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The 3d O(4) model as an effective approach to the QCD phase diagram
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The QCD phase diagram is one of the most prominent outstanding puzzles within the Standard Model. Various experiments, which aim at
its exploration beyond small baryon density, are operating or in preparation. From the theoretical side, this is an issue of non-perturbative
QCD, and therefore of lattice simulations. However, a finite baryon density entails a technical problem (known as the “sign problem”), which
has not been overcome so far. Here we present a study of an effective theory, the O(4) non-linear sigma model. It performs spontaneou:
symmetry breaking with the same Lie group structure as 2-flavor QCD in the chiral limit, which strongly suggests that they belong to the
same universality class. Since we are interested in high temperature, we further assume dimensional reduction to the 3d O(4) model, whicl
implies topological sectors. As pointed out by Skyrme, Wilczek and others, its topological charge takes the role of the baryon number. Hence
the baryon chemical potentiglz appears as an imaginary vacuum angle, which can be included in the lattice simulation without any sign
problem. We present numerical results for the critical line in the chiral limit, and for the crossover in the presence of light quark masses.
Their shapes are compatible with other predictions, but up to the value of aoat 300 MeV we do not find the notorious Critical
Endpoint (CEP).
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1. The QCD phase diagram = mq. In this setting, ajup = 0, lattice QCD simulations
provide the following results:
Beyond low baryon density, the QCD phase diagram is still
terra incognitg both theoretically and experimentally (if we
assume the validity of QCD as the correct theory of the strong ¢ X )
interaction to persist). It can be parameterized by the inclu-  fined (hadronic) and deconfined phase (quark-gluon
sion of a baryonic chemical potentjaj;, which characterizes plasma). With thes-quark included, the critical tem-
the density of the net baryon numhBr— B, as sketched in perature amounts @, ~ 132 MeV [1]. If we still
Fig. 1. add thec-quark (WIT(I‘_I phenom_enologlcal valuesqaf; _
andm,), the transition turns into a crossover, but its
temperature hardly changes; one obtains the pseudo-
critical temperaturdy,. ~ 134 MeV [2].

e In the chiral limit ofv andd quarks,m, = 0, one ob-
tains a second order phase transition between the con-

It is often a good approximation to assume the light quark
masses to be degenerate; we denote this masg as m,,

T \ e For a realisticmm, > 0, and2 or 2 + 1 flavors, one

. obtains a crossover as well. In the latter scenario,

200 MeVy deconfined the pseudo-critical temperature is somewhat higher,
quark-gluon plasma Tpe =~ 155 MeV [3]. This is consistent with the ex-

perimentally measured freeze-out temperature of the
quark-gluon plasma.

This phase diagram is of interesy.for our understand-
ing of the early Universe and of neutron stars. Several ex-

100 Kevt periments are operating with the goal of exploring the nu-

confined o clear phase diagram, at facilities like the Super Proton Syn-
l'la.(lroﬁ.‘% . ) chrotron (SPS), the Relativistic Heavy lon Collider (RHIC)
and the Large Hadron Collider (LHC). Others are in prepa-

ration, we mention the Facility for Antiproton and lon Re-
search (FAIR), and in particular the Multi-Purpose Detector
at the Nuclotron-based lon Collider fAcility (MPD-NICA),
[,I,B which is under construction at JINR in Dubna, Russia [4],
with the participation of the Mexican group MexNICA. It
FIGURE 1. Symbolic illustration of the expected QCD phase dia- plans to collide heavy ions, such a bismuth nuclei, at ener-
gram. gies of4 to 11 GeV per nucleon, which is suitable to at-
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tain a high baryon number density, and to access the region However, adding a chemical potentjak > 0 leads to a

where one expects the Critical Endpoint (CER),the point

serious difficulty known as the “sign problem”. We can inter-

in the phase diagram where the crossover turns into a firqiretu g as the energy, which is required for adding one more

order phase transition, cf. Fig. 1.

baryon. It multiplies a real Lagrangian term in Minkowski

However, the location — and even the existence — ofspace, but this term becomes imaginary under Wick rotation.

the CEP is uncertain. If it exists, one speculates about a ric
phase structure at even higheg, including for instance a
color superconducting phase.

From the theoretical side, this is an issue of non-

lvith this term,det M, and therefore also the Euclidean action
Sqcp, is complex, sd1/Z) exp(—Sqcp) does not represent

a probability anymore. In this case (and similarly in the pres-
ence of af-term), the standard technique that we sketched

perturbative QCD, and therefore of lattice simulations, whichabove does not apply.

did provide the aforementioned valuesigfandT;,.. It deals
with the QCD formulation in Euclidean space-time, which

Numerous attempts have been studied to overcome the
sign problem, but there is no breakthrough so far. For com-

is justified for equilibrium observables. One further assumegrehensive reviews, we refer for instance to Refs. [5].

a discrete lattice structure, which implements an UV regu-

larization. The quark fieldg, are formulated on the lat-
tice sitesr, and the gluon field&/, ,, on the links connecting
them (u specifies the direction). It is profitable to usem-
pactlink variables in the gauge group (not in the algebra),
U, € SU(3), which avoids the need of gauge fixing. In

analogy to Statistical Mechanics, one introduces the partition

function in the functional integral formalism,
7 — /DqﬁDwDUe—Squark[@%U]—Sgauge[U]
= / DU detM[U] e~ SsaveelU] (1)

The factordet M [U] is the fermion determinant, which cap-

tures in particular the sea quark contributions. Its numerical
computation is tedious, but one does not need to deal explic-

itly with the Grassmann-valued fields ). Thus we obtain
expectation values of observables, in particulgroint func-
tions, as

(..)= %/DU(...)detM[U] e~ SeaueelUl 0 (2)

The method consists of generating a large set of gauge co
figurations[U] with the probability distribution

1
p[U] = E detM[U] e_Sgauge[U] 7 (3)

which enables the numerical measurement.of). Here
we assume the Euclidean actiSgcp = — IndetM[U] +

e The straight approach is simulating with probability
p o exp(—ReSqcp), and including the complex
phasea posterioriby re-weighting. This is correct in
principle, but it leads to excessive cancellations, such
that a precise result requires huge statistics. With sta-
ble statistical errors, the requested statistics grows ex-
ponentially with the volume, which often makes this
approach hopeless.

The complex Langevin algorithm can handle and up-
date a complex action, but the link variables leave the
gauge group SU(3).

Some collaborations simulate at imaginary chemical
potential,u% < 0, and try to extrapolate tp% > 0.

e At up = 0itis possible to compute some coefficients
of the Taylor series of the crossover curve, which ex-

tends toup > 0.

Unfortunately none of these approaches is really conclusive
regarding the search for the CEP.

Quantum computing offers some hope: it would allow
us to directly deal withSqcp € €. This is under intense
investigation in toy models, but not yet applicable to QCD.
X\_/e mention one example, which refers to analogue quan-
tum computing, with Mexican participation [6]: if one traps
suitable, ultra-cold alkaline-earth atoms in the nodes of a
2d optical lattice, the nuclear spins represent an SU(3) field,
which may perform Spontaneous Symmetry Breaking (SSB),
SU(3) — U(2). Then the low-energy effective action of the
Nambu-Goldstone bosons just corresponds to thel2g2)
model, which could be quantum simulated in this manner,

Sgauge[U] to be real positive, and we see that the Euclideamand which bears a number of similarities with QCD (asymp-

space is vital.

This method provides results with statistical errors (due

totic freedom, topology, a dynamically generated mass gap).
In the absence of conclusive QCD results, one derives

to the finite set of configurations), and systematic errors (weonjectures about the QCD phase diagram from related mod-
need to extrapolate to the continuum and to infinite volume)els. Many such models have been studied. Examples, and
but they are controlled and additional simulations reduceorresponding references, include the Nambu-Jona-Lasinio
them. This approach is fullgon-perturbative:a strong cou- model [7], and more specifically the Polyakov-Nambu-Jona-
pling like oy = O(1) does not cause any problem. Lasinio model [8], the linear-model [9], holographic ap-

The temperaturd” is given by the inverse extent in Eu- proaches to QCD [10], the Polyakov quark meson model
clidean time, which should be much shorter than the spatidll1], as well as methods like the Dyson-Schwinger equa-
directions to obtain results at fini#e Thisis howI; and7,.  tion [12], the mean-field approximation [13] and finite-size
were obtained. scaling [14].
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As a new approach, here we focus on the 3d O(4) non(degenerate) quark massg, > 0. The symmetry groups with
linearo-model, with an imaginary-term. or without SSB, or quasi-SSB, are locally isomorphic,

2. The 3d O(4) model as an effective theory {8U2 @SUZr =0(4) } — {SU2r-r = 00) }.
The SSB pattern and the space-time dimension usually deter-
mine the universality class at criticality, so we have a strong
Two quark flavors are very light compared to the intrinsic "€as0n to assume the O(4) model to belong to the same uni-
scale of QCDyn, ~ mq < Agcp ~ 300 MeV, hence the versality class as 2-flavor QCD, cf. Refs. [15]. _
chiral limit m, = m, = mq = 0 is often a good approxi- In the broke_n phgse, it can b(_a regarded as an effeptlve
mation. (For instance, the nucleon mass is only modified byPion model, as in Chiral Perturbation Theory, since the field
a few percent, which shows that the mass of macroscopic oS defined in the SSB coset spaces §% = 0(4)/0(3).

jects is mostly due to the gluon energy, and only to a minofieénce we deal with a meson field, so how can we address the
part due to the Higgs mechanism.) In this limit, the left- angParyon number?

2.1. 2-flavor QCD

right-handed quarks decouple, _ Unlike Chiral Perturbation .Theory, we are interested _in
highT = 1/8. We assume it to be high enough for di-
s u _ = U mensional reduction to be a good approximation,we as-
Lanark = (1 )y Dy < d >L (@ )ry Dy ( d )R " sume the dominant configuratiofi§ to be (nearly) constant

) _inthe (short and periodic) Euclidean time directichhis re-
so the corresponding quark doublets can be transformed indgi,ces the temporal integral in the actid®) fo a constant,

pendently, and the QCD Lagrangian has the global symmetryoﬁ dty ~ B, and we obtain (in a spatial volumé)
U(2)r, ® U(2)r =SU(2)r, ® SU(2)r

F? -
el = e 127 8.8(2) - 0:8(x) — B - &z
@ UW)1-r ® U(1)axin - el =6 | a [Q@U Oiélr) ~ - ela)
)

= pH[e]. (6)

Thus we arrive at the 3d O(4) model, with periodic boundary

conditions, which has topological sectors, duer{¢S®) =

Z. The topological charg€) € Z represents the winding
SU(2)p, ® SU(2)r — SU(2)1_r , () number of a configuratiofé’] on S3, which is invariant un-

der (almost all) small deformations @f].

which — according to Goldstone’s Theorem — generates 3 Skyrme and others noticed that the topological charge

Nambu-Goldstone bosons. If we add small quark masses t@ of the effective theory corresponds to the baryon num-

the u- andd-quark, they become massive, because the symber B [17]. This identification can be derived from anomaly

metry breaking has a (small) explicit component, and thesghatching. Thus the meson field does account for the baryon

TheU(1)r—r symmetry assures the fermion number conser-
vation, while the axial symmetryy(1).xia1 iS @anomalous (ex-
plicitly broken under quantization). At < T, the remaining
chiral flavor symmetry undergoes SSB,

guasi-Nambu-Goldstone are identified with the pions. number, by means of topological windings. Hence in the ef-
fective theory, the baryonic chemical potentig} takes the

2.2. The O(4) model as an effective theory role of an imaginary vacuum-angle

We proceed to the O(4) non-linearmodel as an effective HEl=-- —upQlé] € R. (7)

theory with an equivalent SSB pattern. Its action reads
We see that it can be incorporated in the effective theaity-

2 .
sle] = /d4:c {f;fraﬁ(x) .9,&(x) —F-&x)| , (5) outany sign problem.

_ ‘ o o 2.3. The 3d O(4) model on the lattice
with &(z) € S3, andh is an external “magnetic field” (or

“ordering field”). According to Chiral Perturbation Theory, In order to simulate the 3d O(4) model we need to formulate
F, ~92.4 MeV is the pion decay constant. it on the lattice. We choose the standard formulation on a
At I = 0 the action has a global O(4) symmetry, which cubic lattice, and use lattice unitise( we set the lattice spac-
can break spontaneously to O(3) (“spontaneous magnetizéng to 1). The derivatives are replaced by nearest-neighbor

tion”). h # 0 adds some explicit symmetry breaking, like the differences,

¢ This assumption can be questionéd, one may wonder whethdr/T;,. ~ 1.3 fm is small enough to justify this simplification. One can further
object that at highit’ heavier quark flavors are not negligible, but we cannot include them/\) @{odel effective theories [16]. Still, we are confident
that our assumptions are sensible approximations.
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plus some random numbers). The conditions for the algo-
rithm to be correct arergodicity (each configuration is ac-
cessible in a finite number of steps) atetailed balancethe
transition probabilities between two configurations obey

pe—e) 1;[6 | oxp(se] - 5. (@)

One begins with theéhermalization: first a large num-
ber of configurations are skipped, until we reach thermal
equilibrium (and therefore independence of the initial con-
figuration). Then we perform numerical measurements on
configurations, which have to be sufficiently separated in the
Markov chain to be statistically independent from each other.

FIGURE 2. Left: Division of a lattice unit cube into 6 tetrahedra.
Right: Symbolic illustration of a spherical tetrahedron.

o _ 1 S \2 oo To assure this property, we measure the (exponential) auto-
30if(@) - 0iflw) = 56 s — )" = 1= G- &, correlation “time”r; it is very similar for the different ob-
. servables involved (see below). We are on the safe side with
Siat[€] = —Pat < > el ha Y e a measurement separation2r.
(zy) z T grows rapidly next to the critical temperature. For typ-
ical algorithms it diverges df. in infinite volume, and the
+MB,1atQ[5]) ; increase wherl” approached, is exponential: this phe-
nomenon is known agritical slowing down
where i is a unit vector ini-direction, and(zy) are the By definition, also the correlation length diverges at a crit-

nearest-neighbor lattice sites (the constacan be dropped). ical point,{ — oo. Thus the spins are strongly correlated
We formulate the topological charge of a lattice config-OVer long distances (in lattice units), which explains that it
uration with a geometric definition. Thus we generalize theP?&comes hard to significantly modify a configuration (while
formulation of Ref. [18], which guarante€¥é] € Z for all ~ 'especting detailed balance).
configurations (up to a subset of measure zero). For the O(V) models, the Wolff cluster algorithm [21] is
To be explicit, we split the lattice unit cubes into 6 tetra- the most efficient, known simulation procedure. It does not
hedra, as shown in Fig. 2 (left). The 4 spins at the verticesiPdate single spins, but entire clusters of them are reflected at
of one tetrahedron — we call the(d,,, ¢, €,,¢.) — span  SOome random hyper-plane in spin-space (they are “flipped”).
a spherical tetrahedroron S2, as symbolically sketched in The clusters are formed in a subtle manner, such that the al-
Fig. 2 (right): its edges, . . ., s are geodesics if3. gorithm fulfills the aforementioned conditions of ergodicity

The topological density of a tetrahedron is given by the@nd detailed balance.

oriented, normalized volume of its corresponding spherical We used the multi-cluster version (but we also checked
tetrahedronV, ., -[€]/272, such that its consistency with the single-cluster algorithm). One multi-

cluster update step means that the entire configuration is di-
®) vided into clusters, which are flipped with the appropriate
probability. The availability of this highly efficient algorithm
is another benefit of the O(4) model as an effective theory;
Remarkably, it was only in 2012 that a set of formulae wagho efficient cluster algorithm is known in gauge theory. We
elaborated which allow for the computation ¥uf, ., .[¢]  take the chemical potentials into account by adjusting the
[19]. It can be numerically computed in this manner [20], butcluster flip probability, along the lines of Ref. [22]. This
a more efficient alternative is selecting some reference poirfnethod works consistently, but wher 1. increases, the
on S and counting how many spherical tetrahedra enclose ipeak height of- grows rapidly.
in an oriented sense (we tested extensively the equivalence of This is illustrated in Fig. 3 for the auto-correlation

i 1 L
Q[e] = ﬁ Z Vw@}y)z[e] e 7.
( )

wryz

these two methods). “times” with respect to the energy,;, and the topological
charge,rg. They are very similar, thanks to the cluster al-
2.4. Monte Carlo simulation gorithm (for single-spin update algorithms, tends to be

much larger and to restrict the feasibility of conclusive simu-
As we anticipated in Sec. 1, the goal is the generation of nukations).
merous configurations in accordance with the probability dis- We see that not even the cluster algorithm completely

tributionp[e] = (1/2) exp(—S]e]). overcomes the problem of critical slowing down. This dif-
We start from an arbitrary initial configuratio@] and ficulty has limited our numerical study so fargg 1., < 2.5.
generate a long Markov chajg] — [¢'] — [€"] — ... On the other hand, the sharp peaks-gfrovide a first esti-

(each new configuration solely depends on the previous onenate of the critical valug, ;.

Supl. Rev. Mex. Fis3 020727
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FIGURE 3. The auto-correlation “time” with respect to the energy, 0.08 1 ¢ Mg te=0.1 Xy
Tr (top) and with respect to the topological charge, (bottom), ' Ug. it =0.5 X
expressed in units of multi-cluster update steps (“sweeps”). These 0.07 1 t ' -1
values are measured in the chiral limit{. = 0) by the exponen- M. 1at %
/ X 0.067 ¢ pgje=15
tial decay of the auto-correlation. B.lat
0.051 4+ Hpjar=2 7
A
U0l04_ * HB,Iat=2-5 “
3. Results for the phase diagram in the chiral pony . 1 *
. . & ’, i
limit *s s X
0.02 = * x %
) ) . . ) Vvy 0‘ A
We begin with the cask,,, = 0, which corresponds to zero 0.01 Tt
quark anq pion masses. Before showing our simulation re- 00Ll__®eesscesanty . | |
sults, which are based on Ref. [23], we address the conver- 0.85 090 095 100 105 110 1.15
sion from lattice units to physical units. This requires some Biat

reference quantity as an input. Here, we refer to the critical

temperaturd;, = 1/5. atpup = 0. In the 3d O(4) model on

FIGURE 4. Energy density, magnetization densityn and topo-

the lattice, it was measured to high precision [24—26]; we ardogical densityg, at L = 20, & = 0 andup 1. = 0. .. 2.5.

going to refer tad; 1o, = 0.9359(1). We match this result to

T, ~ 132 MeV, the value obtained in chiral lattice QCD [1] L = 20. The f3,;-values are chosen such that;,, can be

(cf. Sec. 1), which suggests

Be,1a
g = % UBlat & 124 MeV pup jat -
C

Our simulation parameters are

pB1at=0, 0.1, 0.2 ... 1.5; 2, 2.5 < pup=0...309 MeV .
The lattice volumes are cubié/ = L3, L = 10, 12, 16,

identified — this had to be explored at egeh 1.

We measured observables which are given by first and
second derivatives of the free enejy= —7'In Z. Accord-
ing to Ehrenfest’'s scheme, a discontinuity in & deriva-
tive (in the largeL limit) characterizes am'" order phase
transition. We monitor the critical line and search in particu-
lar for a possible CEP, as motivated in Sec. 1. Each measure-
ment is based oim0* (thermalized and decorrelated) config-

20, and, if not indicated otherwise, we will show results forurations.
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14 1 in agreement with the peaks of the auto-correlation “times”
t MBt=0 L=20 L in Fig. 3.
12 4 U, jat = 0.5 For g 1a = 2.5 these slopes are so strong that one could
t =1 even be tempted to interpret them as quasi-discontinuous
101 4 Usae=15 jumps, i._e. .they could indicate discontipu_ous jl_Jmps in the
. R largeL I|m|t: .That woulq be pharacterlstlc of first order
& & ' phase transition, so at this point we wonder whether the CEP
boMeia=25 " * has been attained already. This has to be clarified by the study
®1 4 a . of further observables, which are given by second derivatives
4l e sl . of the fr(_ae energy. . - 3
Caue T :;: + : & y In this respect, we first consider the specific heat
21 ertv o x4 % 82, , 2
550 o5 100 15 1> 1 cv = (HY) = (H)T) = =7 05(8F) . (12)
Brat In infinite volume it diverges at a second order phase transi-
6l Mg et =2 ¢ tion. In.Fig. 5 (to.p).we. see peaks with increasing _h_eight when
b oL=10 : ! 1B lat TISES. _Tms lln.d|cates tha‘F thg phase transition at these
Py ' : parameters, in infinite volume, is still second order.
5 - This is more explicit in Fig. 5 (bottom), which compares
t L=16 1 * q f cv (Biat) in different volumes. The peak centers hardly de-
g t+ L=20 ¢ 4 * pend onL, which makes their largé- extrapolation simple.
© 41 28 T Y Based on finite-size scaling one expects (assuniing oo
* to be a critical point) a peak height proportionallity/”. At
3] L 1Bt = 2 We obtain for the ratio of these critical exponents
. : a/v =~ 0.2. If we further assume Josephson’s scaling law
r g a =2—dv,wearrive atv = 1/8, v ~ 5/8. As a benchmark,
27 Ref. [24] obtained ati .. = 0 the valuer ~ 0.7479(90),
101 102 1.03 1.04 105 1.06 107 1.08 1.09 which is in reasonable proximity.
Blat Similarly, in Fig. 6 (top) we show results for the magnetic

- susceptibilityy,,, at L = 20,
FIGURE 5. The specific heaty at L = 20(top) and atup jat =

2(bottom). The peaks hint at second order phase transitions in the 8 o S B s
largeL limit. The L-dependence of their heights provides infor- Xm = 17 (<M ) — ([M]) ) ~ _VaﬁF . (13)
mation about the critical exponentsandv.

(In a numerical study, the subtracted term is only sensible

Figure 4 shows the energy densitythe magnetization with \M|, seee.g.Ref. [27]. The right-hand side, however,
densitym (the order parameter) and the topological densityis the standard formula, without absolute value). It also di-

g, which are all given by first derivatives &f," verges afl. in infinite volume, hence its peaks in finite vol-
1 ume are another indicator of a second order phase transition.
e=(H)/V = =03(BF), They are strongest @iz 1, > 1, which supports the scenario
v that we are still following a critical line.
m={(M|)/V, (M)= <Z€1> = —0;F, The plot in Fig. 6 (bottom) shows results fdr =
= 10...20 at up 1ot = 2.5. Here, the peak temperature visu-
ally moves withL, and the largd- extrapolation is compat-
¢={Q/V, (@) =—0uF. (11) ibI)e/ with the estimates fof,, bgsed on tFr)le previous crit%ria.

Increasinguz 1; favors more topological windings. This en- [N this case, one expedigeal height) o L>/¥. In the range

hances; and alsa, but it reducesn, since the configurations #BJac < 1.5 this yieldsy/v = 1.9(2) [23], in agreement
with the precise valug/v = 1.970 at ug 1.t = 0 [26].

are further away from a uniform structure. Clearly, increas- : - o
ing A has the opposite effect. In all three plots we see Figure 7 adds results about the topological susceptibility

intervals of maximal slope, which move to largg; when 1 ) ) 1.,
13.1a¢ grows: this indicates the approximate valugigfa, Xe = (@ —(Q)?) = _Vﬁ“BF' (14)

7 In Egs. A1), (12) and [13), 8 andy g are understood g8 ,; andu g 1t for the interpretation of our data.
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+ Ug, st = 2.5 FIGURE 7. The topological susceptibility; at L = 20. The peaks
20 4} L=10 atup,1ae = 2 and2.5 further support the scenario of a second order
phase transition.
) L=12
30 t L=16
g ¢ L=20 by i{ x T
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01— | | | | | | | ~
111 112 113 114 115 116 117 1.18 fE f
Blat
FIGURE 6. The magnetic susceptibility,,, at L = 20 (top) and at 1101
uB1as = 2 (bottom). The peaks again hint at second order phase ¥
transitions in the large- limit. The L-dependence of their heights 1051 , i i i i ,
provides information about the ratio of critical exponents . 0 50 100 1?,3 . 200 250 300
Hp LMe

Again we observe peaks (they are obvious:ati.; > 2), FIGURE 8. Conjectured phase diagram of 2-flavor QCD in the chi-

at temperatures which are consistent with the previous detef&! limit.
minations ofT,. Regarding the peak height, in analogy to
Figs. 5 and 6, one might define a critical expon¢iy the

4. Results with light quarks

0.2 B 1at=0

15
0.3 pBat=1 (15)

relationy (7.) oc L¢/*, for which we obtaire.g.
¢ ~~ { We repeat that the O(4) model represents an effective theory
v for 2-flavor QCD, where a “magnetic fieldi = || plays a
role analogous to a degenerate quark mags= m,, = mgq.
Taking all these results for quantities given by secondThis is the parameter which adds some explicit symmetry
derivatives ofF" together, strongly supports the scenario ofbreaking, and gives mass to the pions (this is well-known in
a second order phase transition, all the way uptg., =  Chiral Perturbation Theory).
2.5. If we combine all the indications for the values of We simulated at two values of this parameter, in lattice
Beat (1B 1a1) (Peaks and steepest slopes), extrapolate to thenits they amount td,, = 0.14 and hj,, = 0.367. For
thermodynamic limit, — oo, and convert the outcome into the conversion between lattice units and physical units, we
physical units, we arrive at our conjecture for the chiral phaseow refer to the phenomenological, pseudo-critical crossover
diagram in Fig. 8. We see thdl decreases monotonically temperaturdy,. ~ 155 MeV at zero baryon density [3]. Our
with increasing baryon density, as generally expected. Acsimulation results fof,. 1+ are ambiguous, as expected for a
cording to this diagram, a possible CEP should be located atrossover, see below. We anticipate the mean values in lattice
up > 309 MeV andT' < 106 MeV. units atu g 1a¢ = 0 (at this point without uncertainties),
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hiat = 0.367
o[ 1172 =014 = a ' " b= 0. L= 12 e
pedat 71973y = 0.367 i
T os bk - e, L =24 weilfen
pc M, far = 1, L= 12 rflil=t
= UB = = KB, lat L=16 st
Tpe tat e
[ 132MeV pprar g = 0.14 (16) o o i = 2, L =8 =@ ]
o 122 MeV HUB.lat hlat = 0.367 L=16
AT R T - N t:gﬁ""'
Still following the analogy to QCD, we interpret the chiral i
symmetry breaking parameter as
s et i sl s
T4
h = *4pc hlat = qu ) (17) R RV ST SRR SR—— W
pc,lat .
with the chiral condensate = —(¢v)) ~ (250 MeV)3, 18 . ;
which allows us to estimate the physical values of the quark ' 0.6
mass,
—~ 3 MeV hlat = 014
g { 5MeV e = 0.367 (18) 08 —
=
We include also this symmetry-breaking term in the clus- ~ °3° [ [ 2
(iEE—

ter algorithm by modifying the cluster-flip probability, as

described in Refs. [28,29].

is work in progress.

26

The magnitude of the auto-
correlation timer is strongly alleviated compared to Sec. 3,
see Fig. 9, since the critical line is replaced by a crossaver.
does not diverge at,. in infinite volume, hence there is no
critical slowing down in this case. Thus the massive model
is computationally less demanding, which allowed us to in- oE
cludeL = 24, and larger volumes are accessible as well; this

-

24 |

i g
o e
O oON®

: : é
22 pr T R e LAy A’"‘J!“
20_,,,,5 - ‘r‘.%l b 2 4

18 |

Tm
S—s
R
%

14, foreeeeans (1.0
12 H &

ot
10 va

N I S S

0.75 0.8 0.85 0.9 0.95

Biat

0.45 Lo

0.4 ........

0.3

(PL7] ~ QEITTRNEEN. SIS T ST

I ; ; ; ; ;

FIGURE 10. Energy density and magnetic densityr at hiay =
0.367. We see shifts depending quz 1., but no interval of
extraordinary slopes, since the second order phase transition (at
hiat = 0) is now washed out to a crossover. Modest finite-size
effects are visible fom.

So far our simulation parameters are
V=L L=8, 12, 16, 20, 24;

UBlat =0...2. (19)
At hi,, = 0.14 we have additional data atz 1, = 2.5,
which corresponds ter 330 MeV.
In the following, we are going to show results fog; =

FIGURE 9. Auto-correlation “time” with respect to the magnetiza- 0.367 at [ui-values in the crossover region, again based
tion in units of multi-cluster update steps. There is only a minor on 10* measurements at each parameter set, for similar

dependence on the siZe and no critical slowing down.

observables as in Sec. 3, following Ref. [29]. The results at
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hlat = 0367, L=20 hlat = 0367, I-J-B,Iat = 2
0.02 T T T : LI= 8 l-l.-l ; ; : I ; I
=0.0 —— L=12 teifemg ! i | i i i
0.018 | = 0.2 ——i L=16 : Q
= 0.4 —¥— =i t:%ﬁ""’ B R U ]
0.016 = 06 - 7 I i 3 4 i :
=0.8 ‘ ‘ ; ‘ : ’
0.014 1.8 ~i3: R SN IS (S S e e o G
0.012 | =2.0 —e— -
0.01 : :
o
0.008 |
0.006
0.004 |
0.002 |
0 -
_0002 L L L L L L L L L
055 0.6 0.65 0.7 075 0.8 0.5 05 055 1 105 gBg: 05 DD d9de 096 005 L g2
Blat Blat
hiat = 0.367, Bjat = 0.9 FIGURE 12. The specific heaty at upi.e = 2 as a function
T T T T T of Biat, In various volumes. The peaks are smeared out due to
0.005 F t : ié : y S—— S— o hiat > 0. We localize the maxim@max,1a¢ by Gaussian fits.
L =20 stp—mt ‘
L=24 nary slope (which would increase witl); this confirms that
0.008 P r——— we are not dealing with a phase transition.
S The topological densityy = (Q)/V is illustrated in
~ 0003 |- . e - Fig. 11 in two ways, as a function ¢f,; and of up jat.
(e} : : At pip1as = 0, parity symmetry implieg = 0. Obviously,
Il 5 3 s 3 3 Bt > 0 enhanceg, while increasings suppresses topo-
g AR . | F T logical windings, and for. > 12 it is hardly affected by
: : ® ‘ ‘ finite-size effects.
0.001 fo s LR e We add that we did not observe any maxima in the topo-
E logical susceptibilityy; in the interval if 5,,; that we ex-
. L . T plored. So in the massive casg, is not helpful in view of
H L : . L the phase diagram, hence we do not include its plot.
0 0.5 1 1.5 2

Regarding the phase diagram, we rely on the second
derivatives of " which we already considered in the chiral
FIGURE 11. The topological density = (Q)/V as function of ~ Case: the specific heai, and the magnetic susceptibility
Buas at L = 20 (top), and at3i., = 0.9 in different volumes (bot-  Xm, given in Egs.12) and @3). Figure 12 shows: at
tom). We see how an increasings 1.« enhances;, whereas in-  up s = 2: there are no clear peaks, unlike Fig. 5, but we
creasingbi.: suppresses it. AL > 12 there are hardly any finite-  can identify the maxima by Gaussian fits (their uncertainty is
size effects om. estimated by the jackknife method).

Figure 13 is devoted to the thermodynamic extrapolations

hiat = 0.14 look alike; they will be included in our final con- of these maxima gt . — 1 and2, which lead to

jecture about the phase diagram in the massive case.
Figure 9 shows the auto-correlation “time” with respect
to the magnetizationr,,: the absence of critical slowing Boctat(UB1ar = 1) = 0.957(6) ,
down is obvious, so we are on the safe side if we separate _ oy _
the measurements by 45 multi-cluster update steps. (p)n the Bpear(piptar = 2) = 0.951(5) . (20)
other hand, in contrast to the chiral casg,does not provide
afirst estimate fop,c 1at. Similarly, Fig. 14 shows,,, at up 1.t = 2. Again there
In Fig. 10 we proceed to the energy densitand the are no sharp peaks, but here the Gaussian fits work well
magnetization densityr, cf. Egs. (L1). Only form modest and provide another criterion for the pseudo-critical values
finite-size effects are visible, but changipg 1.« causes a (¢ 1at. We see that these values are well below the ones ob-
shiftine. In either case, there is no interval of an extraordi-tained fromey in Fig. 12.

Supl. Rev. Mex. Fis3 020727



10 E. LOPEZ-CONTRERAS, J. A. GARIB-HERNANDEZ, E. N. POLANCO-EWAN, AND W. BIETENHOLZ

hiat = 0.367, Ug jat = 1 hiat = 0.367, Y jat = 2
0.965 T T T T T T T T 0.95 T T T T T
i : Cy,max il L=@ —— ‘ : ‘ ;
 Bpcjat = 0.957+4/-0.006 =—@—s e :
i ~ -0.185(1/L)+0.957 1 09 | L=20 @ ot B —
- : L=24 H H H H
0.955 ; ‘ l ‘ ‘ ‘
0.95 [rr frmsed
i’}_—" 0.945 |-
0.94 P
0.935
0.93 |
0.925 b—i L i 1 i 1 1 1 0.72 074 076 078 0.8 0.82
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 Blat
1/L
hlat = 0.367, Mg |at = 1 FIGUBE 14. The_ mag'netic susceptibilithn at [B jat = 2 asa
! function of (1a¢, in various volumes. Again we identify the max-
0.744 T T T T T T T iMa Bmax,1at DY Gaussian fits.
 Boe = 0741410085 e
............. i = 0. +/-0. o i
074 P 096(1/L)+0.74090 ——— like to overcome. We should soon have resultd.at 24,
0.74 b o s e e o which will enable sensible fits excluding = 8. This will
: ‘ : : ; : : improve the validity of thej,,. 1.+ values, although they will
0.738 change most likely just at percent-level.
0.736 As another working hypothesis, we interpret the lafge-
= extrapolated results fob, 1.c based orcy and ony,, as
o 0734 boundaries of the crossover interval. We conyest;,; and
0732 Tiat = 1/B1at to physical units, as described in the beginning
of this section, and include the corresponding results that we
023 obtained at,; = 0.14, including i 121 = 2.5. This leads
0,728 to our conjectured phase diagram in the massive case, which
we display in Fig. 16. We recall that,; = 0.14 and0.367
0.726 (roughly) correspond to the physical quark massgsand
0.724 i | i | i | l | md . . . .
0 002 004 006 008 01 012 014 In contrast to the chiral phase diagram in Fig. 8, we see
1/L only a weak trend of the crossover interval to bend down to

FIGURE 13. Extrapolations of the maxim@max1ac Of ¢y at lower temperatures gsp increases up tez 300 MeV. On
L =8...24tothe largeL limit. This is carried out for each value  the other hand, just as in the chiral limit, we did not encounter
of up 1at; here we show: 1.5 = 1 and2 as examples. the notorious CEP in the range that we explored so far.

Figure 15 illustrates the largk-extrapolations of these
maxima. In these examples, we obtain 5. Summary and conclusions

ﬁpc,lat(ﬂB,lat = 1) = 0741(2) 3
We presented a study of the O(4) non-lineamodel. We
Bpeat (118 1at = 2) = 0.791(1) . (21)  have good reasons to assume this model to be in the same
In Figs_ 13 and 15 we see 5|opes which are Significanﬂyjniversamy class as 2-flavor QCD in the chiral Iimit_,_ _because
driven by the result at = 8 — an effect, which we would the spontaneous symmetry breaking patterns coiri€ide.

77 Due to the dimensions of the Lie groups,/0(models cannot cope with;y > 2 flavors [16], cf. footnote 1. It is a drawback of this effective theory
that we cannot include thequark or even heavier quark flavors.
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Wi = 0.37, =1 ‘ ‘ ‘
lat “B‘lat 200 | quark-gluon plasma .
0745 T L] T T L} T T L] %
—o741+/x€'31§5+* T TR
Bp-ct}‘.ié;z(ifLHo.-?aios? —_— 150 © crossover region - "
: f---8 -8 -g--B------------- m------ ]
] i i : 5 Pk *
0.74 g
= 100 - .
hadronic phase
0.735 50 7
o 155 MeV o
© my = S5MeV —x—
@ mg = 3MeV =
0 | | | | | |
0.73 0 50 100 150 200 250 300 350
ug [MeV]
FIGURE 16. Conjectured phase diagram of 2-flavor QCD with de-
0.123 generate quark masses corresponding.toor to mg.
In this sense, the model can be simulated with a baryon
(a]67 2] i i i i i i i i . . . . .
D G B BB G Gl il chemical potenthltB,lat, Whlc_h corresponds to an imaginary
1L vacuum angle, without any sign problem. As a further advan-
hio = 0.367 — > tage, we can apply a powerful cluster algorithm. In the chiral
lat = Y- B lat = limit, we followed the critical line up tquz ~ 309 MeV,
0.794 T T T — r T T, ~ 106 MeV. (We converted lattice units to physical units
m,max = H it —
o702 k $.  Bpcjat = 0.791+/-0.001 s by referring to fthe crltlca! temperature@ =0.)
’ -0.112(1/L)+0.79094 —— The result is shown in Fig. 8. The line fat.(up5) de-
0.79 [ LN\ = e e T 4 creases monotonically, in agreement with other conjectures
0788 b N o — - b o - in the literature; this is the generally expected behavior. As

; : ; : : ; ; far as we could follow this line, we did not find a Critical
0.786 [+ T - i g s s - Endpoint (CEP), but there are hints for it to be near the final
; : : i ’ ’ ‘ ’ point included in our study.

We also investigated the massive case, with degenerate
OLFBZ, b s e B Pz et oo = quark massesn,, which approximately correspond either
: : : ' : ‘ ' to m,, or to mq (this identification involves the chiral con-
; 5 ; ; ; : 3 ; densate, in addition to the pseudo-critical temperaiyg.
L T | - N R s - Here, we identified an interval for the crossover temperature,
based on the maxima of two observables, which are given by

S . T L (T e

Blat

Quing T """ """ """" - 7 second derivatives of the free enerfy(in the chiral limit,
0.774 L—i L L L L L L . they detect the critical temperature).
° 002 004 °'°61/L°'°5 o1 01z o014 We monitored this crossover interval up fop =~

300 MeV. ltis rather broad, see Fig. 16, with only a minor

FIGURE 15. Extrapolations of the maxim@max,lac Of xm & trend towards loweT’,. asup increases. Again we could not
L = 8...24 to the largeL limit. We show the examples at  ind a CEP.

KB la: = 18Nd2. An overview over predictions for the CEP temperature

We are interested in high temperatures, which we as@nd baryonic chemical potential is given ?n Ref. [30], and
sume to be high enough to justify dimensional reductioncompared to the bounds based on our conjecture.
as a reasonable approximation. This leads to the 3d O(4) If we manage to extend the numerical study of this ef-
model, which has topological charges. They correspond téective theory to larger values gfp and eventually find a
the baryon number, as Skryme already knew even befor€EP, we could also explore phases at even highethat the
QCD was established [17]. literature speculates about.

iv Skyrme stayed in 4 space-time dimensions, and added a 4-derivative term in order to stabilize the structures in the configurations, which include a 3d
spatial instanton.
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