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The 3d O(4) model as an effective approach to the QCD phase diagram
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Apartado Postal 70-543, 04510 Ciudad de México, Mexico.
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The QCD phase diagram is one of the most prominent outstanding puzzles within the Standard Model. Various experiments, which aim at
its exploration beyond small baryon density, are operating or in preparation. From the theoretical side, this is an issue of non-perturbative
QCD, and therefore of lattice simulations. However, a finite baryon density entails a technical problem (known as the “sign problem”), which
has not been overcome so far. Here we present a study of an effective theory, the O(4) non-linear sigma model. It performs spontaneous
symmetry breaking with the same Lie group structure as 2-flavor QCD in the chiral limit, which strongly suggests that they belong to the
same universality class. Since we are interested in high temperature, we further assume dimensional reduction to the 3d O(4) model, which
implies topological sectors. As pointed out by Skyrme, Wilczek and others, its topological charge takes the role of the baryon number. Hence
the baryon chemical potentialµB appears as an imaginary vacuum angle, which can be included in the lattice simulation without any sign
problem. We present numerical results for the critical line in the chiral limit, and for the crossover in the presence of light quark masses.
Their shapes are compatible with other predictions, but up to the value of aboutµB ≈ 300 MeV we do not find the notorious Critical
Endpoint (CEP).
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1. The QCD phase diagram

Beyond low baryon density, the QCD phase diagram is still
terra incognita, both theoretically and experimentally (if we
assume the validity of QCD as the correct theory of the strong
interaction to persist). It can be parameterized by the inclu-
sion of a baryonic chemical potentialµB , which characterizes
the density of the net baryon numberB − B̄, as sketched in
Fig. 1.

It is often a good approximation to assume the light quark
masses to be degenerate; we denote this mass asmq := mu

FIGURE 1. Symbolic illustration of the expected QCD phase dia-
gram.

= md. In this setting, atµB = 0, lattice QCD simulations
provide the following results:

• In the chiral limit ofu andd quarks,mq = 0, one ob-
tains a second order phase transition between the con-
fined (hadronic) and deconfined phase (quark-gluon
plasma). With thes-quark included, the critical tem-
perature amounts toTc ' 132 MeV [1]. If we still
add thec-quark (with phenomenological values ofms

andmc), the transition turns into a crossover, but its
temperature hardly changes; one obtains the pseudo-
critical temperatureTpc ' 134 MeV [2].

• For a realisticmq > 0, and2 or 2 + 1 flavors, one
obtains a crossover as well. In the latter scenario,
the pseudo-critical temperature is somewhat higher,
Tpc ' 155 MeV [3]. This is consistent with the ex-
perimentally measured freeze-out temperature of the
quark-gluon plasma.

This phase diagram is of intereste.g.for our understand-
ing of the early Universe and of neutron stars. Several ex-
periments are operating with the goal of exploring the nu-
clear phase diagram, at facilities like the Super Proton Syn-
chrotron (SPS), the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC). Others are in prepa-
ration, we mention the Facility for Antiproton and Ion Re-
search (FAIR), and in particular the Multi-Purpose Detector
at the Nuclotron-based Ion Collider fAcility (MPD-NICA),
which is under construction at JINR in Dubna, Russia [4],
with the participation of the Mexican group MexNICA. It
plans to collide heavy ions, such a bismuth nuclei, at ener-
gies of 4 to 11 GeV per nucleon, which is suitable to at-
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tain a high baryon number density, and to access the region
where one expects the Critical Endpoint (CEP),i.e. the point
in the phase diagram where the crossover turns into a first
order phase transition, cf. Fig. 1.

However, the location — and even the existence — of
the CEP is uncertain. If it exists, one speculates about a rich
phase structure at even higherµB , including for instance a
color superconducting phase.

From the theoretical side, this is an issue of non-
perturbative QCD, and therefore of lattice simulations, which
did provide the aforementioned values ofTc andTpc. It deals
with the QCD formulation in Euclidean space-time, which
is justified for equilibrium observables. One further assumes
a discrete lattice structure, which implements an UV regu-
larization. The quark fieldsψx are formulated on the lat-
tice sitesx, and the gluon fieldsUx,µ on the links connecting
them (µ specifies the direction). It is profitable to usecom-
pact link variables in the gauge group (not in the algebra),
Ux,µ ∈ SU(3), which avoids the need of gauge fixing. In
analogy to Statistical Mechanics, one introduces the partition
function in the functional integral formalism,

Z =
∫

Dψ̄DψDUe−Squark[ψ̄,ψ,U ]−Sgauge[U ]

=
∫

DU detM [U ] e−Sgauge[U ] . (1)

The factordetM [U ] is the fermion determinant, which cap-
tures in particular the sea quark contributions. Its numerical
computation is tedious, but one does not need to deal explic-
itly with the Grassmann-valued fields̄ψ, ψ. Thus we obtain
expectation values of observables, in particularn-point func-
tions, as

〈. . .〉 =
1
Z

∫
DU(. . . ) detM [U ] e−Sgauge[U ] . (2)

The method consists of generating a large set of gauge con-
figurations[U ] with the probability distribution

p[U ] =
1
Z

detM [U ] e−Sgauge[U ] , (3)

which enables the numerical measurement of〈. . .〉. Here
we assume the Euclidean actionSQCD = − ln detM [U ] +
Sgauge[U ] to be real positive, and we see that the Euclidean
space is vital.

This method provides results with statistical errors (due
to the finite set of configurations), and systematic errors (we
need to extrapolate to the continuum and to infinite volume),
but they are controlled and additional simulations reduce
them. This approach is fullynon-perturbative:a strong cou-
pling like αs = O(1) does not cause any problem.

The temperatureT is given by the inverse extent in Eu-
clidean time, which should be much shorter than the spatial
directions to obtain results at finiteT . This is howTc andTpc

were obtained.

However, adding a chemical potentialµB > 0 leads to a
serious difficulty known as the “sign problem”. We can inter-
pretµB as the energy, which is required for adding one more
baryon. It multiplies a real Lagrangian term in Minkowski
space, but this term becomes imaginary under Wick rotation.
With this term,detM , and therefore also the Euclidean action
SQCD, is complex, so(1/Z) exp(−SQCD) does not represent
a probability anymore. In this case (and similarly in the pres-
ence of aθ-term), the standard technique that we sketched
above does not apply.

Numerous attempts have been studied to overcome the
sign problem, but there is no breakthrough so far. For com-
prehensive reviews, we refer for instance to Refs. [5].

• The straight approach is simulating with probability
p ∝ exp(−Re SQCD), and including the complex
phasea posterioriby re-weighting. This is correct in
principle, but it leads to excessive cancellations, such
that a precise result requires huge statistics. With sta-
ble statistical errors, the requested statistics grows ex-
ponentially with the volume, which often makes this
approach hopeless.

• The complex Langevin algorithm can handle and up-
date a complex action, but the link variables leave the
gauge group SU(3).

• Some collaborations simulate at imaginary chemical
potential,µ2

B < 0, and try to extrapolate toµ2
B > 0.

• At µB = 0 it is possible to compute some coefficients
of the Taylor series of the crossover curve, which ex-
tends toµB > 0.

Unfortunately none of these approaches is really conclusive
regarding the search for the CEP.

Quantum computing offers some hope: it would allow
us to directly deal withSQCD ∈ CI . This is under intense
investigation in toy models, but not yet applicable to QCD.
We mention one example, which refers to analogue quan-
tum computing, with Mexican participation [6]: if one traps
suitable, ultra-cold alkaline-earth atoms in the nodes of a
2d optical lattice, the nuclear spins represent an SU(3) field,
which may perform Spontaneous Symmetry Breaking (SSB),
SU(3) → U(2). Then the low-energy effective action of the
Nambu-Goldstone bosons just corresponds to the 2dCI P(2)
model, which could be quantum simulated in this manner,
and which bears a number of similarities with QCD (asymp-
totic freedom, topology, a dynamically generated mass gap).

In the absence of conclusive QCD results, one derives
conjectures about the QCD phase diagram from related mod-
els. Many such models have been studied. Examples, and
corresponding references, include the Nambu-Jona-Lasinio
model [7], and more specifically the Polyakov-Nambu-Jona-
Lasinio model [8], the linearσ-model [9], holographic ap-
proaches to QCD [10], the Polyakov quark meson model
[11], as well as methods like the Dyson-Schwinger equa-
tion [12], the mean-field approximation [13] and finite-size
scaling [14].
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As a new approach, here we focus on the 3d O(4) non-
linearσ-model, with an imaginaryθ-term.

2. The 3d O(4) model as an effective theory

2.1. 2-flavor QCD

Two quark flavors are very light compared to the intrinsic
scale of QCD,mu ' md ¿ ΛQCD ≈ 300 MeV, hence the
chiral limit mq := mu = md = 0 is often a good approxi-
mation. (For instance, the nucleon mass is only modified by
a few percent, which shows that the mass of macroscopic ob-
jects is mostly due to the gluon energy, and only to a minor
part due to the Higgs mechanism.) In this limit, the left- and
right-handed quarks decouple,

Lquark = (ū, d̄)LγµDµ

(
u
d

)

L

+ (ū, d̄)RγµDµ

(
u
d

)

R

,

so the corresponding quark doublets can be transformed inde-
pendently, and the QCD Lagrangian has the global symmetry

U(2)L ⊗U(2)R = SU(2)L ⊗ SU(2)R

⊗U(1)L=R ⊗U(1)axial .

TheU(1)L=R symmetry assures the fermion number conser-
vation, while the axial symmetryU(1)axial is anomalous (ex-
plicitly broken under quantization). AtT < Tc the remaining
chiral flavor symmetry undergoes SSB,

SU(2)L ⊗ SU(2)R −→ SU(2)L=R , (4)

which — according to Goldstone’s Theorem — generates 3
Nambu-Goldstone bosons. If we add small quark masses to
theu- andd-quark, they become massive, because the sym-
metry breaking has a (small) explicit component, and these
quasi-Nambu-Goldstone are identified with the pions.

2.2. The O(4) model as an effective theory

We proceed to the O(4) non-linearσ-model as an effective
theory with an equivalent SSB pattern. Its action reads

S[~e ] =
∫

d4x

[
F 2

π

2
∂µ~e(x) · ∂µ~e(x)− ~h · ~e(x)

]
, (5)

with ~e(x) ∈ S3, and~h is an external “magnetic field” (or
“ordering field”). According to Chiral Perturbation Theory,
Fπ ' 92.4 MeV is the pion decay constant.

At ~h = ~0 the action has a global O(4) symmetry, which
can break spontaneously to O(3) (“spontaneous magnetiza-
tion”). ~h 6= ~0 adds some explicit symmetry breaking, like the

(degenerate) quark massmq > 0. The symmetry groups with
or without SSB, or quasi-SSB, are locally isomorphic,

{ SU(2)L ⊗ SU(2)R =̂ O(4) } −→ { SU(2)L=R =̂ O(3) } .

The SSB pattern and the space-time dimension usually deter-
mine the universality class at criticality, so we have a strong
reason to assume the O(4) model to belong to the same uni-
versality class as 2-flavor QCD, cf. Refs. [15].

In the broken phase, it can be regarded as an effective
pion model, as in Chiral Perturbation Theory, since the field
is defined in the SSB coset space,~e ∈ S3 = O(4)/O(3).
Hence we deal with a meson field, so how can we address the
baryon number?

Unlike Chiral Perturbation Theory, we are interested in
high T = 1/β. We assume it to be high enough for di-
mensional reduction to be a good approximation,i.e. we as-
sume the dominant configurations[~e ] to be (nearly) constant
in the (short and periodic) Euclidean time direction.i This re-
duces the temporal integral in the action (5) to a constant,∫ β

0
dtE ≈ β, and we obtain (in a spatial volumeV )

S[~e ] = β

∫

V

d3x

[
F 2

π

2
∂i~e(x) · ∂i~e(x)− ~h · ~e(x)

]

= βH[~e ] . (6)

Thus we arrive at the 3d O(4) model, with periodic boundary
conditions, which has topological sectors, due toπ3(S3) =
Z. The topological chargeQ ∈ Z represents the winding
number of a configuration[~e ] on S3, which is invariant un-
der (almost all) small deformations of[~e ].

Skyrme and others noticed that the topological charge
Q of the effective theory corresponds to the baryon num-
berB [17]. This identification can be derived from anomaly
matching. Thus the meson field does account for the baryon
number, by means of topological windings. Hence in the ef-
fective theory, the baryonic chemical potentialµB takes the
role of an imaginary vacuum-angleθ,

H[~e ] = · · · − µBQ[~e ] ∈ R . (7)

We see that it can be incorporated in the effective theorywith-
outany sign problem.

2.3. The 3d O(4) model on the lattice

In order to simulate the 3d O(4) model we need to formulate
it on the lattice. We choose the standard formulation on a
cubic lattice, and use lattice units (i.e.we set the lattice spac-
ing to 1). The derivatives are replaced by nearest-neighbor
differences,

i This assumption can be questioned,i.e. one may wonder whether1/Tpc ' 1.3 fm is small enough to justify this simplification. One can further
object that at high-T heavier quark flavors are not negligible, but we cannot include them in O(N ) model effective theories [16]. Still, we are confident
that our assumptions are sensible approximations.
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FIGURE 2. Left: Division of a lattice unit cube into 6 tetrahedra.
Right: Symbolic illustration of a spherical tetrahedron.

1
2
∂i~e(x) · ∂i~e(x) → 1

2
(~ex+î − ~ex)2 = 1− ~ex · ~ex+î,

Slat[~e ] = −βlat

( ∑

〈xy〉
~ex · ~ey + ~hlat ·

∑
x

~ex

+ µB,latQ[~e ]
)

,

where î is a unit vector ini-direction, and〈xy〉 are the
nearest-neighbor lattice sites (the constant1 can be dropped).

We formulate the topological charge of a lattice config-
uration with a geometric definition. Thus we generalize the
formulation of Ref. [18], which guaranteesQ[~e ] ∈ Z for all
configurations (up to a subset of measure zero).

To be explicit, we split the lattice unit cubes into 6 tetra-
hedra, as shown in Fig. 2 (left). The 4 spins at the vertices
of one tetrahedron — we call them(~ew, ~ex, ~ey, ~ez) — span
a spherical tetrahedronon S3, as symbolically sketched in
Fig. 2 (right): its edgese1, . . . , e6 are geodesics inS3.

The topological density of a tetrahedron is given by the
oriented, normalized volume of its corresponding spherical
tetrahedron,Vw,x,y,z[~e ]/2π2, such that

Q[~e ] =
1

2π2

∑

〈wxyz〉
Vw,x,y,z[~e ] ∈ Z . (8)

Remarkably, it was only in 2012 that a set of formulae was
elaborated which allow for the computation ofVw,x,y,z[~e ]
[19]. It can be numerically computed in this manner [20], but
a more efficient alternative is selecting some reference point
onS3 and counting how many spherical tetrahedra enclose it
in an oriented sense (we tested extensively the equivalence of
these two methods).

2.4. Monte Carlo simulation

As we anticipated in Sec. 1, the goal is the generation of nu-
merous configurations in accordance with the probability dis-
tributionp[~e ] = (1/Z) exp(−S[~e ]).

We start from an arbitrary initial configuration[~e ] and
generate a long Markov chain[~e ] → [~e ′] → [~e ′′] → . . .
(each new configuration solely depends on the previous one,

plus some random numbers). The conditions for the algo-
rithm to be correct areergodicity (each configuration is ac-
cessible in a finite number of steps) anddetailed balance: the
transition probabilities between two configurations obey

p[~e → ~e ′]
p[~e ′ → ~e ]

=
p[~e ′]
p[~e ]

= exp(S[~e ]− S[~e ′]) . (9)

One begins with thethermalization: first a large num-
ber of configurations are skipped, until we reach thermal
equilibrium (and therefore independence of the initial con-
figuration). Then we perform numerical measurements on
configurations, which have to be sufficiently separated in the
Markov chain to be statistically independent from each other.
To assure this property, we measure the (exponential) auto-
correlation “time”τ ; it is very similar for the different ob-
servables involved (see below). We are on the safe side with
a measurement separation≥ 2τ .

τ grows rapidly next to the critical temperature. For typ-
ical algorithms it diverges atTc in infinite volume, and the
increase whenT approachesTc is exponential: this phe-
nomenon is known ascritical slowing down.

By definition, also the correlation length diverges at a crit-
ical point, ξ → ∞. Thus the spins are strongly correlated
over long distances (in lattice units), which explains that it
becomes hard to significantly modify a configuration (while
respecting detailed balance).

For the O(N ) models, the Wolff cluster algorithm [21] is
the most efficient, known simulation procedure. It does not
update single spins, but entire clusters of them are reflected at
some random hyper-plane in spin-space (they are “flipped”).
The clusters are formed in a subtle manner, such that the al-
gorithm fulfills the aforementioned conditions of ergodicity
and detailed balance.

We used the multi-cluster version (but we also checked
its consistency with the single-cluster algorithm). One multi-
cluster update step means that the entire configuration is di-
vided into clusters, which are flipped with the appropriate
probability. The availability of this highly efficient algorithm
is another benefit of the O(4) model as an effective theory;
no efficient cluster algorithm is known in gauge theory. We
take the chemical potentialµB into account by adjusting the
cluster flip probability, along the lines of Ref. [22]. This
method works consistently, but whenµB,lat increases, the
peak height ofτ grows rapidly.

This is illustrated in Fig. 3 for the auto-correlation
“times” with respect to the energy,τH , and the topological
charge,τQ. They are very similar, thanks to the cluster al-
gorithm (for single-spin update algorithms,τQ tends to be
much larger and to restrict the feasibility of conclusive simu-
lations).

We see that not even the cluster algorithm completely
overcomes the problem of critical slowing down. This dif-
ficulty has limited our numerical study so far toµB,lat ≤ 2.5.
On the other hand, the sharp peaks ofτ provide a first esti-
mate of the critical valueβc,lat.
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FIGURE 3. The auto-correlation “time” with respect to the energy,
τH (top) and with respect to the topological charge,τQ (bottom),
expressed in units of multi-cluster update steps (“sweeps”). These
values are measured in the chiral limit (~hlat = ~0) by the exponen-
tial decay of the auto-correlation.

3. Results for the phase diagram in the chiral
limit

We begin with the case~hlat = ~0, which corresponds to zero
quark and pion masses. Before showing our simulation re-
sults, which are based on Ref. [23], we address the conver-
sion from lattice units to physical units. This requires some
reference quantity as an input. Here, we refer to the critical
temperatureTc = 1/βc at µB = 0. In the 3d O(4) model on
the lattice, it was measured to high precision [24–26]; we are
going to refer toβc,lat = 0.9359(1). We match this result to
Tc ' 132 MeV, the value obtained in chiral lattice QCD [1]
(cf. Sec. 1), which suggests

µB =
βc,lat

βc
µB,lat ≈ 124 MeV µB,lat . (10)

Our simulation parameters are

µB,lat=0, 0.1, 0.2 . . . 1.5; 2, 2.5 ⇔ µB=0 . . . 309 MeV .

The lattice volumes are cubic,V = L3, L = 10, 12, 16,
20, and, if not indicated otherwise, we will show results for

FIGURE 4. Energy densityε, magnetization densitym and topo-
logical densityq, atL = 20, ~h = ~0 andµB,lat = 0 . . . 2.5.

L = 20. Theβlat-values are chosen such thatβc,lat can be
identified — this had to be explored at eachµB,lat.

We measured observables which are given by first and
second derivatives of the free energyF = −T ln Z. Accord-
ing to Ehrenfest’s scheme, a discontinuity in thenth deriva-
tive (in the large-L limit) characterizes annth order phase
transition. We monitor the critical line and search in particu-
lar for a possible CEP, as motivated in Sec. 1. Each measure-
ment is based on104 (thermalized and decorrelated) config-
urations.
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FIGURE 5. The specific heatcV at L = 20(top) and atµB,lat =
2(bottom). The peaks hint at second order phase transitions in the
large-L limit. The L-dependence of their heights provides infor-
mation about the critical exponentsα andν.

Figure 4 shows the energy densityε, the magnetization
densitym (the order parameter) and the topological density
q, which are all given by first derivatives ofF ,ii

ε = 〈H〉/V =
1
V

∂β(βF ) ,

m = 〈| ~M |〉/V , 〈 ~M〉 =
〈 ∑

x

~ex

〉
= −∂~hF ,

q = 〈Q〉/V , 〈Q〉 = −∂µBF . (11)

IncreasingµB,lat favors more topological windings. This en-
hancesq and alsoε, but it reducesm, since the configurations
are further away from a uniform structure. Clearly, increas-
ing βlat has the opposite effect. In all three plots we see
intervals of maximal slope, which move to largeβlat when
µB,lat grows: this indicates the approximate value ofβc,lat,

in agreement with the peaks of the auto-correlation “times”
in Fig. 3.

ForµB,lat = 2.5 these slopes are so strong that one could
even be tempted to interpret them as quasi-discontinuous
jumps, i.e. they could indicate discontinuous jumps in the
large-L limit. That would be characteristic of afirst order
phase transition, so at this point we wonder whether the CEP
has been attained already. This has to be clarified by the study
of further observables, which are given by second derivatives
of the free energyF .

In this respect, we first consider the specific heatcV ,

cV =
β2

V
(〈H2〉 − 〈H〉2) = −β2

V
∂2

β(βF ) . (12)

In infinite volume it diverges at a second order phase transi-
tion. In Fig. 5 (top) we see peaks with increasing height when
µB,lat rises. This indicates that the phase transition at these
parameters, in infinite volume, is still second order.

This is more explicit in Fig. 5 (bottom), which compares
cV (βlat) in different volumes. The peak centers hardly de-
pend onL, which makes their large-L extrapolation simple.
Based on finite-size scaling one expects (assumingL = ∞
to be a critical point) a peak height proportional toLα/ν . At
µB,lat = 2 we obtain for the ratio of these critical exponents
α/ν ≈ 0.2. If we further assume Josephson’s scaling law
α = 2−dν, we arrive atα ≈ 1/8, ν ≈ 5/8. As a benchmark,
Ref. [24] obtained atµB,lat = 0 the valueν ' 0.7479(90),
which is in reasonable proximity.

Similarly, in Fig. 6 (top) we show results for the magnetic
susceptibilityχm atL = 20,

χm =
β

V

(
〈 ~M2〉 − 〈| ~M |〉2

)
∼ − β

V
∂2

~h
F . (13)

(In a numerical study, the subtracted term is only sensible
with | ~M |, seee.g.Ref. [27]. The right-hand side, however,
is the standard formula, without absolute value). It also di-
verges atTc in infinite volume, hence its peaks in finite vol-
ume are another indicator of a second order phase transition.
They are strongest atµB,lat ≥ 1, which supports the scenario
that we are still following a critical line.

The plot in Fig. 6 (bottom) shows results forL =
10 . . . 20 at µB,lat = 2.5. Here, the peak temperature visu-
ally moves withL, and the large-L extrapolation is compat-
ible with the estimates forTc based on the previous criteria.
In this case, one expects(peak height) ∝ Lγ/ν . In the range
µB,lat ≤ 1.5 this yieldsγ/ν = 1.9(2) [23], in agreement
with the precise valueγ/ν = 1.970 atµB,lat = 0 [26].

Figure 7 adds results about the topological susceptibility

χt =
1
V

(〈Q2〉 − 〈Q〉2) = − 1
V

∂2
µB

F . (14)

ii In Eqs. (11), (12) and (13), β andµB are understood asβlat andµB,lat for the interpretation of our data.
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FIGURE 6. The magnetic susceptibilityχm atL = 20 (top) and at
µB,lat = 2 (bottom). The peaks again hint at second order phase
transitions in the large-L limit. The L-dependence of their heights
provides information about the ratio of critical exponentsγ/ν.

Again we observe peaks (they are obvious atµB,lat ≥ 2),
at temperatures which are consistent with the previous deter-
minations ofTc. Regarding the peak height, in analogy to
Figs. 5 and 6, one might define a critical exponentζ by the
relationχt(Tc) ∝ Lζ/ν , for which we obtaine.g.

ζ

ν
≈

{
0.2 µB,lat=0

0.3 µB,lat=1
. (15)

Taking all these results for quantities given by second
derivatives ofF together, strongly supports the scenario of
a second order phase transition, all the way up toµB,lat =
2.5. If we combine all the indications for the values of
βc,lat(µB,lat) (peaks and steepest slopes), extrapolate to the
thermodynamic limitL → ∞, and convert the outcome into
physical units, we arrive at our conjecture for the chiral phase
diagram in Fig. 8. We see thatTc decreases monotonically
with increasing baryon density, as generally expected. Ac-
cording to this diagram, a possible CEP should be located at
µB > 309 MeV andT < 106 MeV.

FIGURE 7. The topological susceptibilityχt atL = 20. The peaks
atµB,lat = 2 and2.5 further support the scenario of a second order
phase transition.

FIGURE 8. Conjectured phase diagram of 2-flavor QCD in the chi-
ral limit.

4. Results with light quarks

We repeat that the O(4) model represents an effective theory
for 2-flavor QCD, where a “magnetic field”h = |~h| plays a
role analogous to a degenerate quark massmq = mu = md.
This is the parameter which adds some explicit symmetry
breaking, and gives mass to the pions (this is well-known in
Chiral Perturbation Theory).

We simulated at two values of this parameter, in lattice
units they amount tohlat = 0.14 and hlat = 0.367. For
the conversion between lattice units and physical units, we
now refer to the phenomenological, pseudo-critical crossover
temperatureTpc ' 155 MeV at zero baryon density [3]. Our
simulation results forTpc,lat are ambiguous, as expected for a
crossover, see below. We anticipate the mean values in lattice
units atµB,lat = 0 (at this point without uncertainties),
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T̄pc,lat =
{

1.172 hlat = 0.14
1.273 hlat = 0.367

⇒ µB =
Tpc

T̄pc,lat
µB,lat

=
{

132 MeV µB,lat hlat = 0.14
122 MeV µB,lat hlat = 0.367 . (16)

Still following the analogy to QCD, we interpret the chiral
symmetry breaking parameter as

h =
T 4

pc

T̄ 4
pc,lat

hlat = mqΣ , (17)

with the chiral condensateΣ = −〈ψ̄ψ〉 ≈ (250 MeV)3,
which allows us to estimate the physical values of the quark
mass,

mq ≈
{

3 MeV hlat = 0.14
5 MeV hlat = 0.367 . (18)

We include also this symmetry-breaking term in the clus-
ter algorithm by modifying the cluster-flip probability, as
described in Refs. [28,29]. The magnitude of the auto-
correlation timeτ is strongly alleviated compared to Sec. 3,
see Fig. 9, since the critical line is replaced by a crossover.τ
does not diverge atβpc in infinite volume, hence there is no
critical slowing down in this case. Thus the massive model
is computationally less demanding, which allowed us to in-
cludeL = 24, and larger volumes are accessible as well; this
is work in progress.

FIGURE 9. Auto-correlation “time” with respect to the magnetiza-
tion in units of multi-cluster update steps. There is only a minor
dependence on the sizeL, and no critical slowing down.

FIGURE 10. Energy densityε and magnetic densitym at hlat =
0.367. We see shifts depending onµB,lat, but no interval of
extraordinary slopes, since the second order phase transition (at
hlat = 0) is now washed out to a crossover. Modest finite-size
effects are visible form.

So far our simulation parameters are

V = L3 , L = 8, 12, 16, 20, 24 ;

µB,lat = 0 . . . 2 . (19)

At hlat = 0.14 we have additional data atµB,lat = 2.5,
which corresponds to≈ 330 MeV.

In the following, we are going to show results forhlat =
0.367 at βlat-values in the crossover region, again based
on 104 measurements at each parameter set, for similar
observables as in Sec. 3, following Ref. [29]. The results at
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FIGURE 11. The topological densityq = 〈Q〉/V as function of
βlat at L = 20 (top), and atβlat = 0.9 in different volumes (bot-
tom). We see how an increasingµB,lat enhancesq, whereas in-
creasingβlat suppresses it. AtL ≥ 12 there are hardly any finite-
size effects onq.

hlat = 0.14 look alike; they will be included in our final con-
jecture about the phase diagram in the massive case.

Figure 9 shows the auto-correlation “time” with respect
to the magnetization,τm: the absence of critical slowing
down is obvious, so we are on the safe side if we separate
the measurements by 45 multi-cluster update steps. On the
other hand, in contrast to the chiral case,τm does not provide
a first estimate forβpc,lat.

In Fig. 10 we proceed to the energy densityε and the
magnetization densitym, cf. Eqs. (11). Only for m modest
finite-size effects are visible, but changingµB,lat causes a
shift in ε. In either case, there is no interval of an extraordi-

FIGURE 12. The specific heatcV at µBlat = 2 as a function
of βlat, in various volumes. The peaks are smeared out due to
hlat > 0. We localize the maximaβmax,lat by Gaussian fits.

nary slope (which would increase withL); this confirms that
we are not dealing with a phase transition.

The topological densityq = 〈Q〉/V is illustrated in
Fig. 11 in two ways, as a function ofβlat and of µB,lat.
At µB,lat = 0, parity symmetry impliesq = 0. Obviously,
µB,lat > 0 enhancesq, while increasingβ suppresses topo-
logical windings, and forL ≥ 12 it is hardly affected by
finite-size effects.

We add that we did not observe any maxima in the topo-
logical susceptibilityχt in the interval if βlat that we ex-
plored. So in the massive case,χt is not helpful in view of
the phase diagram, hence we do not include its plot.

Regarding the phase diagram, we rely on the second
derivatives ofF which we already considered in the chiral
case: the specific heatcV and the magnetic susceptibility
χm, given in Eqs. (12) and (13). Figure 12 showscV at
µB,lat = 2: there are no clear peaks, unlike Fig. 5, but we
can identify the maxima by Gaussian fits (their uncertainty is
estimated by the jackknife method).

Figure 13 is devoted to the thermodynamic extrapolations
of these maxima atµB,lat = 1 and2, which lead to

βpc,lat(µB,lat = 1) = 0.957(6) ,

βpc,lat(µB,lat = 2) = 0.951(5) . (20)

Similarly, Fig. 14 showsχm at µB,lat = 2. Again there
are no sharp peaks, but here the Gaussian fits work well
and provide another criterion for the pseudo-critical values
βpc,lat. We see that these values are well below the ones ob-
tained fromcV in Fig. 12.
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FIGURE 13. Extrapolations of the maximaβmax,lat of cV at
L = 8 . . . 24 to the large-L limit. This is carried out for each value
of µB,lat; here we showµB,lat = 1 and2 as examples.

Figure 15 illustrates the large-L extrapolations of these
maxima. In these examples, we obtain

βpc,lat(µB,lat = 1) = 0.741(2) ,

βpc,lat(µB,lat = 2) = 0.791(1) . (21)

In Figs. 13 and 15 we see slopes which are significantly
driven by the result atL = 8 — an effect, which we would

FIGURE 14. The magnetic susceptibilityχm at µB,lat = 2 as a
function ofβlat, in various volumes. Again we identify the max-
imaβmax,lat by Gaussian fits.

like to overcome. We should soon have results atL > 24,
which will enable sensible fits excludingL = 8. This will
improve the validity of theβpc,lat values, although they will
change most likely just at percent-level.

As another working hypothesis, we interpret the large-L
extrapolated results forβpc,lat based oncV and onχm as
boundaries of the crossover interval. We convertµB,lat and
Tlat = 1/βlat to physical units, as described in the beginning
of this section, and include the corresponding results that we
obtained athlat = 0.14, includingµB,lat = 2.5. This leads
to our conjectured phase diagram in the massive case, which
we display in Fig. 16. We recall thathlat = 0.14 and0.367
(roughly) correspond to the physical quark massesmu and
md.

In contrast to the chiral phase diagram in Fig. 8, we see
only a weak trend of the crossover interval to bend down to
lower temperatures asµB increases up to≈ 300 MeV. On
the other hand, just as in the chiral limit, we did not encounter
the notorious CEP in the range that we explored so far.

5. Summary and conclusions

We presented a study of the O(4) non-linearσ-model. We
have good reasons to assume this model to be in the same
universality class as 2-flavor QCD in the chiral limit, because
the spontaneous symmetry breaking patterns coincide.iii

iii Due to the dimensions of the Lie groups, O(N ) models cannot cope withNf > 2 flavors [16], cf. footnote 1. It is a drawback of this effective theory
that we cannot include thes-quark or even heavier quark flavors.
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FIGURE 15. Extrapolations of the maximaβmax,lat of χm at
L = 8 . . . 24 to the large-L limit. We show the examples at
µB,lat = 1 and2.

We are interested in high temperatures, which we as-
sume to be high enough to justify dimensional reduction
as a reasonable approximation. This leads to the 3d O(4)
model, which has topological charges. They correspond to
the baryon number, as Skryme already knew even before
QCD was established [17].iv

FIGURE 16. Conjectured phase diagram of 2-flavor QCD with de-
generate quark masses corresponding tomu or tomd.

In this sense, the model can be simulated with a baryon
chemical potentialµB,lat, which corresponds to an imaginary
vacuum angle, without any sign problem. As a further advan-
tage, we can apply a powerful cluster algorithm. In the chiral
limit, we followed the critical line up toµB ' 309 MeV,
Tc ' 106 MeV. (We converted lattice units to physical units
by referring to the critical temperature atµB = 0.)

The result is shown in Fig. 8. The line forTc(µB) de-
creases monotonically, in agreement with other conjectures
in the literature; this is the generally expected behavior. As
far as we could follow this line, we did not find a Critical
Endpoint (CEP), but there are hints for it to be near the final
point included in our study.

We also investigated the massive case, with degenerate
quark massesmq, which approximately correspond either
to mu or to md (this identification involves the chiral con-
densate, in addition to the pseudo-critical temperatureTpc).
Here, we identified an interval for the crossover temperature,
based on the maxima of two observables, which are given by
second derivatives of the free energyF (in the chiral limit,
they detect the critical temperature).

We monitored this crossover interval up toµB ≈
300 MeV. It is rather broad, see Fig. 16, with only a minor
trend towards lowerTpc asµB increases. Again we could not
find a CEP.

An overview over predictions for the CEP temperature
and baryonic chemical potential is given in Ref. [30], and
compared to the bounds based on our conjecture.

If we manage to extend the numerical study of this ef-
fective theory to larger values ofµB and eventually find a
CEP, we could also explore phases at even higherµB that the
literature speculates about.

iv Skyrme stayed in 4 space-time dimensions, and added a 4-derivative term in order to stabilize the structures in the configurations, which include a 3d
spatial instanton.
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