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1. Fields and symmetries

1.1. Basics: Poincaŕe symmetry

1.1.1. Guided by symmetry

Relativistic quantum field theory (QFT) reconciles quantum
mechanics and special relativity [1–6]. Relativistic fields are
irreducible representations (irreps) of the Poincaré group, in-
cluding Lorentz transformations (space rotations and Lorentz
boosts) and spacetime translations. Examples of field ir-
reps are the scalarφ(x), the four-vectorVµ(x) and the sym-
metric tensorhµν(x), whereµ, ν ∈ {0, 1, 2, 3} are Lorentz
indices. The Lorentz subgroup is locally isomorphic to
SU(2)⊗SU(2) whose irreps are labeled by(j−, j+) so it also
admits spinorial representations wherej± can be half-integer,
as for example the Weyl bispinor fieldsψL(x) ∼ (1/2, 0)
andψR(x) ∼ (0, 1/2) that are two non-equivalent (conju-
gated) representations of spinj = 1/2 under rotations. The
Dirac four-spinor fieldψ(x) = ψL(x)⊕ψR(x) is a reducible
representation of the Lorentz group containing left and right-
handed chiralities, exchanged by a parity transformation.

To describe the field dynamics one introduces the action

S[φi] =
∫

d4x L(φi(x), ∂µφi(x)) , (1)

where the lagrangian (density)L(x) = L(φi, ∂µφi) is a local
function of the fields and their derivatives, andφi stands for
any type of fields (φ, ψ, Vµ, etc.). The action must be in-
variant under Poincaré transformations according to the co-
variance principle of special relativity. As an example, the
lagrangian of a free Dirac fieldψ(x) is

L0 = ψ(i/∂ −m)ψ , (2)

whereγµ are the Dirac or ‘gamma’ matrices,/∂ ≡ γµ∂µ

(slash notation),ψ ≡ ψ†γ0 is the Dirac adjoint and the con-
stantm is the Dirac mass.

The lagrangian contains all the information about the par-
ticular theory under study. Following Noether’s (first) theo-
rem, any continuous global symmetry of the action is in cor-
respondence with a conservation law. In particular, the con-

servation of energy, linear momentum and angular momen-
tum are the consequence of the invariance under time transla-
tions, space translations and space rotations, respectively, all
of which are Poincaré symmetries.

Given a lagrangian, one derives the equations of motion
(Euler-Lagrange equations), which describe the classical evo-
lution of the fields. They are obtained from the principle of
least action: the field configuration must be a stationary point
of the action,i.e. δS = 0. Then

δS =
∫

d4x
∑

i

(
∂L
∂φi

δφi +
∂L

∂(∂µφi)
δ(∂µφi)

)

=
∫

d4x
∑

i

(
∂L
∂φi

− ∂µ
∂L

∂(∂µφi)

)
δφi = 0 , (3)

where we have used integration by parts and dropped the
boundary term under the assumption that field variations van-
ish at infinity. Since (3) must hold for any variationδφi,
we get for each field the corresponding equation of motion
(EoM):

∂L
∂φi

− ∂µ
∂L

∂(∂µφi)
= 0 . (4)

For instance, in the case of a free Dirac field, the EoM is the
well-known Dirac equation,

(i/∂ −m)ψ(x) = 0 , (5)

whose general solution is

ψ(x) =
∫

d3p

(2π)3
√

2Ep

×
∑

s=1,2

(
ap,su

(s)(p)e−ip·x+b∗p,sv
(s)(p)eip·x

)
, (6)

with p2 = E2
p − |p|2 = m2, whereu(s)(p) andv(s)(p) are

constant four-spinors of positive and negative energy, respec-
tively (±Ep with Ep ≡ +

√
|p|2 + m2) verifying

(/p−m)u(s)(p) = 0 ,

(/p + m)v(s)(p) = 0 , s = 1, 2, (7)

andap,s, bp,s are for the moment just complex coefficients
with convenient normalizations.i
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1.1.2. Quantization

To quantize a classical theoryà la canonical, we need to have
a well-defined hamiltonian formulation of the theory. First
we compute the conjugate momenta of every field,Πi(x) =
∂L/∂(∂0φi), then we perform the Legendre transform of the
lagrangian with respect to the velocitiesφ̇i = ∂0φi and fi-
nally we invert the definition of canonical momenta to ex-
press the velocities in terms of them. The resulting object is
the hamiltonian (density),

H(x) =
∑

i

Πiφ̇i − L(x) . (8)

Once the theory is written in terms of fields and conjugate
momenta, the canonical quantization proceeds as follows:

1. Promote the fields and canonical momenta tooperators
acting on a certain Hilbert space.

2. Impose the canonicalquantization rules. These are
either commutation or anticommutation relations be-
tween the fields and their conjugate momenta at equal
times. Which rules must be imposed depends on what
is the type of fields (bosonic or fermionic), and corre-
spond to those leading to a hamiltonian bounded from
below, so for a consistent theory one cannot freely
choose. For instance, in the case of the Dirac fermion
field we have to use anticommutators,

{ap,r, a
†
k,s} = {bp,r, b

†
k,s} = (2π)3δ3(p− k)δrs ,

{ap,r, ak,s} = {bp,r, bk,s} = 0. (9)

As a consequence,ap,s, bp,s (and their hermitian
adjoints) become operators that annihilate (create)
fermionic modes of well-defined momentump, mass
m and spin components on the Fock space of multi-
particle states that we call particles and antiparticles,
respectively. The vacuum|0〉 is defined byap,s |0〉 =
bp,s |0〉 = 0; the states with one particle or antiparticle
(conveniently normalized) are given by

one particle≡
√

2Ep a†p,s |0〉 ,

one antiparticle≡
√

2Ep b†p,s |0〉 , (10)

and general fermionic multiparticle states are of the
form a†p1,s1

a†p2,s2
· · · b†q1,r1

b†q2,r2
· · · |0〉. Hence they

are antisymmetric under the exchange of any pair (or
symmetric if they were bosons) enforced by the quan-
tization rules. This is the spin-statistics connection.
Another consequence is causality: the commutation of
two fields at points separated by a spacelike interval.

3. Apply normal orderingto the hamiltonian (and any ob-
servable made of fields): move all creation operators to
the left of annihilation operators, adding a minus sign
each time you exchange the position of any annihila-
tion or creation operator if they are fermionic. This
prescription subtracts the infinite contribution of the
vacuum to the expectation value of the observable.

1.2. Global symmetries and gauge invariance

1.2.1. Internal symmetries and the gauge principle

The free lagrangian

The free lagrangian for the Dirac field (2) is invariant un-
der spacetime (Poincaré) symmetriesand also under ‘inter-
nal’ symmetries, acting only on the fields, not changing the
spacetime coordinates. They consist ofglobal U(1) phase
transformations,

ψ(x) 7→ e−iQθψ(x), (11)

whereQ andθ are real constants. Then, as a consequence of
Noether’s theorem, there must exist a divergentless current
and a conserved charge associated to this continuos symme-
try,

∂µJ µ = 0 , ∂tQ = 0 with Q =
∫

d3x J 0 . (12)

The Noether’s current corresponding to the U(1) invariance
of the lagrangian is

J µ = Q ψγµψ . (13)

After field quantization, the conserved charge becomes an op-
erator on Fock space,

Q = Q

∫
d3x : ψγ0ψ :

= Q

∫
d3p

(2π)3
∑

s=1,2

(
a†p,sap,s − b†p,sbp,s

)
, (14)

where we have applied the normal ordering prescription for
fermionic operators. From this we can easily check that par-
ticles and antiparticles carry opposite charges±Q:

Q a†k,r |0〉 = +Q a†k,s |0〉 (particle),

Q b†k,s |0〉 = −Q b†k,s |0〉 (antiparticle). (15)

Gauge invariance dictates interactions

It is evident that the free lagrangian is not invariant under
phase transformations whereθ = θ(x), different for every
spacetime point,

ψ(x) 7→ e−iQθ(x)ψ(x) . (16)

In order to impose that physics is invariant under theselo-
cal or gaugeU(1) transformations it is enough to perform the
minimal substitution

∂µ → Dµ = ∂µ + ieQAµ, (17)
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that introduces agauge fieldAµ(x) transforming as

Aµ(x) 7→ Aµ(x) +
1
e
∂µθ(x) . (18)

This basically ensures thatDµψ 7→ e−iQθ(x)Dµψ, so it trans-
forms the same asψ, hence the name ofcovariant derivative.

The outcome of this replacement is the generation of an
interaction betweenψ andAµ given by the scalar product of
the conserved current (13) and the gauge field,

Lint = −e Q ψγµψAµ = −eJ µAµ , (19)

which is proportional to the coupling constante (a property
of the gauge field) and the conserved chargeQ (a property of
the fermion field).

Finally, we have to provide dynamics for the vector field
we have introduced without spoiling gauge invariance. This
is achieved by adding the following kinetic term,

LG = −1
4
FµνFµν , (20)

whereFµν = ∂µAν − ∂νAµ is a gauge invariant antisym-
metric tensor, that has the same form as the electromagnetic
tensor. In fact, applying the Euler-Lagrange equations forAµ

to the full invariant lagrangian (L0 + Lint + LG),

Linv = ψ(i /D −m)ψ − 1
4
FµνFµν , (21)

one obtains precisely Maxwell’s equations,∂µFµν = eJ µ,
whereFµν is the electromagnetic field strength and the four-
currentJ µ = (ρ, j) includes the electric charge-density and
charge-current in units ofe.

We have seen that making local a global symmetry re-
quires the existence of interactions, of a type that is deter-
mined by the symmetry. This way of introducing the interac-
tions is known as thegauge principle.

A very important comment is here in order. We often call
gauge symmetryto a local transformation of the fields with
θ = θ(x) that leaves invariant the lagrangian. Although this
gauge invariance implies the existence of a global symmetry,
which can be properly called a ‘symmetry’, with physical
consequences like charge conservation, a local transforma-
tion isnot a symmetryof our system, but aredundancyof our
description of physics: we can redefine fields at every point of
spacetime with no physical consequences. The gauge invari-
ance is necessary to have a local description of massless spin-
1 particles (two degrees of freedom) with four-vector fields,
which are Lorentz invariant objects with too many polariza-
tions. The gauge symmetry is more a gaugefreedom.

The gauge principle in non-abelian gauge theories

Next we will apply the gauge principle to a more general
symmetry group than just U(1). A general gauge symme-
try groupG is a compactN -dimensional Lie group, whose
elements

g ∈ G , g(θ) = e−iTaθa

, a = 1, . . . , N , (22)

are given by a set of real and continuous parameters{θa} in
terms ofN generators{Ta} that form the basis of the Lie al-
gebra of the group. The generatorsTa of gauge groups are
hermitian if the transformation is unitary, and in general the
Lie algebra structure is totally determined by the commuta-
tors between the elements of the basis,

[Ta, Tb] = ifabcTc , (23)

with fabc the structure constants characterizing the group.
The structure constants vanish if and only if the group is
abelian (recall the Baker-Campbell-Hausdorff formula).

The finite-dimensional irreducible representations of a
compact Lie group are unitary: theg(θ) are represented by
unitary d × d matricesU(θ) that are expressed in terms of
the corresponding Lie algebra representation of{Ta}. These
matrices act on somed-dimensional vector space whose ele-
ments are calledd-multiplets,

Ψ(x) 7→ U(θ)Ψ(x) , Ψ =




ψ1

...
ψd


 . (24)

In our context, the multiplet components are fields.
Examples of Lie groups that often appear in quantum

field theories are U(1) (abelian, withN = 1 generator)
and SU(n), which is the group ofn × n unitary matrices
of unit determinant (non-abelian, withN = n2 − 1 gener-
ators). The unitary irreps of abelian groups, like U(1), are
one-dimensional. Prominent irreps of SU(n) groups are the
‘fundamental representation’ (d = n) and the ‘adjoint rep-
resentation’ (d = N ). The elements of theN -dimensional
matrices representing the generators in the adjoint represen-
tation are(Ta)bc = −ifabc, totally antisymmetric for SU(n).
Let us briefly list the main properties of these groups.

• U(1). The only generator is representated by a real
number (Q), that labels each one-dimensional repre-
sentation.

• SU(2). It has 3 generators. The structure constants are
fabc = εabc (Levi-Civita symbol). The generators in
the fundamental representation (d = 2) can be chosen
Ta = 1

2σa, the 3 Pauli matrices. The adjoint represen-
tation has dimension 3.

• SU(3). It has 8 generators. The totally antisymmet-
ric structure constants are given byf123 = 1, f458 =
f678 =

√
3/2, f147 = f156 = f246 = f247 = f345 =

−f367 = 1/2 and the others not related to these by
permuting indices are zero. The generators in the fun-
damental representation can be chosenTa = (1/2)λa,
the 8 Gell-Mann matrices. The adjoint representation
has dimension 8.

Supl. Rev. Mex. Fis.3 020721
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Consider now the free lagrangian for a fermion multiplet,

L0 = Ψ(i/∂ −m)Ψ , (25)

invariant under anN -dimensional Lie groupG of global
transformations,

Ψ(x) 7→ U(θ)Ψ(x) . (26)

We can get a lagrangian invariant under local (gauge) trans-
formationsθ = θ(x) by substituting the covariant derivative

∂µ → Dµ = ∂µ − igW̃µ , W̃µ ≡ TaW a
µ , (27)

where one gauge fieldW a
µ (x) per generatorTa has been in-

troduced, transforming as

W̃µ(x) 7→ UW̃µ(x)U† − i
g
(∂µU)U† . (28)

The first term implements the global transformation of a mul-
tiplet of N vector fields in the adjoint representation and the
second accounts for the local dependence with the spacetime
pointx. ThenDµΨ 7→ UDµΨ, transforming the same asΨ,
just as we need. The choice of sign for the couplingg in the
covariant derivative is conventional.

The new lagrangian contains interactions of fermions in
Ψ with everyW a

µ ,

Lint = g ΨγµTaΨW a
µ = gJ µ

a W a
µ , (29)

where eachJ µ
a is the Noether’s current associated to the in-

variance of the lagrangian under the symmetry generated by
Ta. The strength of the interaction of gauge fieldW a

µ to two
fermion fieldsψi andψj of the d-multiplet is proportional
to the couplingg and is given by the element(Ta)ij of the
corresponding generator in that representation. The fermion
charges under groupG are eigenvalues of the generators in
the given representation. Fermion singlets belong to the triv-
ial one-dimensional representation withTa = 0 and hence do
not couple to gauge fields.

The next step is to add kinetic terms for the gauge fields
respecting the gauge invariance. Interestingly, this cannot be
done without introducing at the same time interactions among
the gauge fields when the symmetry is non-abelian. The min-
imal choice is the Yang-Mills lagrangian,

LYM = −1
2
Tr

{
W̃µνW̃µν

}
= −1

4
W a

µνW a µν , (30)

where

W̃µν ≡ TaW a
µν ≡ DµW̃ν −DνW̃µ

= ∂µW̃ν − ∂νW̃µ − ig[W̃µ, W̃ν ] , (31)

from which one derives the field strengths:

W a
µν = ∂µW a

ν − ∂νW a
µ + gfabcW

b
µW c

ν . (32)

These are a generalization ofFµν to the non-abelian case.
They transform in the adjoint representation of the gauge
group,

W̃µν 7→ UW̃µνU† . (33)

Note that, besides the kinetic terms,LYM contains cubic
and quartic self-interactions of gauge fields completely de-
termined by the gauge group properties:

Lkin = −1
4
(∂µW a

ν − ∂νW a
µ )(∂µW a ν − ∂νW a µ),

Lcubic = −1
2
gfabc (∂µW a

ν − ∂νW a
µ )W b µW c ν ,

Lquartic = −1
4
g2fabefcde W a

µW b
νW c µW d ν . (34)

The self-couplings of gauge fields in non-abelian theories
have profound consequences. For instance, in quantum chro-
modynamics where gluons interact with each other, it is the
main reason for confinement.

1.2.2. Quantization of gauge theories

So far we have discussed only classical gauge theories. If we
now try to quantize the theory we encounter a problem: the
propagator of the gauge field does not exist! The (Feynman)
propagator is the basic correlator of the quantum field theory.
It is a Green’s function for the free equation of motion. For a
scalar field,

DF (x− y) =
∫

d4p

(2π)4
i

p2 −m2 + iε
e−ip·(x−y), (35)

is indeed a Green’s function (the analogue to the inverse) of
the Klein-Gordon operator

(¤x + m2)DF (x− y) = −iδ4(x− y), (36)

or in momentum space,

D̃F (p) =
i

p2 −m2 + iε
. (37)

Similarly, the propagator of a fermion field,

SF (x− y) = (i/∂x + m)
∫

d4p

(2π)4
i

p2 −m2 + iε
e−ip·(x−y),

(38)
is a Green’s function of the Dirac operator,

(i/∂x −m)SF (x− y) = iδ4(x− y), (39)

or in momentum space,

S̃F (p) =
i

/p−m + iε
. (40)

However, the propagator of a gauge field cannot be defined.
For the simpler non-abelian case (Maxwell’s lagrangian) the
equation of motion is

∂µFµν = [gµν¤− ∂µ∂ν ]Aµ = 0. (41)
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The Green’s function should be the inverse of the differential
operator in brackets, but this operator is not invertible be-
cause−k2gµν + kµkν is singular (it has a zero eigenvalue,
with eigenvectorkµ). The origin of this problem is gauge
invariance. The usual solution consists of modifying the la-
grangian adding a gauge-fixing term,L = LG +LGF, where
in the so calledRξ gauges

LGF = − 1
2ξ

(∂µAµ)2 . (42)

The Euler-Lagrange equation of the modified lagrangian is
then [

gµν¤−
(

1− 1
ξ

)
∂µ∂ν

]
Aµ = 0. (43)

The propagator can now be computed in momentum space by
inverting−k2gµν + (1− ξ−1)kµkν ,

D̃µν(k) =
i

k2 + iε

[
−gµν + (1− ξ)

kµkν

k2

]
, (44)

where we have introduced the usual Feynmanε-prescription.
Propagators are not physical observables, so the gauge de-
pendence with the parameterξ is not worrisome; it will can-
cel out in physical amplitudes. Particular cases of interest are
the Landau gauge (ξ = 0) and the ’t Hooft-Feynman gauge
(ξ = 1). The latter has a simpler form, very helpful for loop
calculations.

This procedure can be more easily justified in functional
quantization. The gauge invariance of Maxwell’s lagrangian
under field transformations (18) implies thatAµ provides a
redundant description of the electromagnetic field, because
any four-vector in the same ‘gauge orbit’ leads to the same
physics. As a consequence, we would be overcounting (infi-
nite) equivalent configurations in the path integral, that leads
to divergent Green’s functions. To prevent this we impose a
gauge condition, as∂µAµ = 0, and integrate only over one
representative of each equivalence class. One can see that for
an abelian gauge theory, like quantum electrodynamics, this
constraint amounts to adding the gauge-fixing term (42).

However, in a non-abelian theory, like the electroweak
standard model or quantum chromodynamics, a similiar
gauge-fixing,

LGF = −
N∑

a=1

1
2ξa

(∂µW a
µ )2, (45)

is not enough. One also needs to add interactions with auxil-
iary fields called Faddeev-Popov ghosts,ca(x) = 1, . . . , N ,
as many as gauge group generators,

LFP = (∂µc̄a)(Dadj
µ )abcb

= (∂µc̄a)(∂µca − gfabccbW
c
µ), (46)

where we have introduced the covariant derivative in the ad-
joint representation,

Dadj
µ = ∂µ − igT adj

c W c
µ , (T adj

c )ab = −ifabc . (47)

This is merely a computational trick. The FP ghosts are
unphysical, anticommuting scalar fields that only appear in
loops as virtual particles, never as external legs of Feynman
diagrams. They are produced in pairs and are needed in order
to preserve the gauge symmetry at the quantum level. This
procedure ensures that we do not count field configurations of
W a

µ which are pure gauge, nor count separately fields which
differ only by a gauge transformation.

We finally know how to build the lagrangian of a quantum
gauge field theory. Provided a gauge symmetry group and
matter fields transforming in given group representations, the
covariant derivatives specify the form of the interactions me-
diated by the gauge fields encoded in a gauge invariant piece
Linv, that has to be supplemented by gauge-fixing terms and,
if the symmetry group is non-abelian, by interactions with
unphysical Faddeev-Popov ghosts,

Linv + LGF + LFP. (48)

However, mass terms for the gauge fields break explicitly
the gauge invariance. In fact the Proca lagrangian

L = −1
4
FµνFµν +

1
2
M2AµAµ, (49)

is not invariant under U(1) gauge transformations ifM 6= 0,
which on the other hand allows to define the propagator,

D̃µν(k) =
i

k2 −M2 + iε

(
−gµν +

kµkν

M2

)
. (50)

This is a serious issue if we wish to describe the fundamental
interactions inspired by the gauge principle, since in particu-
lar weak interactions are mediated by massive gauge bosons.
Fortunately, there is a way to cope with massive gauge medi-
ators without spoiling the nice properties of the gauge sym-
metry, as we will see in next section.

1.3. Spontaneous symmetry breaking

1.3.1. Discrete symmetry

In order to understand the basic ideas behind the spontaneous
symmetry breaking, let us first consider a real scalar field
φ(x) with lagrangian

L =
1
2
(∂µφ)(∂µφ)−V (φ) , V (φ) =

1
2
µ2φ2+

λ

4
φ4. (51)

This lagrangian is invariant under a discreteZ2 symmetry
φ 7→ −φ. The hamiltonian is given by

H =
1
2
(φ̇2 + (∇φ)2) + V (φ) , (52)

where the constantsµ2 andλ are real so that the hamiltonian
is real/hermitian, andλ > 0 to ensure there exists a ground
state. We distinguish two cases depending on the sign ofµ2

(Fig. 1). The interesting case isµ2 < 0 for which the mini-
mum is not zero and degenerate,φ = v ≡ ±

√
−µ2/λ.

Supl. Rev. Mex. Fis.3 020721
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FIGURE 1. Potential symmetric underφ 7→ −φ for µ2 > 0 a) andµ2 < 0 b).

For a quantum field the configuration of minimum energy
must be interpreted as the expectation value (VEV) of the
field in the ground state, the vacuum. But if〈0|φ |0〉 = v 6= 0
we have a problem, because|0〉 must be annihilated by any
annihilation operatorap in φ, a requirement for the construc-
tion of the Fock space of its multiparticle states. Therefore,
we must perform a redefinition

φ(x) ≡ v + η(x), (53)

with η(x) the field describing the quantum fluctuations,
〈0| η |0〉 = 0. Then, at the quantum level, the same system is
described by the following lagrangian in terms ofη(x):

L =
1
2
(∂µη)(∂µη)− λv2η2 − λvη3 − λ

4
η4 +

1
4
λv4 , (54)

whereη has a mass
√

2λv2. Note that theZ2 symmetry of the
original lagrangian is broken, or hidden to be more precise.
We say that the symmetry is ‘spontaneously’ broken because
it is due to a non-invariant vacuum, not to an external agent.
One may think thatL(η) exhibits an ‘explicit’ breaking of the
symmetry. However this is not the case: the fact that the co-
efficients of termsη2, η3 andη4 are not independent (they are
determined by just two parameters,λ andv) is a remnant of
the original symmetry. The last constant term can be omitted
as it has no effect on the field dynamics.

1.3.2. Continuous global symmetry

Consider now a complex scalar fieldφ(x) with lagrangian

L = (∂µφ)†(∂µφ)− V (φ) ,

V (φ) = µ2φ†φ + λ(φ†φ)2 , (55)

which is invariant under globalU(1) transformationsφ 7→
e−iQθφ. For λ > 0, µ2 < 0 (Fig. 2) the potential has a
mexican hat shape with a degenerate minimum,

〈0|φ |0〉 ≡ v√
2

, |v| =
√
−µ2

λ
. (56)

We may choosev ∈ R+ without loss of generality.ii In terms
of the quantum fluctuations,

φ(x) ≡ 1√
2
[v + η(x) + iχ(x)],

〈0| η |0〉 = 〈0|χ |0〉 = 0 , (57)

the lagrangian reads

L =
1
2
(∂µη)(∂µη) +

1
2
(∂µχ)(∂µχ)− λv2η2

− λvη(η2 + χ2)− λ

4
(η2 + χ2)2 +

1
4
λv4. (58)

Observe that the quantum lagrangianL(η, χ) is no longer in-
variant underU(1). The spontaneous breaking of this sym-
metry leaves one massless scalar field,χ, whereasη has a
mass proportional to the VEV,mη =

√
2λ v.

In order to understand what are the consequences of the
spontaneous breaking we will explore next the case of a
group with more symmetries. Take anSO(3) triplet of real
scalar fields,Φ(x), whose self-interactions are given by a
similar mexican hat potential,

FIGURE 2. Mexican hat potential.
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L =
1
2
(∂µΦ)T(∂µΦ)− 1

2
µ2ΦTΦ− λ

4
(ΦTΦ)2. (59)

This theory is invariant under globalSO(3) transformations
Φ 7→ e−iTaθa

Φ. For λ > 0, µ2 < 0 the triplet acquires a
VEV

〈0|ΦTΦ |0〉 = v2 = −µ2/λ . (60)

We express the quantum field asΦ(x) ≡ (
ϕ1(x), ϕ2(x), v+

ϕ3(x)
)T

and define the complex combinationϕ ≡
(1/
√

2)(ϕ1 + iϕ2). Then, the lagrangian can be rewritten
as

L = (∂µϕ)†(∂µϕ) +
1
2
(∂µϕ3)(∂µϕ3)− λv2ϕ2

3

− λv(2ϕ†ϕ + ϕ2
3)ϕ3 − λ

4
(2ϕ†ϕ + ϕ2

3)
2 +

1
4
λv4, (61)

which is not symmetric underSO(3) but is invariant under
theU(1) transformation

ϕ 7→ e−iQθϕ (Q is arbitrary), ϕ3 7→ ϕ3 (Q = 0).
(62)

In other words, the groupSO(3) has broken spontaneously
into a U(1) subgroup. Since there are3 − 1 = 2 broken
generators, 2 real scalar fields (or, equivalently, one complex
scalarϕ) remain massless, while the other scalar gets a mass
proportional to the VEV:

mϕ1 = mϕ2 = 0 (mϕ = 0) , mϕ3 =
√

2λv2 . (63)

The two examples we have just analyzed illustrate the
Goldstone’s theorem[7,8], the number of massless particles
(Nambu-Goldstone bosons) is equal to the number of sponta-
neously broken generators of the symmetry. It is not difficult
to understand what is behind this result. By definition of a
symmetry, if the hamiltonian is invariant under the groupG,
we have

[Ta,H] = 0 , a = 1, . . . , N. (64)

And by definition of the vacuum state,

H |0〉 = 0 ⇒ H(Ta |0〉) = TaH |0〉 = 0. (65)

Therefore:

• If |0〉 is such thatTa |0〉 = 0 for all generators, there
is a non-degenerate minimum:the vacuum, that will
remain invariant.

• But if |0〉 is such thatTa′ |0〉 6= 0 for some (broken)
generatorsa′, there is a degenerate minimum: for any
choice (truevacuum) we will havee−iTa′θ

a′ |0〉 6= |0〉,
so it will not remain invariant. In this case there are
excitations from|0〉 to e−iTa′θ

a′ |0〉 (flat directions of
the potential) that cost no energy, so they correspond
to massless particles (the Goldstone bosons).

1.3.3. Gauge symmetry

Take the simplestU(1) gauge invariant lagrangian for a com-
plex scalar fieldφ(x):

L = −1
4
FµνFµν + (Dµφ)†(Dµφ)− µ2φ†φ− λ(φ†φ)2 ,

Dµ ≡ ∂µ + ieQAµ, (66)

which is invariant under the tansformations

φ(x) 7→ e−iQθ(x)φ(x) ,

Aµ(x) 7→ Aµ(x) +
1
e
∂µθ(x). (67)

If λ > 0 andµ2 < 0 the potential has a mexican hat shape
with a minimum at〈0|φ |0〉 = v/

√
2 where|v| =

√
−µ2/λ.

We will choosev ∈ R+ as before. Then we write

φ(x) ≡ 1√
2
[v + η(x) + iχ(x)], (68)

whereη andχ are two real fields with null VEVs that de-
scribe particle excitations. In terms of these quantum fields
the lagrangian reads

L = −1
4
FµνFµν +

1
2
(∂µη)(∂µη) +

1
2
(∂µχ)(∂µχ)

− λv2η2 − λvη(η2 + χ2)− λ

4
(η2 + χ2)2 +

1
4
λv4

+ eQvAµ∂µχ + eQAµ(η∂µχ− χ∂µη)

+
1
2
(eQv)2AµAµ+

1
2
(eQ)2AµAµ(η2 + 2vη+χ2). (69)

Several comments are in order at this point:

• As expected, one of the scalar fields,χ, is massless (the
Goldstone boson field) and the other one has a mass
mη =

√
2λ v. The global symmetry has broken spon-

taneously. We cannot say that the gauge symmetry has
broken, because it is not really a symmetry, as we have
discussed before.

• The gauge fieldAµ acquires a massMA = |eQv|, pro-
portional to the VEV ofφ.

• There is a cross termAµ∂µχ that mixesAµ andχ, pro-
ducing kinetic terms that are neither diagonal nor in-
vertible. Therefore, it is premature to infer the masses
of Aµ andχ until we have made sense of this term.

• We still have to add a gauge-fixing termLGF.

The cross term can be removed and the gauge fixed at the
same time by introducing the following gauge-fixing la-
grangian:

LGF = − 1
2ξ

(∂µAµ − ξMAχ)2 , (70)
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which in particular adds a term to the kinetic mixing above
yielding an irrelevant total derivative,MA∂µ(Aµχ), that can
be ignored. Therefore

L+ LGF = −1
4
FµνFµν +

1
2
M2

AAµAµ − 1
2ξ

(∂µAµ)2

+
1
2
(∂µχ)(∂µχ)− 1

2
ξM2

Aχ2 + interactions. (71)

The resulting propagators ofAµ andχ are, respectively:

D̃µν(k) =
i

k2 −M2
A + iε

(
−gµν + (1− ξ)

kµkν

k2 − ξM2
A

)
,

D̃(k) =
i

k2 − ξM2
A + iε

. (72)

This confirms that the interaction ofAµ with φ has provided
the gauge boson with a mass proportional to〈0|φ |0〉. Notice
also thatχ has a gauge-dependent mass, an indication that it
is not ‘physical’.

We can better understand the consequences of the spon-
taneous breaking of the symmetry in the context of a gauge
theory if we use a more transparent parametrization of the
quantum fluctuations ofφ. Let us now define

φ(x) ≡ eiQζ(x)/v 1√
2
(v + η(x)) ,

〈0| η |0〉 = 〈0| ζ |0〉 = 0. (73)

Thanks to the gauge symmetry, the fieldζ(x) can now be
eliminated (gauged away) by exploiting the gauge freedom
to choose the phaseof φ at every point of spacetime,

φ(x) 7→ e−iQζ(x)/vφ(x) =
1√
2
(v + η(x)). (74)

The resulting lagrangian is

L = −1
4
FµνFµν +

1
2
(∂µη)(∂µη)

− λv2η2 − λvη3 − λ

4
η4 +

1
4
λv4

+
1
2
(eQv)2AµAµ +

1
2
(eQ)2AµAµ(2vη + η2) . (75)

Observe that we obtain again the same massesmη =
√

2λ v
and MA = |eQv|. Of course, since the gauge has been
‘fixed’, there is no need to add aLGF. Actually this cor-
responds to choosing the so-calledunitary gauge(Rξ gauge
with ξ →∞), in which only the physical fields appear:

D̃µν(k) → i
k2 −M2

A + iε

(
−gµν +

kµkν

M2
A

)
,

D̃(k) → 0. (76)

The results above are a manifestation of theBrout-
Englert-Higgs mechanism[9-15]. Thegauge bosonsassoci-
ated with the spontaneously broken generators become mas-
sive, the correspondingwould-be Goldstone bosonsare un-
physical (they can be absorbed), and the remaining massive
scalars (Higgs bosons) are physical.

The existence of Higgs bosons is the smoking gun con-
firming that this mechanism is responsible for the mass of
the gauge bosons associated to broken symmetries. One of-
ten says that the would-be Goldstone bosons are ‘eaten up’
by the gauge bosons that ‘get fat’ by acquiring a mass. But
keep in mind that the would-be Goldstone bosons only disap-
pear completely in the unitary gauge (ξ → ∞), even though
they are unphysical in any gauge.

Notice also that the number of degrees of freedom (dof)
of the physical spectrum remains the same. In the case of
the U(1) gauge invariance we have discussed, before sponta-
neous symmetry breaking (µ2 > 0) there are 2 scalars and
one massless gauge boson with 2 polarizations (1 + 1 + 2 =
4 dof). After spontaneous symmetry breaking (µ2 < 0) one
of the scalars is physical but the other one is not, and the
massive gauge boson has 3 polarizations (1+0+3 = 4 dof).

Remember that for loop calculations the ’t Hooft-
Feynman gauge (Rξ gauge withξ = 1) is more convenient
because the gauge boson propagators are simpler. However,
be aware that in this gauge the Goldstone bosons must be in-
cluded, in internal lines only.

For completeness, let us mention that, if the gauge group
is non-abelian, the (unphysical) Faddeev-Popov ghosts asso-
ciated to the gauge boson of broken symmetries acquire a
gauge-dependent mass. In a generalRξ gauge the FP propa-
gator is

D̃ab(k) =
iδab

k2 − ξaM2
W a + iε

. (77)

Finally, it is very important to underline that gauge theo-
ries with spontaneous symmetry breaking are renormalizable
[16]. This means that the ultraviolet divergences appearing
at loop level can be absorbed by an appropriate redefinition
of the parameters and fields in the classical lagrangian. Since
there are a finite number of them, they can all be fixed by the
measurement of just a few observables, so these theories are
predictive.

2. The standard model

2.1. Gauge group and field representations

The Standard Model (SM) [17-22] is a gauge theory based on
the symmetry group:

SU(3)c ⊗ SU(2)L ⊗U(1)Y → SU(3)c ⊗U(1)Q, (78)

where the electroweak symmetry is spontaneously broken to
the electromagnetic symmetry by the Brout-Englert-Higgs
mechanism.

The SM particle content, in Table I, consists of three
replicas (families or generations) of spin1/2 fermions that
constitute matter, a set of8+3+1 = 12 gauge vector bosons
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TABLE I. SM particle content: 3 fermion families of 2 quarks in 3
colors and 2 leptons, 12 gauge bosons and one Higgs boson. The
electric chargesQ of quarks or leptons of the same family differ in
one unit.

Fermions I II III Q

spin 1
2

Quarks f uuu ccc ttt 2
3

f ′ ddd sss bbb − 1
3

Leptons f νe νµ ντ 0

f ′ e µ τ −1

Bosons responsible for

spin 1 8 gluons strong interaction

W±, Z weak interaction

γ em interaction

spin 0 Higgs origin of mass

TABLE II. Gauge group representations of left-handed and right-
handed fermion fields underSU(3)c ⊗ SU(2)L ⊗ U(1)Y . They
are the same for each family of quarks or leptons (universal). The
electric chargesQ are fixed by theSU(2)L weak isospinT3 and
theU(1)Y hyperchargeY . Right-handed neutrinos are sterile (sin-
glets) and were absent in the original SM with massless neutrinos.

Multiplets I II III

Quarks (3, 2, 1
6
)

(
uL

dL

) (
cL

sL

) (
tL

bL

)

(3, 1, 2
3
) uR cR tR

(3, 1,− 1
3
) dR sR bR

Leptons (1, 2,− 1
2
)

(
νeL

eL

) (
νµL

µL

) (
ντL

τL

)

(1, 1,−1) eR µR τR

(1, 1, 0) νeR νµR ντR

mediating the fundamental interactions (as many as genera-
tors of the gauge group) and one Higgs boson, remnant of
the Higgs scalar field that triggers the electroweak symme-
try breaking (EWSB) giving rise to the masses of elementary
particles.

The SM is a chiral theory: left and right-handed com-
ponents of the fermion fields lay in different representa-
tions of the gauge group, as shown in Table II. Strong and
electroweak interactions can be studied separately and have
very different properties. The former, specified bySU(3)c,
are dubbedquantum chromodynamics(QCD) because they
are only experienced by particles with ‘color’ charges, that
is quarks (color triplets) and gluons. The electroweak in-
teractions, described by the groupSU(2)L ⊗ U(1)Y , af-
fect any type (‘flavor’) of fermions depending on their
weak isospin and hypercharge (quantum flavordynamics).
Left/right-handed fermions are isospin doublets/singlets, re-
spectively, and have also different hypercharges. The elec-

tric chargesQ are associated to the only electroweak symme-
try generator that remains unbroken, the sum of theSU(2)L

weak isospinT3 and theU(1)Y hyperchargeY , leading to
quantum electrodynamics(QED).

2.2. Electroweak interactions

2.2.1. One generation of quarks or leptons

Consider two massless fermion fieldsf(x) andf ′(x) with
electric chargesQf = Qf ′ + 1 and assume their chiral com-
ponents lay in the following SU(2)L⊗U(1)Y representations:

Ψ1 =
(

fL

f ′L

)
∼ (2, y1),

ψ2 = fR ∼ (1, y2), ψ3 = f ′R ∼ (1, y3), (79)

wherefR,L = PR,L f with PR,L = (1/2)(1± γ5)f the chi-
ral proyectors, and likewise forf ′R,L. Their free lagrangian,
invariant under global transformations, is

L0
F = iΨ1/∂Ψ1 + iψ2/∂ψ2 + iψ3/∂ψ3. (80)

To make it invariant under gauge transformations,

Ψ1(x) 7→ UL(x)e−iy1β(x)Ψ1(x),

ψ2(x) 7→ e−iy2β(x)ψ2(x),

ψ3(x) 7→ e−iy3β(x)ψ3(x), (81)

whereUL(x) = exp{−iTiα
i(x)} andTi = σi/2, one has to

substitute the corresponding covariant derivatives,

DµΨ1 = (∂µ − igW̃µ + ig′y1Bµ)Ψ1 , W̃µ ≡ σi

2
W i

µ,

Dµψ2 = (∂µ + ig′y2Bµ)ψ2,

Dµψ3 = (∂µ + ig′y3Bµ)ψ3, (82)

where we have introduced two couplings,g andg′, one for
each group factor, and four gauge fields,W 1

µ(x), W 2
µ(x),

W 3
µ(x) andBµ(x), transforming as:iii

W̃µ(x) 7→ UL(x)W̃µ(x)U†
L(x)− i

g
(∂µUL(x))U†

L(x)

Bµ(x) 7→ Bµ(x) +
1
g′

∂µβ(x). (83)

ThenL0
F is replaced byLF , which contains charge conjuga-

tion (C) and parity (P ) violating interactions. Furthermore,
one has to add the Yang-Mills lagrangian

LYM = −1
4
W i

µνW i,µν − 1
4
BµνBµν , (84)

with W i
µν = ∂µW i

ν − ∂νW i
µ + gεijkW j

µW k
ν and Bµν =

∂µBν − ∂νBµ, which includes kinetic terms for every vector
field and self-interactions for the gauge fields ofSU(2)L, a
non-abelian symmetry.
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FIGURE 3. Weak charged current interactions.

Note that mass terms for the fermions are incompatible
with the symmetry because left and right-handed components
do not transform the same underSU(2)L ⊗U(1)Y and

mff = m(fLfR + fRfL). (85)

Mass terms for the gauge bosons are not allowed either. Both
problems will be solved later. Let us discuss first the different
types of interactions that have been generated.

Charged current interactions

The off-diagonal part of the termgΨ1γ
µW̃µΨ1 in LF , with

W̃µ =
1
2

(
W 3

µ

√
2W †

µ√
2Wµ −W 3

µ

)
, (86)

gives rise to interactions (Fig. 3) involvingfL andf ′L and the
complex weak fieldWµ ≡ (1/

√
2)(W 1

µ + iW 2
µ),

LF ⊃ LCC =
g√
2
fLγµf ′LW †

µ + h.c.

=
g

2
√

2
fγµ(1− γ5)f ′W †

µ + h.c. (87)

Note thatWµ, also denotedW−
µ , annihilatesW− bosons and

createsW+ bosons, whereasW †
µ, also denotedW+

µ , does the
opposite.

Neutral current interactions

The diagonal part ofgΨ1γ
µW̃µΨ1 and the remaining terms,

LF ⊃ LNC = 1
2gΨ1γ

µσ3Ψ1W
3
µ − g′(y1Ψ1γ

µΨ1

+ y2ψ2γ
µψ2 + y3ψ3γ

µψ3)Bµ, (88)

describe interactions with the vector boson fieldsW 3
µ andBµ

that do not change fermion charge. We are tempted to iden-
tify Bµ with the photon fieldAµ of QED but for that purpose
both chiralities of each fermion should couple proportional
to the fermion electric charge. However, this is not possible
because it would requirey1 = y2 = y3 and g′yj = eQj

simultaneously. Since bothW 3
µ andBµ are neutral, one in-

troduces the following orthogonal combinations,
(

W 3
µ

Bµ

)
≡

(
cW −sW

sW cW

)(
Zµ

Aµ

)
, (89)

wheresW ≡ sin θW , cW ≡ cos θW and θW is the weak
mixing or Weinberg angle.iv Then

LNC =
3∑

j=1

ψjγ
µ{− [gT3sW + g′yjcW ] Aµ

+ [gT3cW − g′yjsW ] Zµ}ψj , (90)

whereT3 = (1/2)σ3 (T3 = 0) is here the third weak isospin
component of the doublet (singlet), and we have introduced
ψ1 ≡ Ψ1 to alleviate the notation. To makeAµ the photon
field is now enough to establish the relations:

e = gsW = g′cW , Q = T3 + Y. (91)

This is the celebratedelectroweak unification, connecting the
couplingsg of SU(2)L andg′ of U(1)Y to the electromag-
netic couplinge = gg′/

√
g2 + g′2 of U(1)Q. The electric

charges off andf ′ are embedded in the operators

Q1 =
(

Qf 0
0 Qf ′

)
, Q2 = Qf , Q3 = Qf ′ , (92)

so the hyperchages are given in terms of electric charges and
weak isospin as shown in Table II;

y1 = Qf − 1
2

= Qf ′ +
1
2
, y2 = Qf , y3 = Qf ′ . (93)

As a consequence,LNC = LQED+LZ
NC contains the electro-

magnetic interactions mediated by the photon field (Fig. 4a),

LQED = −eQffγµf Aµ + (f → f ′) (94)

and weak neutral current interactions mediated by the Z bo-
son field (Fig. 4b),

LZ
NC = efγµ(vf − afγ5)f Zµ + (f → f ′), (95)

with

vf =
T fL

3 − 2Qfs2
W

2sW cW
, af =

T fL

3

2sW cW
, (96)

whereT fL

3 refers to the eigenvalue ofT3 that corresponds to
fL. Note that left-handed neutrinosνL have only weak inter-
actions, while right-handedνR would be sterile, hence absent
in the original SM with massless neutrinos.

FIGURE 4. Electromagnetic and weak neutral current interactions.
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FIGURE 5. Triple gauge boson interactions.

FIGURE 6. Quartic gauge boson interactions.

Gauge boson self-interactions

After some algebra, from the Yang-Mills lagrangian (84) and
the field redefinitions (89), one may derive cubic interactions
among the gauge boson fields (Fig. 5),

LYM⊃L3 = − iecW

sW
{WµνW †

µZν−W †
µνWµZν

−W †
µWνZµν}+ ie{WµνW †

µAν

−W †
µνWµAν −W †

µWνFµν}, (97)

with Fµν = ∂µAν − ∂νAµ, Zµν = ∂µZν − ∂νZµ, Wµν =
∂µWν − ∂νWµ, and quartic interactions (Fig. 6),

LYM ⊃ L4 = − e2

2s2
W

{(
W †

µWµ
)2 −W †

µWµ†WνW ν
}

− e2c2
W

s2
W

{
W †

µWµZνZν −W †
µZµWνZν

}

+
e2cW

sW

{
2W †

µWµZνAν−W †
µZµWνAν−W †

µAµWνZν
}

− e2
{
W †

µWµAνAν −W †
µAµWνAν

}
. (98)

Note that gauge boson self-interactions involve an even num-
ber ofW and there is no vertex with onlyγ or Z.

2.2.2. Electroweak symmetry breaking: Higgs sector and
gauge boson masses

The weak gauge bosons,W± andZ, are massive. To pro-
vide them with masses without explicitly breaking gauge in-
variance one resorts to the Higgs mechanism, that allows

to break spontaneously three out of the four generators of
SU(2)L⊗U(1)Y , T1, T2, T3, Y , preserving the combination
Q = T3 + Y unbroken, so that the photon remains massless.

This cannot be achieved by just introducing one complex
scalar field. A complex Higgs doublet ofSU(2) with the ap-
propriate hypercharge will do the work,

Φ =
(

φ+

φ0

)
, 〈0|Φ |0〉 ≡ 1√

2

(
0
v

)
, (99)

wherev/
√

2 is the Higgs vacuum expectation value, mini-
mum of the mexican hat potentialV (Φ),

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2, (100)

andµ2 = −λv2 < 0. The Higgs lagrangian is gauge invari-
ant thanks to the covariant derivatives, that lead to interac-
tions with the gauge fields:

LΦ = (DµΦ)†DµΦ− V (Φ),

DµΦ = (∂µ − igW̃µ + ig′yΦBµ)Φ. (101)

By assigning a hyperchargeyΦ = 1/2 to the Higgs doublet
one gets a generator that annihilates the vacuum (associated
to the photon field) and three that do not (associated to the
massive vector fields), as we wanted:

(T3 + Y ) |0〉 = Q

(
0
v

)
= 0,

{T1, T2, T3 − Y } |0〉 6= 0. (102)

In the unitary gauge one parametrizes the three would-be-
Goldstone fields inΦ(x) as spacetime-dependent phases that
can be absorbed (gauged away) thanks to the gauge freedom,

Φ(x) ≡ exp
{

i
σi

2v
θi(x)

} 1√
2

(
0

v + H(x)

)

7→ exp
{
−i

σi

2v
θi(x)

}
Φ(x)=

1√
2

(
0

v + H(x)

)
. (103)

Only the Higgs fieldH(x) is physical. The three degrees of
freedom apparently lost become the extra (longitudinal) po-
larizations ofW± andZ that are massive particles of spin 1
after the EWSB. Replacing Eq. (103) in (101) one gets the
gauge boson mass terms:

LΦ ⊃ LM =
g2v2

4
W †

µWµ +
g2v2

8c2
W

ZµZµ

⇒ MW = MZcW =
1
2
gv. (104)

The fact that the parameterρ ≡ M2
W /(MZcW )2 = 1 is

a consequence of the custodial symmetry, a residual global
SU(2) symmetry ofV (Φ) after EWSB whenΦ is a com-
plex Higgs doublet.v Theρ parameter measures the relative
strength of neutral-current to charged-current interactions,
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FIGURE 7. Higgs boson self-interactions.

FIGURE 8. Higgs-gauge boson interactions.

but the tree-level relationρ = 1 is slightly broken by quan-
tum corrections (seee.g.[2]).

In the unitary gauge, where only physical fields are man-
ifest, apart from the gauge boson mass terms, the Higgs la-
grangian contains the (physical) Higgs kinetic terms, its self-
interactions (Fig. 7) and the Higgs-gauge boson interactions
(Fig. 8):vi

LΦ = LH + LM + LHV ,

LH =
1
2
∂µH∂µH− 1

2
M2

HH2−M2
H

2v
H3−M2

H

8v2
H4,

LM + LHV = M2
W W †

µWµ

{
1 +

2
v
H +

H2

v2

}

+
1
2
M2

ZZµZµ

{
1 +

2
v
H +

H2

v2

}
, (105)

where

MH =
√
−2µ2 =

√
2λ v. (106)

However, it is often more convenient to useRξ gauges,
where the Higgs doublet is parametrized as

Φ(x) ≡
(

φ+(x)
1√
2
[v + H(x) + iχ(x)]

)
, (107)

andφ−(x) ≡ [φ+(x)]†. Then the Higgs lagrangian reads

LΦ = LH + LM + LHV 2

+ (∂µφ+)(∂µφ−) +
1
2
(∂µχ)(∂µχ) (108)

+ iMW (Wµ∂µφ+ −W †
µ∂µφ−) + MZZµ∂µχ + . . .

The omitted terms include trilinear (SSS, SSV, SVV) and
quadrilinear (SSSS, SSVV) interactions of vector (V) and
scalar (S) fields involving would-be-Goldstone bosons, that
can be easily derived.

In order to define propagators and remove the cross terms
Wµ∂µφ+, W †

µ∂µφ−, Zµ∂µχ an appropriate gauge-fixing la-
grangian must be added,

LGF = − 1
2ξγ

(∂µAµ)2 − 1
2ξZ

(∂µZµ − ξZMZχ)2

− 1
ξW

|∂µWµ + iξW MW φ−|2. (109)

Then one finds a massless photon propagator, massive prop-
agators for the weak gauge bosons and propagators for the
unphysical would-be Goldstone bosons, whose masses are
gauge dependent:

D̃γ
µν(k) =

i
k2 + iε

[
−gµν + (1− ξγ)

kµkν

k2

]
,

D̃Z
µν(k) =

i
k2 −M2

Z + iε

[
−gµν +(1− ξZ)

kµkν

k2 − ξZM2
Z

]
,

D̃W
µν(k) =

i
k2 −M2

W + iε

[
−gµν +(1− ξW )

kµkν

k2 − ξW M2
W

]
,

D̃χ(k) =
i

k2 − ξZM2
Z + iε

,

D̃φ(k) =
i

k2 − ξW M2
W + iε

. (110)

These propagators are much simpler in the ’t Hooft-Feynman
gauge, whereξγ = ξZ = ξW = 1, which is particularly
useful for loop calculations.

Last but not least, the electroweak symmetry group is
non-abelian, so Faddeev-Popov ghosts must be introduced,
one perSU(2) generator, in order to restore the gauge invari-
ance of the theory at the quantum level. After the EWSB they
do not only couple to theSU(2) gauge fields but also to the
Higgs doublet,

LFP = (∂µci)(∂µci − gεijkcjW
k
µ )

+ ghost interactions withΦ. (111)

These auxiliary fieldsci(x) (i = 1, 2, 3) are usually written
in terms of combinations associated to the ordinary weak and
electromagnetic vector fields,

c1 ≡ 1√
2
(u+ + u−) , c2 ≡ i√

2
(u+ − u−) ,

c3 ≡ cW uZ − sW uγ . (112)

For completeness, the full expression of the Faddeev-Popov
lagrangian is as follows:
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LFP = (∂µuγ)(∂µuγ) + (∂µuZ)(∂µuZ) + (∂µu+)(∂µu+) + (∂µu−)(∂µu−) + ie[(∂µu+)u+ − (∂µu−)u−]Aµ

− iecW

sW
[(∂µu+)u+ − (∂µu−)u−]Zµ − ie[(∂µu+)uγ − (∂µuγ)u−]W †

µ +
iecW

sW
[(∂µu+)uZ − (∂µuZ)u−]W †

µ

+ ie[(∂µu−)uγ − (∂µuγ)u+]Wµ − iecW

sW
[(∂µu−)uZ − (∂µuZ)u+]Wµ − ξZM2

Z uZuZ − ξW M2
W u+u+

− ξW M2
W u−u− − eξZMZuZ

[
1

2sW cW
HuZ − 1

2sW

(
φ+u− + φ−u+

)]

− eξW MW u+

[
1

2sW
(H+iχ)u+−φ+

(
uγ− c2

W−s2
W

2sW cW
uZ

)]

− eξW MW u−

[
1

2sW
(H−iχ)u−−φ−

(
uγ− c2

W−s2
W

2sW cW
uZ

)]
. (113)

From the kinetic terms one can directly see that ghost prop-
agators contain gauge-dependent masses that coincide with
those of the partner gauge boson fields in the ’t Hooft-
Feynman gauge,

D̃uγ (k) =
i

k2 + iε
, D̃uZ (k) =

i
k2 − ξZM2

Z + iε
,

D̃u±(k) =
i

k2 − ξW M2
W + iε

. (114)

The interaction terms include trilinear (UUV) and quadrilin-
ear (SUU) interactions of vector (V) and unphysical ghost
fields (U).

2.2.3. Yukawa interactions: fermion masses

Masses for quarks and leptons are also needed, without spoil-
ing the gauge symmetry. For that purposeanotherinteraction
is introduced that couples the Higgs doubletΦ to the fermion
fields preserving theSU(2)L ⊗ U(1)Y symmetry. Since the
left-handed components make a doublet and the right-handed
ones are singlets, this can be achieved with the following
Yukawa interactions:

LY = −λd

(
uL dL

)
Φ dR−λu

(
uL dL

)
Φ̃uR

−λe

(
νL eL

)
Φ eR−λν

(
νL eL

)
Φ̃ νR + h.c., (115)

whereΦ̃ ≡ iσ2Φ∗ has the appropriate quantum numbers for
interactions involving up-type fermion singlets. The neutrino
Yukawa coupling was not introduced in the original SM with
massless neutrinos, but we keep it for further reference. Af-
ter the EWSB, fermions acquire masses proportional to the
corresponding Yukawa couplings,

LY ⊃ − 1√
2
(v + H)

{
λd dd + λu uu + λe ee + λν νν

}

⇒ mf = λf
v√
2
, (116)

recalling thatff = fLfR + fRfL.

2.2.4. Additional generations: fermion mixings

We know of 3 generations of quarks and leptons in nature.
They are identical copies with the same properties under
SU(2)L ⊗U(1)Y differing only in their masses. If one takes
n generations and definesuI

i , dI
i , νI

i , eI
i as the fields cor-

responding to thei-th generation, where the superindexI
(standing for ‘interaction’ basis) was omitted so far, the most
general gauge-invariant Yukawa lagrangian is

LY = −
∑

ij

{ (
uI

iLd
I

iL

)
Φ λ

(d)
ij dI

jR

+
(
uI

iL d
I

iL

)
Φ̃λ

(u)
ij uI

jR

+
(
νI

iL eI
iL

)
Φ λ

(e)
ij eI

jR

+
(
νI

iL eI
iL

)
Φ̃ λ

(ν)
ij νI

jR

}
+ h.c. (117)

Here,λ(d)
ij , λ

(u)
ij , λ

(e)
ij (andλ

(ν)
ij if present) aren× n Yukawa

matrices in flavor space. After EWSB this lagrangian con-
tains the following terms inn-dimensional matrix form:

LY ⊃−
(

1 +
H

v

) {
d

I

L Md dI
R + uI

L Mu uI
R

+ eI
L Me eI

R+νI
L Mν νI

R + h.c.
}

, (118)

where the various mass matrices have the form(Mf )ij =
λ

(f)
ij v/

√
2. Their diagonalization determines the (physical)

mass eigenfieldsdj , uj , ej , νj in terms of interaction eigen-
fields dI

j , uI
j , eI

j , νI
j , respectively, the latter having well-

defined flavor. EachMf can be written as

Mf = Hf Uf = V†
f Mf Vf Uf

⇔ MfM
†
f = H2

f = V†
f M2

f Vf , (119)
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with Hf ≡
√

MfM
†
f a hermitian positive definite ma-

trix and Uf unitary. Hf can be diagonalized by a uni-
tary matrixVf and the resultingMf is diagonal and pos-
itive definite. In the physical basis, where mass matri-
ces are diagonal,Md = diag(md, ms,mb, . . .), Mu =
diag(mu,mc,mt, . . .), Me = diag(me,mµ,mτ , . . .),
Mν = diag(mνe ,mνµ ,mντ , . . .), one finds that fermion
couplings to the Higgs are proportional to fermion masses,

LY ⊃−
(

1 +
H

v

) {
dMd d+uMu u

+ eMe e+νMν ν
}
. (120)

Replacing now interaction with mass eigenfields,

dL ≡ Vd dI
L , uL ≡ Vu uI

L ,

eL ≡ Ve eI
L , νL ≡ Vν νI

L ,

dR ≡ VdUd dI
R , uR ≡ VuUu uI

R ,

eR ≡ VeUe eI
R , νR ≡ VνUν νI

R , (121)

it is apparent that neutral-current interactions will keep the
same form, becausef

I

L f I
L = fL fL and f

I

R f I
R = fR fR,

implying that there are no flavor changing neutral currents
(FCNC) at tree level. However, the operators involved in
charged current interaction terms are not necessarily diago-
nal in the basis of mass eigenfields. For instance, in the quark
sector,

uI
LdI

L = uLVuV
†
ddL = uLVdL. (122)

The unitary matrixV ≡ Vu V†
d is the Cabibbo-Kobayashi-

Maskawa (CKM) mixing matrix [23, 24] accounting for
quark flavor misalignment and inducing inter-family transi-
tions (Fig. 9),

LCC =
g√
2

∑

ij

uLiγ
µ Vij dLj W †

µ + h.c.

=
g

2
√

2

∑

ij

uiγ
µ(1− γ5) Vij dj W †

µ + h.c. (123)

FIGURE 9. Weak charged currents change quark family propor-
tionally to the CKM matrix elementsVij .

Thanks to these flavor changes in charged currents,
FCNC will appear at the loop level but they are then sup-
pressed (GIM mechanism [25]).

Note that ifui or dj had degenerate masses, which is not
the case, one could chooseVu = Vd by field redefinitions
and quark families would not mix. Masses and mixings are
observable, but the matrix elements ofVu andVd are not.

Applying the same reasoning, in a lepton sector with
massless neutrinos there is no lepton mixing.

At this point, it is important to discuss how many of the
mixing parameters we have introduced are physical. The
number of real parameters of a generaln × n unitary ma-
trix, like the CKM, is n2 = n(n − 1)/2 moduli + n(n +
1)/2 phases. However, some phases are unphysical since
they can be absorbed by field phase-redefinitions,

ui → eiαi ui ,

dj → eiβj dj ⇒ Vij → Vije−i(αi−βj). (124)

Therefore, after removing2n−1 phases, the number of phys-
ical parameters is(n−1)2 = n(n−1)/2 moduli+(n−1)(n−
2)/2 phases. In particular, for the case ofn = 2 generations,
there is only 1 parameter, the Cabibbo angleθC :

V =
(

cos θC sin θC

− sin θC cos θC

)
. (125)

For the actual case ofn = 3 generations, there are 3 angles
and 1 phase. In the so-called standard parametrization,

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 =




1 0 0
0 c23 s23

0 −s23 c23






c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13






c12 s12 0
−s12 c12 0

0 0 1




=




c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13


 , (126)

with cij ≡ cos θij ≥ 0, sij ≡ sin θij ≥ 0 (i < j = 1, 2, 3) and0 ≤ δ ≤ 2π. The complex phaseδ is the only source of
CP violation in the SM lagrangian, requiring the existence of at least three generations of quarks. Since quarks are confined in
hadrons by the strong interaction, the values of the CKM parameters are obtained from a variety of hadronic weak decays [26],

θ12 ≡ θC ≈ 13◦, θ23 ≈ 2.3◦, θ13 ≈ 0.2◦, δ ≈ 68◦. (127)

Interestingly, any CP-violating observable must be proportional to the Jarlskog invariant [27] given byIm(VijVklV
∗
il V

∗
kj) =

J
∑

m,n εikmεjln (phase-convention independent). In the standard parametrizationJ = c12c23c
2
13s12s23s13 sin δ. The empiri-
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cal value ofJ ≈ 3 × 10−5 is small compared with its math-
ematical maximum of1/(6

√
3) ≈ 0.1, showing that CP vio-

lation is suppressed in the quark sector.
As already mentioned, if neutrinos were massless there

would be no lepton mixing. However, the observed phe-
nomenon of neutrino oscillation requires that neutrinos have
non-degenerate masses (though very light) and mix. A pos-
sible minimal extension of the original SM consists of in-
troducing gauge-singlet neutrinosνR with just Yukawa cou-
plings to the Higgs and the lepton doublet, like the other
fermions, as was suggested in Eqs. (115) and (117). This
νSM [28] is however not very satisfactory: in order to get
neutrino massesmν . 0.1 eV one needs tiny Yukawa cou-
plings λν =

√
2mν/v . 10−12, which apart from being

unnatural would predict untestable phenomenology. Alter-
natively, one can exploit that neutrinos arespecialbecause,
in contrast to the other fermions, neutrinosmay be their
own antiparticle (Majorana fermions). Then neutrinos can
have gauge invariant (but lepton number violating) Majo-
rana mass terms (mR), in addition to the usual Dirac mass
terms (mD) from Yukawa interactions with the Higgs dou-
blet, opening the possibility of new mechanisms for the gen-
eration of masses and mixings. Particularly interesting is the
type-I seesaw mechanism [29, 30] that explains why the ac-
tive neutrinos are so light by introducing gauge singletsNR

with very large Majorana mass termsmR & 1014 GeV and
Dirac massesmD ∼ v/

√
2 ∼ 100 GeV: the resulting mass

eigenstates comprise light Majorana neutrinos that are very
approximatelyν = νL + νc

L, of massesmν ≈ m2
D/mR,

and super heavy ones, nearlyN = N c
R + NR, of masses

mN ≈ mR, with negligible light-heavy mixings of order
mD/mR ∼

√
mν/mN . Majorana fields are self-conjugate

(ν = νc), so their chiral components are related. Further-
more, if neutrinos are Majorana particles resulting from the
admixture of active and singlet neutrinos, only the active
components would experience charged current interactions,
and there would be FCNC at tree level in the neutrino sector
involving both chiral components (see for instance Ref. [31]).
As a consequence the intergenerational lepton mixings in
clude additional CP phases that now cannot be absorbed be-
cause it is no longer possible to perform neutrino field phase-
redefinitions. In any case, global fits to neutrino oscillations
are compatible with 3 generations of active neutrino flavors
ναL (α = e, µ, τ ) that are an admixture of 3 light neutrino
mass-eigenstatesνiL (i = 1, 2, 3),

ναL =
∑

i

UαiνiL, (128)

where the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-
trix U [32–34] is the unitary mixing matrixV†

ν in Eq. (121),
or perhaps, if neutrinos are Majorana particles, the nearly uni-
tary 3 × 3 block of a larger unitary matrix diagonalizing the
Majorana neutrino mass matrix that includes both light and
heavy species.

The oscillation phenomenon occurs because the mass dif-
ferences among the various light mass eigenstates are so
small that thecoherent superpositionνα in Eq. (128) can be
produced or detected in a charged current interaction with
the corresponding leptoneα (e,µ, τ ), as in Fig. 10. Then the
probability that a (relativistic) neutrino in a quantum state of
flavorα is detected as a flavorβ after traveling (in vacuum) a
distanceL = t is given by (see Fig. 11)

|να; t〉=
∑

i

Uαie−iEit |νi〉 , Ei ≈ E +
m2

i

2E

⇒ 〈νβ〉 να; t=
∑

i

U∗
βiUαie−iEit

⇒ P (να→ νβ ;L)= | 〈νβ〉 να;L|2

=
∑

ij

U∗
βiUαiUβjU∗

αjexp

(
−i

∆m2
ij

2E
L

)
, (129)

whereE ≈ p is the momentum of the relativistic neutrino of
massmi and∆m2

ij ≡ m2
i −m2

j . Charged lepton flavors do
not oscillate because|∆m2

ij | ¿ ∆m2
µe [35], so they can be

taken as mass eigenstates.
In the standard parametrization, the PMNS matrix reads

FIGURE 10. A neutrino flavor eigenstateνα, produced/detected
together with a charged leptoneα, is a coherent superposition of
mass eigenstatesνi, hence the flavor oscillates as it propagates.

FIGURE 11. Vacuum oscillation probabilities for an initialνe using
experimental inputs (131).
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U=




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 =




c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13







1 0 0
0 eiα21/2 0
0 0 eiα31/2


 , (130)

where additional phasesα21, α31 are needed if neutrinos are
Majorana particles, as mentioned above, and the rest are anal-
ogous to the CKM mixing parameters, though they have dif-
ferent values. Neutrino mass differences and mixing param-
eters are constrained by a good number of oscillation exper-
iments using solar, atmospheric, accelerator and reactor neu-
trinos [36],

∆m2
21 ≈ 7.5× 10−5 eV2, |∆m2

31| ≈ 2.5× 10−3 eV2

θ12 ≡ θ¯ ≈ 34◦, θ23 ≡ θatm ≈ 49◦, θ13 ≈ 8◦. (131)

The best fit value of the Dirac phaseδ depends on the sign
of ∆m2

31, that is whether the ordering of neutrino masses
is normal (NO) or inverted (IO). Currently a CP-conserving
value δ ≈ 180◦ is favored by NO but an almost maximal
CP-violatingδ ≈ 280◦ is favored by IO. Note that oscilla-
tions are not sensitive to Majorana phases as is apparent from
Eq. (129). A type of experiments that can elucidate whether
neutrinos are Dirac or Majorana fermions would be the ob-
servation of neutrinoless double-beta decays [37].

2.3. Electroweak phenomenology

2.3.1. Feynman rules for all vertices

The full lagrangian of the electroweak SM is

LEW = LF + LYM + LΦ + LY + LGF + LFP. (132)

It provides a number of interactions for fermions (F), vec-
tor bosons (V) and scalar particles (S), including the physical
Higgs and unphysical, would-be Goldstone bosons. And it
also involves unphysical Faddeev-Popov ghost fields (U) that
are auxiliary, anticommuting scalar fields. All these interac-
tions can be cast into the following set of Lorentz-invariant
lagrangians, written for convenience in terms of generic cou-
plings normalized to appropriate powers of the electromag-
netic couplinge,

LFFV = e ψiγ
µ(gV − gAγ5)ψj Vµ

= e ψiγ
µ(gLPL + gRPR)ψj Vµ,

LFFS = e ψi(gS − gP γ5)ψj φ

= e ψi(cLPL + cRPR)ψj φ

LVVV = −ie cV V V

× (
WµνW †

µVν−W †
µνWµV ν−W †

µWνV µν
)
,

LVVVV = e2 cV V V V

× (
2W †

µWµVνV ′ν−W †
µV µWνV ′ν−W †

µV ′µWνV ν
)
,

LSSV = −ie cSSV φ
←→
∂µφ′ V µ,

LSVV = e cSV V φV µV ′
µ,

LSSVV = e2 cSSV V φφ′V µV ′
µ,

LSSS = e cSSS φφ′φ′′,

LSSSS = e2 cSSSS φφ′φ′′φ′′′, (133)

where gL,R = gV ± gA, cL,R = gS ± gP , φ
←→
∂µφ′ ≡

φ∂µφ′ − (∂µφ)φ′ andVµ ∈ {Aµ, Zµ,Wµ,W †
µ}. Applying

the general Feynman rules for the computation of Green func-
tions or scattering amplitudes, the different types of interac-
tion vertices read (momenta are taken incoming):

[FFVµ] = ieγµ(gLPL + gRPR),

[FFS] = ie(cLPL + cRPR),

[Vµ(k1)Vν(k2)Vρ(k3)] = ie cV V V [gµν(k2 − k1)ρ

+ gνρ(k3 − k2)µ + gµρ(k1 − k3)ν ],

[VµVνVρVσ] = ie2 cV V V V [2gµνgρσ

− gµρgνσ − gµσgνρ],

[S(p)S(p′)Vµ] = ie cSSV (pµ − p′µ),

[SVµVν ] = ie cSV V gµν ,

[SSVµVν ] = ie2 cSSV V gµν ,

[SSS]= ie cSSS ,

[SSSS]= ie2 cSSSS . (134)

The interactions for [UUVµVν ] and [SUU] are analogous to
those of [SSVµVν ] and [SSS], respectively. Tables III, IV, V,
VI and VII collect the values of all these generic couplings in
the electroweak SM, with massless neutrinos. The couplings
for would-be Goldstone bosons and Faddeev-Popov ghosts
in [SSVV], [SSS], [SUUU], [SSSS] and [UUVV] are omit-
ted. All vertices can be generated by the computer package
FeynArts[38], that uses the same sign conventions.
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TABLE III. Fermion-vector boson vertices. Heregf
± = vf ± af

with vf = (T fL
3 − 2Qfs2

W )/(2sW cW ) andaf = T fL
3 /2sW cW .

FFV f ifjγ f ifjZ uidjW
+ νiejW

+

gL −Qfiδij gf
+δij

1√
2sW

Vij
1√
2sW

δij

gR −Qfiδij gf
−δij 0 0

TABLE IV. Fermion-scalar vertices.

FFS f ifjH f ifjχ uidjφ
+

cL − 1

2sW

mfi

MW
δij − iT fL

3

sW

mfi

MW
δij +

1√
2sW

mui

MW
Vij

cR − 1

2sW

mfi

MW
δij +

iT fL
3

sW

mfi

MW
δij − 1√

2sW

mdj

MW
V∗

ij

FFS νiejφ
+ ejνiφ

−

cL 0 − 1√
2sW

mej

MW
δij

cR − 1√
2sW

mej

MW
δij 0

TABLE V. Gauge boson self-interaction vertices.

VVV W+W−γ W+W−Z

cV V V −1
cW

sW

VVVV W+W+W−W− W+W−ZZ

cV V V V
1

s2
W

− c2
W

s2
W

VVVV W+W−γZ W+W−γγ

cV V V V
cW

sW
−1

TABLE VI. Scalar-vector boson vertices.

SSV χHZ φ±φ∓γ φ±φ∓Z

cSSV − i

2sW cW
∓1 ± c2

W − s2
W

2sW cW

SSV φ∓HW± φ∓χW±

cSSV ∓ 1

2sW
− i

2sW

SSV φ∓HW± φ∓χW±

cSSV ∓ 1

2sW
− i

2sW

SVV HZZ HW+W− φ±W∓γ φ±W∓Z

cSV V
MW

sW c2
W

MW

sW
−MW −MW sW

cW

SSVV HHW+W− HHZZ

cSSV V
1

2s2
W

1

2s2
W c2

W

TABLE VII. Scalar-vector boson vertices.

SSS HHH SSSS HHHH

cSSS − 3M2
H

2MW sW
cSSSS − 3M2

H

4M2
W s2

W

2.3.2. Input parameters

The electroweak gauge group introduces two couplings,g =
esW andg′ = ecW (or α andθW ). The electroweak symme-
try breaking is parametrized by two more,µ2 = −λv2 and
λ (or MW andMH ). And the gauge-invariant Yukawa in-
teractions of the Higgs doublet with fermions introduce most
of the free parameters of the SM: 3 charged-lepton masses,
6 quark masses and 4 quark mixings. Therefore the elec-
troweak lagrangian (132) depends on 17 parameters.vii A
practical set is:

α =
e2

4π
, MW =

1
2
gv , MZ =

MW

cW
,

MH =
√

2λ v , mf = λf
v√
2

, UCKM. (135)

Fortunately this not so small number of free parameters can
be determined from very many different experiments, so
the model is overconstrained and its predictions and self-
consistency can be checked. It is only after the Higgs boson
was discovered that all parameters have been measured. We
present below what are the current experimental values of the
most ‘influential’ parameters, and in the next section we elab-
orate on how this information is extracted from processes at
increasing energy scales.

• Fine structure constant. The asymptotic value of the
runningα at zero momentum transfer can be estimated
by several independent methods. One of the most pre-
cise determinations is based on the very accurate mea-
surement of the electron anomalous magnetic moment
(ge) in a quantum cyclotron at Harvard, that is com-
pared with a very accurate QED theoretical calcula-
tion [39],

[ge] α−1 = 137.035 999 150 (33) . (136)

This is compatible with the value ofα that can be mea-
sured directly using the quantum Hall effect with larger
uncertainty. Even more precise are other recent mea-
surements based on photon recoil in atom interferom-
etry with Cesium [40] and Rubidium [41], that are at
present in conflict with one another,

[Cs] α−1 = 137.035 999 046 (27) ,

[Rb] α−1 = 137.035 999 206 (11) . (137)

• Weak boson masses. The SM predictsMW < MZ

(104) in agreement with measurements. The weak
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gauge bosons were discovered at the Spp̄S collider
(CERN) in 1983 [42–45]. Today the weak bo-
son masses are known with a precision of 0.1 per
mille or better form combined measurements at the
e+e− colliders LEP (CERN) and SLC (SLAC), and
at the hadron colliders Tevatron (Fermilab) and LHC
(CERN). The current world averages [26] are

MW = 80.379± 0.012 GeV [LEP2/Tevatron/LHC],

MZ = 91.1876± 0.0021 GeV [LEP1/SLC]. (138)

• Top quark mass. The top is the only quark that is not
confined in hadrons because being so heavy it weakly
decays into aW boson and ab quark before hadroniz-
ing. It was discovered at the Tevatron in 1995 [46,47].
Direct measurements of the kinematics oftt̄ events
are sensitive to what is usually interpreted as the pole
mass. The current average [26] is:

mt = 172.76± 0.30 GeV [Tevatron/LHC]. (139)

• Higgs boson mass. The Higgs boson was discovered at
the LHC in 2012 [48,49] and its mass is already known
at the permille level [26],

MH = 125.25± 0.17 GeV [LHC]. (140)

2.3.3. Observables and experiments

Low energy observables

At low momentum transferQ2 ¿ M2
Z one can already get

relevant information about the electroweak interactions. For
example, the weak neutral currents were discovered by the
observation of the elastic neutrino-electron scattering in the
CERN bubble chamber detector Gargamelle in 1973 [50]
(Fig. 12). The source of muon neutrinos, of energies less
than 10 GeV, was a proton beam of 26 GeV from the PS
accelerator. This was the confirmation of a cornerstone of
the SM that won Glashow, Salam and Weinberg their Nobel
prize, even before theW and theZ were found inpp̄ colli-
sions at a center-of-mass energy of 540 GeV ten years later.
At present, very accurate measurements of the weak mixing
angleθW come from the ratio of cross-sectionsσν̄µe/σνµe of
neutrinos

FIGURE 12. Weak neutral currents (left) discovered in the CERN
bubble chamber detector Gargamelle (right).

FIGURE 13. Muon decay in the 4-Fermi model (left) and tree-level
contribution in the SM (right).

and antineutrinos in neutrino-electron scattering, and from
the ratios of neutral to charged current cross-sections
σNC

νN /σCC
νN in neutrino-nucleon scattering at CERN and Fer-

milab.
The weak mixing angle can also be obtained from the

left-right asymmetry (parity violation) in the cross-sections
of polarized electrons off nucleons,eR,LN → eX, and from
tiny parity violating effects induced by the weak interactions
between electrons and quarks in heavy atoms (atomic parity
violation), due toZ boson exchange, that grow with roughly
the third power of the atomic number.

Valuable information comes from the measurement of the
muon lifetime. The muon decay [51], together with the beta
decay in Cobalt [52], provided the first confirmation of the
violation of parity shortly after the seminal work of Yang and
Lee [53] in 1956. The processµ → e νeνµ proceeds at tree
level in the SM through the exchange of aW boson with very
low momentum transfer (−q2 ≡ Q2 ≤ m2

µ ¿ M2
W ), and

can be described by the effective 4-Fermi theory (proposed
to explain theβ decay in 1934 [54]) (Fig. 13),

iM = −i
4GF√

2
(eγρνL)(νLγρµ)

=
(

ie√
2sW

)2

eLγρνL
−igρδ

q2 −M2
W

νLγδµL, (141)

from which the Fermi constantGF can be derived in terms
of parameters of the fundamental theory,

GF√
2

=
πα

2s2
W M2

W

. (142)

The muon lifetimeτ = Γ−1 is the inverse of its total decay
width,viii

Γ =
G2

F m5
µ

192π3
f(m2

e/m2
µ) ,

f(x) = 1− 8x + 8x3 − x4 − 12x2 ln x , (143)

wheref(m2
e/m2

µ) = 0.99981295 is a kinematic factor from
phase space integration. The Fermi constant is measured very
precisely from the muon lifetime at PSI in Villigen [26],

GF = 1.166 378 7(6)× 10−5 GeV−2. (144)

It provides the value of the Higgs VEV (electroweak scale),

v =
(√

2GF

)−1/2

≈ 246 GeV (145)
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and constrains the productM2
W s2

W , which implies

M2
Z > M2

W =
πα√

2GF s2
W

>
πα√
2GF

≈ (37.4 GeV)2,

(146)

providing a lower limit of the weak boson masses, before
their discovery. On the other hand, since we have now in-
dependent measurements ofGF , α, MW andMZ one can
attempt a first consistency check of the model by comparing
the value ofGF in (144) with the prediction using thetree-
levelexpression (142) ands2

W = 1−M2
W /M2

Z ,

GF =
πα√

2(1−M2
W /M2

Z)M2
W

≈ 1.125× 10−5. (147)

The glaring discrepancy will disappear when quantum cor-
rections are included (see Sec. 2.3.4).

Fermion-pair production in e+e− colliders

Lepton colliders provide a clean environment to study the
electroweak interactions. In particular, thee+e− annihila-
tion into a fermion-antifermion pair is given, at tree level, by
the exchange of a photon and aZ boson in thes-channel.
At increasing center-of-mass energies the cross-section falls
like 1/s dominated by the virtual photon exchange while the
Z exchange becomes more important until it reaches a max-
imum right ats = M2

Z where it presents a resonance peak
(Fig. 14).

It is a good exercise to try and reproduce the differen-
tial cross-section fore+e− → f̄f (in the case of unpolarized
fermions),

FIGURE 14. Top: Tree-level contributions to fermion-pair produc-
tion in e+e− collisions. Bottom: Hadronic cross-section as a func-
tion of the center-of-mass energy. The solid line is the SM predic-
tion, and the points are the experimental measurements at different
colliders, whose energy ranges are also indicated. From Ref. [55].

dσ

dΩ
= Nf

c

α2

4s
βf

{ [
1 + cos2 θ + (1− β2

f ) sin2 θ
]
G1(s)

+ 2(β2
f − 1)G2(s) + 2βf cos θG3(s)

}
,

G1(s) = Q2
eQ

2
f + 2QeQfvevfReχZ(s)

+ (v2
e + a2

e)(v
2
f + a2

f )|χZ(s)|2,
G2(s) = (v2

e + a2
e)a

2
f |χZ(s)|2,

G3(s)=2QeQfaeafReχZ(s)+4vevfaeaf |χZ(s)|2, (148)

whereχZ(s) ≡ s/(s−M2
Z + iMZΓZ) contains theZ prop-

agator including an imaginary part relevant in the vicinity
of the resonance,Nf

c = 1 (3) for f = lepton (quark),vf

and af are the vector and axial-vector couplings (96) and

βf =
√

1− 4m2
f/s is the final fermion velocity in the center

of mass frame (the electron mass can be safely neglected).
The contribution of each diagram and their interference is
evident and the parity violation due to theZ exchange mani-
fests itself as a forward-backward asymmetry: the term pro-
portional tocos θ involving both vector and axial vector cou-
plings. Integrating over the solid angle, the total cross-section

σ(s) = Nf
c

2πα2

3s
βf

× [
(3− β2

f )G1(s)− 3(1− β2
f )G2(s)

]
, (149)

gives the profile of Fig. (14). The (inclusive) hadronic cross-
section is obtained by summing over all quark flavors above
threshold at a given energy, essentially five in the displayed
range.

Z pole observables

On the resonance peak (s = M2
Z) theZ propagator becomes

purely imaginary, the interference of the photon andZ ex-
change diagrams vanishes and the cross-section is dominated
by the weak interaction (the QED contribution is suppressed
by a factor(ΓZ/MZ)2 . 10−3). This was the energy do-
main of the first phase (1989-1995) of the circulare+e−

collider LEP at CERN and the linear collider SLC (1992-
1998) at SLAC. The former collected 17 millionZ decays at
center-of-mass energies within plus or minus 3 GeV of theZ
pole, and the latter only 600 thousand but with a longitudi-
nally polarized electron beam. At these colliders very precise
measurements of variousZ pole observables have been per-
formed. These include theZ massMZ , the total widthΓZ ,
and partial widthsΓf̄f for Z → f̄f . It is customary to intro-
duce

σ0
had ≡ 12π

Γe+e−Γhad

M2
ZΓ2

Z

,

R` ≡ Γhad

Γ`+`−
, Rq ≡ Γqq̄

Γhad
, (150)
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where` = e, µ, τ , q = b or c andΓhad is the partial width
into hadrons.iX The effects of the photon-exchange diagram
are subtracted inσ0

had. Very useful constraints follow from
variousZ pole (forward-backward and left-right) asymme-
tries,

Af
FB =

σ(cos θ > 0)− σ(cos θ < 0)
σ(cos θ > 0) + σ(cos θ < 0)

=
3
4
Af

Ae + Pe

1 + PeAe
,

ALR =
σL − σR

σL + σR
= AePe, (151)

wherePe is the initial electron polarization and

Af ≡ 2vfaf

v2
f + a2

f

. (152)

By measuring theZ pole observables (150) one can esti-
mate theZ invisible width,Γinv = ΓZ − Γe+e− − Γµ+µ− −
Γτ+τ−−Γhad, that can be used to deduce the number of light
neutrino species,Nν = Γinv/Γνν̄ , from the partial width to
neutrinos predicted by the SM. The overall scale of theZ
lineshape is fixed by the peak cross-sectionσhad, whose ex-
perimental value is extracted from the number of observed
hadronic events given the collider luminosity, that in turn is
measured from the rate ofe+e− → e+e− events at low an-
gle provided the (accurate enough) theoretical prediction of
the Bhabha scattering cross-section. The combination of the
measurements made by the four LEP experiments (Fig. 15)
led toNν = 2.9840 ± 0.0082 [55], two standard deviations
away from 3.0, the number of fermion generations in the SM.
Very recently the prediction for the Bhabha cross-section was
found to be overestimated, and consequently the luminosity

FIGURE 15. Measurements of the hadron production cross-section
around theZ resonance (lineshape) at LEP. The curves indicate
the predicted cross-section for two, three and four neutrino species
with SM couplings and negligible mass. From Ref. [55].

underestimated [56]. The new analysis of theZ lineshape
fit, reducingσhad while slightly increasingΓZ , yields the re-
sult Nν = 2.9963 ± 0.0074, hence putting an end to the2σ
tension with the SM.

W boson production

LEP2 (1996-2000) operated at higher center-of-mass ener-
gies (Fig. 14) to studyW -pair production (Fig. 16), and in
part also to search (unsuccessfully) for the Higgs boson [57].
Particularly important was the exploration of theW+W−

threshold (161 GeV), where the dependence of the cross-
section with theW mass is large, that allowed to determine
MW very precisely. At higher energies (172 to 209 GeV)
this dependence is much weaker andW bosons were directly
reconstructed and their mass determined from the invariant
mass of the decay products. LEP2 was also the first to probe
the triple gauge couplingsWWγ andWWZ, predicted by
the non-abelian gauge symmetry (Fig. 16), another milestone
of the SM.

In hadron colliders, on-shellW bosons are tagged by
their decay into charged leptons with high transverse momen-
tum (Fig. 17). The values of theW mass from Tevatron and
LHC are compatible with the measurements from LEP2 and
have at present very similar precision.

FIGURE 16. Top: Tree-level contributions toe+e− → W+W−.
Bottom: Measurements of theW -pair production cross-section
at LEP2, compared to theoretical predictions (takingMW =
80.35 GeV) including all diagrams (cyan), removing theZWW
vertex (red), and assuming only thēνe exchange (blue). From
Ref. [57].
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FIGURE 17. W production and top-quark production at hadron col-
liders.

Top quark production

Top quarks are produced in hadron colliders dominantly in
pairs through the strong processesqq̄ → tt̄ (Fig. 17) and
gg → tt̄ at leading order. At Tevatron (pp̄,

√
s = 1.96 TeV)

85% of the producction cross-section is fromqq̄ annihila-
tion, while at LHC (pp) about 90% (

√
s = 7 TeV) or 80%

(
√

s = 14 TeV) comes from from gluon fusion. Single-top
quarks are also produced in electroweak processes,qq̄′ → tb̄,
qb → q′t, bg → Wt, with somewhat smaller cross-sections.
The top-quark mass is kinematically reconstructed from in-
variant mass distributions of the final states in different decay
channels.

Higgs boson production

The Higgs boson is the smoking gun providing evidence
that the spontaneous breaking of the electroweak symmetry
doesgenerate the masses of weak bosons and fermions. The
Higgs mechanism is essential not only because the renor-
malizability of the SM is then guaranteed [16], a require-
ment that is nowadays not considered so crucial as in for-
mer times [58], but also because it ensures the unitarity of
the model [59]: the scattering amplitudes have a good behav-
ior at high energy because of ‘miraculous’ cancellations that
follow when the electroweak boson self-interactions are of
the Yang-Mills form,x as prescribed by the gauge symmetry

FIGURE 18. Leading-order diagrams for Higgs production mecha-
nisms at hadron colliders: gluon fusion [ggF], vector boson fusion
[VBF], Higgs-strahlung [VH], associated with a pair of top quarks
[ttH] or a single top quark [tH] and Higgs boson pair production
[HH]. From Ref. [26].

(e.g.e+e− → W+W−) and scalar-exchange diagrams of the
Higgs type are included (e.g. W+W− → W+W−). After
its long awaited discovery, the predicted properties of the SM
Higgs boson [60] can finally be checked against experiment.

The main production mechanisms at the Tevatronxi and
the LHC are gluon fusion, weak-boson fusion, associated
production with a gauge boson, and associated production
with a pair of top quarks or with a single top quark (see
Fig. 18). The Higgs boson pair production in the SM is more
rare but very important because it allows to check the trilinear
Higgs boson self-coupling. The production cross-sections in
pp collisions at LHC energies and the branching ratios for
the decay of a Higgs boson with a mass around 125 GeV
are shown in Fig. 19. The Higgs boson is mostly produced
by gluon fusion (gluons are the most abundant parton in the
proton at lowx ∼ MH/

√
s) mediated by a top-quark loop

FIGURE 19. Higgs boson production cross-sections as a function of the LHC center of mass energy (left) and Higgs boson branching ratios
for the mass range around 125 GeV (right). From Ref. [61].
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FIGURE 20. Left: Invariant diphoton mass distribution observed by ATLAS [64]. Right: invariantm4l distribution from CMS [65]. They
exhibit clear signals ofH → γγ andH → ZZ∗ → 4l, respectively, allowing to measure the Higgs boson mass.

FIGURE 21. Combined measurements of the signal strengths for the five main production and five main decay modes. The hatched combi-
nations require more data. From Ref. [26].

(whose heavy mass enhances the effective coupling). The
dominant decay channel isH → bb̄ (about 58%) but it
suffers from large backgrounds. Less probable areH →
ZZ∗,WW ∗ (with one of the gauge bosons off-shell) and
H → γγ but they provide cleaner signals and played an im-
portant role in the Higgs discovery. In fact, the decay into
bb̄ has been discovered (significance above5σ) as recently as
2018 [62]. At the other end, there is ‘evidence’ for theµµ
channel (significance above3σ) from 2020 [63].

The current average value of the Higgs boson mass comes
from the combination of mass measurements in theγγ and
ZZ channels (Fig. 20).

The Higgs event rates are proportional to the production
cross-sections times the branching ratios (BR). Experimental
results are often normalized to the SM predictions and ex-
pressed in terms of signal strengthsµ = (σ × BR)obs/(σ ×
BR)SM. Figure 21 shows that data are in fair agreement with
predictions for a good number of channels and production
mechanisms.

As for the tests of Higgs couplings, recall that in the
SM the Yukawa coupling between the Higgs boson and the
fermions is proportional to the fermion mass (mF ), while
the coupling to weak bosons is proportional to the square
of the vector boson masses (mV ). Then one may define
yF ≡ κF mF /v for fermions andyV ≡ √

κV mV /v for weak
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FIGURE 22. Best fit estimates for the Higgs coupling strengths to
fermions and gauge bosons. From Ref. [63].

bosons whereκF andκV are coupling strengths that mea-
sure the ratio of observations to SM predictions. The Higgs
couplings to fermions and gauge bosons have been probed
over more that three orders of magnitude with no significant
deviations from the SM (Fig. 22).

2.3.4. Precise determination of parameters

Experimental precision requires accurate theoretical predic-
tions, that are based on calculations beyond the tree-level ap-
proximation. The trouble is that the computation of loop cor-
rections is laborious and plagued of infinities which involves
the extra complication of renormalization.

A good example of the need for quantum corrections is
the derivation of the Fermi constant from the measurement
of the muon lifetime that follows from the identification

GF =
πα√

2(1−M2
W /M2

Z)M2
W

(1 + ∆r[mt,MH ]), (153)

where∆r depends on the masses and couplings of virtual
particles exchanged in the the loop as in Fig. 23. This correc-
tion will fill the gap between (144) and (147).

Actually, since the muon lifetime is measured more pre-
cisely thanMW , theW mass can be independently obtained
from the expression ofGF in Eq. (153) that implies

M2
W (α,GF ,MZ , mt,MH) =

M2
Z

2

(
1

+

√
1− 4πα√

2GF M2
Z

[1 + ∆r(mt,MH)]

)
, (154)

introducing a correlation betweenMW , mt andMH , given
α, GF andMZ . This correlation has historically served as a

FIGURE 23. One-loop corrections to the muon decay amplitude.

FIGURE 24. Indirect constraints onMW and mt from
LEP1/SLC data (dashed contour) and direct measurements from
LEP2/Tevatron data (solid contour). Also shown is the relation be-
tween both masses and the Higgs mass (solid lines), the region al-
lowed by direct Higgs searches (dark green bands) and the region
excluded by the LHC right before the Higgs boson discovery. From
Ref. [57].

handle to constrain yet unknown parameters from the value
of others. As an example, in Fig. 24 by the LEP Electroweak
Working Group [57] shows the comparison of indirect and
direct constraints onMW and mt from LEP and Tevatron
together with the region of Higgs masses consistent with pre-
cision tests before the Higgs boson was found at the LHC.

Another example is the corrections to vector and axial-
vector couplings fromZ pole observables,

vf → gf
V = vf + ∆gf

V af → gf
A = af + ∆gf

A , (155)

that lead to a fermion-dependent effective weak mixing angle
given by

sin2 θf
eff ≡

1
4|Qf |

∣∣∣1− Re(gf
V /gf

A)
∣∣∣

≡ s2
W (1 + ∆κf

Z), (156)

where∆κf
Z is the quantum correction in theMS renormal-

ization scheme ands2
W = 1− (M2

W /M2
Z) is the tree-level
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FIGURE 25. Contribution of several orders of radiative corrections
to the effective leptonic weak mixing anglesin2 θlept

eff as a function
of the Higgs mass. The tree-level values2

W = 1 − M2
W /M2

Z ≈
0.2290 is below the range shown. The yellow band is the exper-
imental accuracy at the time,sin2 θlept

eff = 0.23147 ± 0.000017.
From Ref. [66].

value. As shown in Fig. 25, the effective leptonic weak
mixing angle has been measured with high precision and at
least two-loop calculations are needed [66] to get a prediction
compatible with experiment, already pointing to a light Higgs
mass (the remaining theoretical uncertainty from unknown
higher-order corrections was estimated to be4.7× 10−5).

There are also experiments and observables testing the
flavor structure of the SM, either flavor-conserving, like
dipole moments, or flavor-changing, likeBs → Xsγ and
many other hadron and lepton decays. They are very sen-
sitive to new physics through loop corrections. As already
mentioned, the extremely precise measurement of the elec-
tron anomalous magnetic momentae = (ge − 2)/2,

aexp
e = 0.001 159 652 182 032 (720), (157)

is used to estimate the fine structure constantα from the QED
prediction at 5 loops [39]. On the other hand, the anomalous
magnetic moment of the muon was measured at Brookhaven
with very high precision [67]

aexp
µ = 116 592 089 (63)× 10−11 [BNL] , (158)

but it does not match the SM prediction, a puzzle that has sur-
vived for almost two decades. The most recent calculation by
the Muong − 2 Theory Initiative [68] yields

aSM
µ = 116 591 810 (43)× 10−11, (159)

that givesaexp
µ − aSM

µ = 279 (76)× 10−11, a3.7σ deviation.
Very recently a new experiment at Fermilab has released its
first results [69],

aexp
µ = 116 592 061 (41)× 10−11 [FNAL] , (160)

compatible with the previous measurements and increasing
the discrepancy to4.2σ (Fig. 26). This is nowadays consid-
ered a compelling evidence of physics beyond the SM.

Another playground where precision physics has revealed
departures from the SM predictions isb-hadron decays, with

FIGURE 26. Experimental values ofaµ from Brookhaven, Fer-
milab and combined average. The inner tick marks indicate the
statistical contribution to the total uncertainties. The recommended
value for the standard model prediction [68] is also shown.

tensions in rare flavor-changing neutral currents and in tree-
level semileptonic decays that constitute the so-called flavor
anomalies in B-physics (see [71] for a recent review). They
have been observed in measurements of branching fractions
and angular observables, as well as in lepton flavor universal-
ity tests. A good example of the latter is the measurement by
LHCb [70] of the ratio

RK =
BR(B+ → K+µ+µ−)
BR(B+ → K+e+e−)

= 0.846+0.044
−0.041 , (161)

that is about3σ from the SM prediction,1.00 ± 0.01, pro-
viding evidence for the violation of lepton universality in
these decays. This tension, that was not significant in pre-
vious measurements at BaBar (SLAC) and Belle (KEK), has
survived and even grown with increasing statistics at LHCb
(Fig. 27). More data from LHCb and the forthcoming Belle
II experiment [72] will establish whether this anomaly must
be taken seriously.

2.3.5. Global fits

As we have seen, precision measurements test the SM at the
quantum level, which allows to perform consistency checks
among the results. The global fits consist of finding the values
of a set of input parameters that minimize theχ2 accounting
for the deviation between a number of precision observables
and their SM predictions. The predictions are given by theo-
retical expressions that are functions of the input parameters.
The precision observables are sometimes more appropriately
named ‘pseudo-observables’ because they are not directly ex-
perimental observables but derived quantities depending on
the order of perturbation theory and on the choice of renor-
malization scheme.

The latest electroweak global fit by Gfitter [73], using
the observablesMH , MW , ΓW , MZ , ΓZ , σ0

had, R`,c,b, A0,`
FB ,

A0,c
FB , A0,b

FB , A`, Ac, Ab, sin2 θ`
eff , mc, mb, mt, α(M2

Z) and
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FIGURE 27. Fundamental processes contributing toB+ →
K+`+`− decays in the SM and comparison betweenRK measure-
ments. From Ref. [70].

FIGURE 28. Left: Comparing fit results with direct measurements.
Right: Comparing fit results (orange bars) with indirect determina-
tions (blue bars) and direct measurements (data points). The total
error is the error of the direct measurement added in quadrature
with the error from the indirect determination. From Ref. [73].

αs(M2
Z), converges to aχ2

min = 18.6 for 15 degrees of free-
dom (number of fit observables minus number of free param-
eters). This corresponds to ap-value of 0.23. Thep-value
tests the likelihood of the null-hypothesis, the probability of
obtaining data equal or less compatible with the theory, so the
lower the better.

It is also interesting to compare the fit results with the in-
put measurements [73]. The left panel of Fig. 28 shows the
deviations between global fit values and direct measurements

FIGURE 29. Top: ∆χ2 as a function of Higgs boson mass for a
global SM fit with and without theMH measurement (blue and
grey bands). Bottom: Contours of 68% and 95% confidence level
obtained from scans of fits with fixed variable pairsMW , mt. The
narrower blue and larger grey allowed regions are the results of
the fit including and excluding theMH measurement, respectively.
From Ref. [73].

in units of the experimental uncertainty. There are some ten-
sions but none above3σ. The right panel of Fig. 28 shows the
difference between the global fit results (orange bars) as well
as the input measurements (data points) with the indirect de-
terminations (blue bars). The indirect determinations are the
best fit values without using the constraint from the corre-
sponding input measurement. This illustrates the impact of
indirect uncertainties on total uncertainties. Finally, the top
panel of Fig. 29 shows that the global fit to the SM prefers a
somewhat lighter Higgs boson. The bottom panel is an up-
dated version of the confidence level profile ofMW versus
mt in Fig. 24 where theMH measurement at LHC is included
in the fit or not (blue or grey contour). The good agreement
of both contours with the direct measurements (green bands
and ellipse for two degrees of freedom) is the ultimate con-
firmation of the consistency of the SM.

3. Concluding remarks

The Standard Model of the electroweak and strong interac-
tions of particle physics is a relativistic quantum field theory
based on a gauge symmetry that is spontaneously broken by
the Brout-Englert-Higgs mechanism. As a consequence it is

Supl. Rev. Mex. Fis.3 020721
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renormalizable and fully predictive. It has been confirmed
by a plethora of low and high energy experiments with re-
markable accuracy, at the level of quantum corrections, with
(almost) no significant deviations.

However, in spite of its tremendous success, the SM
leaves fundamental questions unanswered: why three gen-
erations? what is the reason for the observed pattern of quark
and lepton masses and mixings? And more importantly, there
are several hints for physics beyond. Some are phenomeno-
logical and others more conceptual. Perhaps the most com-
pelling is the muon magnetic dipole moment, whose very
precise measurement is still challenging the SM prediction
after many years of efforts both from the experimental and
the theory side. There is also a bunch of flavor anomalies in
B physics that are gaining evidence. The neutrino sector is
without doubt the Achilles heel of the model, that has already
required an extension to accommodate neutrino masses and
mixings in order to explain the flavor oscillations. The possi-
bility that neutrinos are Majorana fermions, theoretically well
motivated and under intense experimental exploration, would
open the window to lepton number violation and, linked to
this, would suggest the existence of extra neutrinos at a very
heavy scale that might contribute to solve the baryon asym-
metry problemxii [74] through leptogenesis [75]. Another
problem is dark matter. If it is composed of hypothetical
particles interacting with ordinary matter only through grav-
ity [76], the SM does not provide any appropriate candidate,
although there are interesting alternatives [77]. Nonetheless,
it is very suggestive that the most popular solution to the
strong CP problem (the Peccei-Quinn mechanism [78]) in-
troduces a new global anomalous symmetry spontaneously
broken at low energies giving rise to a pseudo-Goldstone bo-
son, the axion, considered a viable candidate for dark matter.

Of course the SM cannot be the ‘theory of everything’,
since it does not include the gravitational interaction that
governs the universe dynamics at large scales. But it has
something to say about the value of the vacuum energy den-
sity, ρvac, that is related to the cosmological constant by
ΩΛ = ρvac/ρc whereρc = 3H2

0/(8πGN ) is the critical den-
sity of the universe. The cosmological constant is the sim-
plest form of dark energy [79] so far indistinguishable from
the more general quintessence. According to current cos-
mological measurements of the cosmic expansion accelera-
tion [80], ΩΛ ≈ 0.7, that impliesρvac ≈ (2 × 10−3 eV)4. In
the SM, as in any quantum field theory, the values of quanti-
ties like the masses, couplings or the cosmological constant
cannot be predicted. They are fixed by the renormalization
procedure: the bare parameters are chosen so that they can-
cel the divergent corrections and leave us with the desired
renormalized quantity. The computation of the vacuum en-
ergy density yields a result that diverges quartically with the
cutoff (physics scale up to which the theory is meaningful),

ρvac≈ ρ0(Λcut) + c Λ4
cut. (162)

If we assume no new physics until the Planck scale (Λcut ∼
MP ∼ 1019 GeV), where gravity becomes relevant, then

ρ0(Λcut) has to be chosen so that a very fine-tuned cance-
lation with the correction of more than 120 digits will be
required. Even if new physics were behind the corner, say
Λcut ∼ 1 TeV, the fine-tuning would be of about 60 dig-
its. Althoughρ0(Λcut) has no physical meaning and can be
chosen at will, this level of fine-tuning is considered very un-
natural.

Another naturalness problem of the SM has to do with the
renormalization of the mass of scalar fields. The corrections
to the mass squared of a scalar field, like the Higgs, diverge
quadratically with the cutoff,

M2
H ≈ (M0

H)2(Λcut) + c Λ2
cut. (163)

This is in contrast to the masses of fermion or gauge fields
whose corrections grow only logarithmically with the cut-
off, because they are a protected by a symmetry (they would
be massless if chiral or gauge symmetries were unbroken).
If we takeΛcut ∼ MP then a cancellation of 34 digits is
needed to match the observed Higgs massMH ' 125 GeV.
However, this hierarchy problem is different from the cos-
mological constant problem, because it could be solved if
there were new physics not far above the electroweak scale
(at Λcut ∼ 1 TeV for example) as in the case of supersym-
metric extensions of the SM [81], or if the ‘true’ Planck scale
is MP ∼ 1 TeV as in the case of models with extra dimen-
sions [82,83]. Unfortunately there is no experimental clue of
any of them.

In the absence of signals from a better fundamental theory
that can tie up the loose ends of the SM, we can always con-
sider the SM as a low-energy effective field theory [84, 85]
(SMEFT) valid up to some energy scale, like the 4-Fermi
model is a good effective theory forE ¿ MW . The effective
lagrangian can be written as

L = LSM +
∑

i,n

c
(n)
i O(n)

i

Λn−4
NP

, (164)

whereLSM is the renormalizable part of the lagrangian, that
we had so far identified with the SM. The new physics is
parametrized by a set of higher dimensional (Lorentz and
gauge invariant) operatorsO(n)

i made of SM fields, where
n > 4 is the canonical dimension.ΛNP is the new physics
scale, such as the mass of a new particle. Their effects are
suppressed by(E/ΛNP)n−4 with respect to the SM opera-
tors whereE is any low energy scale or mass, so the higher
the dimension of the operator the smaller its contribution at
low energies. Therefore, given a finite experimental preci-
sion we only need operators up to certain dimension and,
since there are a finite number of these, their coefficients
can be renormalized. The lack of predictivity on the (re-
maining) coefficients above some order is irrelevant. This
is why the SMEFT, though ‘non-renormalizable’, is perfectly
acceptable to describe physics belowΛNP and is used as a
very powerful framework [86].
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Alejandro Jiḿenez Cano for many fruitful discussions and

his help to prepare this manuscript. This work was sup-
ported in part by the Spanish Ministry of Science, Innovation
and Universities (FPA2016-78220-C3, PID2019-107844GB-
C21/AEI/10.13039/501100011033), and by Junta de An-
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i. Natural units~ = c = 1 are used throughout this course.

ii. If we take any complex value|v|eiα the conclusions will be
the same for redefined fields,η → (η cos α − χ sin α) and
χ → (η sin α + χ cos α).

iii. The signs ofg andg′ are conventional, with no effect on phys-
ical observables.

iv. The so-called Weinberg angle was actually introduced by
S. L. Glashow [17].

v. For instance, if the symmetry breaking is triggered by a com-
plex Higgs triplet one getsρ = 1/2.

vi. An additional constant term(1/4)λv4 ≡ −ρ0 has been omit-
ted. It is irrelevant for the field dynamics but provides a (nega-
tive) contribution to the vacuum energy density. See discussion
in Sec. 3.

vii. If light neutrino masses and mixings are included, add 3 more
masses and 4 (or 6 for the Majorana case) parameters in the
PMNS matrix.

viii. The processµ → e νeνµ is by far the dominant decay chan-
nel. The decaysµ → eνeνµe+e− and µ → eνeνµγ with
branching ratios∼ 10−5 and10−8, respectively, must be taken
into account when accuracy requires it.

ix. The three measured values forR` are consistent with lepton
universality.

x. Note the steep growth of thee+e− → W+W− cross-section
in Fig. 16 when the gauge self-interactions are ignored.

xi. Tevatron did not have enough statistical significance to claim
‘discovery’ of the Higgs boson.

xii. The SM violates the conservation of baryon number non-
perturbatively, thanks to a global U(1) anomaly, but in an
amount that is not enough to explain the matter-antimatter
asymmetry of the universe.
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