happen, whether the discrepancy between the
analytically continued IMF result and the direct decay calcu-
lation can be explained by including non-valence degrees of
freedom in the direct decay calculation and whether cluster-
separability-violating effects play a minor role, as sometimes
asserted [23], will be the subject of further investigations.
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