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Pion model with the Nakanishi integral representation
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In the present work, we describe a model for the pion based on an analytic expression for the Bethe-Salpeter (BSA) amplitude, combined
with some ingredients from Lattice QCD calculations. The running quark mass functionM(p2), used here, reproduces well the results of
Lattice QCD calculations. The analytical form of the running quark mass function contains a single time-like pole, which implies in time-like
poles of the dressed quark propagator. Such a form allows to build the weight functions,Gi(γ, z), for the Nakanishi integral representation
of each scalar function,χi(k, p), appearing in the decomposition of the Bethe-Salpeter amplitude in terms of Dirac operators. Such scalar
amplitudes can also be used to obtain the pion valence light-front wave function.
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1. Introduction

Nowadays, the pion is understood as a pseudo-scalar bound
state of constituents carrying the fundamental degrees of free-
dom of the strong interaction theory and, due to its small mass
at the hadronic scale, it is considered a Goldstone boson [1].
The special nature of the pion is associated with the sponta-
neous breaking of chiral symmetry, where the light quarks ac-
quire dynamically, sizable masses departing from their small
current quark masses due to weak Higgs coupling. A trace
of that is found in the small pion mass (0.140 GeV), which
would be zero for vanishing current quark masses when the
chiral symmetry is exact. Therefore, the pion acquires a mass
by the explicit breaking of this symmetry, and it is the Gold-
stone boson associated with the Dynamical Chiral Symme-
try Breaking phenomena (DCSB), which is well established
within the theory of strong interactions, namely Quantum
Chromodynamics (QCD) [2]. While the current masses of
the light quarks are small, the heavy ones are due to the Higgs
coupling, breaking strongly the flavor symmetry, which was
explored in a recent study of the flavor content of the light
and heavy pseudoscalar mesons [3].

In the present work, we will use the results from QCD cal-
culations in the Landau gauge on the Euclidean Lattice [4] for
the dressed light quarks running masses, as proposed in [5]
to model the quark propagator and the pion Bethe-Salpeter
amplitude. Our aim is to explore the Nakanishi integral rep-
resentation of the pion Bethe-Salpeter amplitude by comput-
ing each weight function,Gi(γ, z), associated with the four
scalar functions,χi(k, p), found in the decomposition of the
pion Bethe-Salpeter amplitude in Dirac spinorial space.

The general form of the dressed quark propagator is given
by:

SF (k) = ı Z(k2)
[
/k −M(k2) + ıε

]−1
, (1)

for the light quarks, namely,u and d. The dressed quark
mass function isM(k2), which is chosen to reproduce the
results obtained from Euclidean Lattice QCD (LQCD) calcu-
lations [4]. The quark wave function renormalization factor is
taken here asZ(k2) = 1, for simplification of the model [5],
while it still captures the main physics of the QCD dynami-
cal chiral symmetry breaking brought by the running dressed
quark mass function.

The model dressed quark propagator is given by:

SF (k)=ı
/k+[m0−m3(k2−λ2+ıε)−1]

(k2−([m0−m3(k2−λ2+ıε)−1)2]+ıε)
, (2)

in which we can identify the running quark dressed mass
function:

M(k2) = m0 −m3
[
k2 − λ2 + iε

]−1
, (3)

where m0 = 0.014 GeV, m = 0.574 GeV and λ =
0.846 GeV. For convenience, we call this set as input pa-
rameters (IP) [5,6].

They are chosen to fit the dressed light quark mass from
LQCD [4] (see also [7, 8]) for space-like momenta as repro-
duced in the left panel of Fig. 1.

The dressed quark propagator in the present model has
time-like poles, found by solvingm2

i = M2(m2
i ), which al-

lows to write it in a factorized form:
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FIGURE 1. a) Dressed quark running mass for the present model in the space-like momentum region, compared with LQCD results in the
Landau gauge [4], and the parametrization from Rojaset al. [7]. b) Biagrammatic representation of the Bethe-Salpeter Amplitude.

SF (k) = ı

(
k2 − λ2

)2 (/k + m0)−
(
k2 − λ2

)
m3

∏
i=1,3(k2 −m2

i + ıε)
. (4)

With the set (IP), we have the following poles masses,m1 =
0.371 GeV,m2 = 0.644 GeV andm3 = 0.954 GeV [5].

The dressed quark propagator can be written as follows

SF (k) = ı
[
A(k2) /k + B(k2)

]
, (5)

which by comparison with Eq. (4), one gets the explicit ex-
pressions forA(k2) andB(k2), as:

A(k2) =

(
k2 − λ2

)2

∏
i=1,3(k2 −m2

i + ıε)
,

B(k2) =
(λ2 − k2)m3

∏
i=1,3(k2 −m2

i + ıε)
+ m0 A(k2) . (6)

We can decomposeA(k2) andB(k2) in the form of poly-
nomials as:

A(k2) =
3∑

i=1

Di

k2 −m2
i

and B(k2) =
3∑

i=1

m0Di − Ei

k2 −m2
i

, (7)

where the residues are obtained from the set (IP):

D1 = 1.4992, D2 = −0.5941, D3 = −0.09498,

E1 = 0.4240, E2 = −0.3314, E3 = −0.07864 ,

with Di dimensionless andEi in units of GeV.
For our purpose, we can also describe the functions

A(k2) andB(k2) in terms of a spectral representation:

A(k2) =

∞∫

0

dµ2 ρA(µ2)
k2 − µ2 + ıε

,

B(k2) =

∞∫

0

dµ2 ρB(µ2)
k2 − µ2 + ıε

, (8)

where the spectral densities are:

ρA(µ2)=− 1
π

Im [A(µ2)] and ρB(µ2)=− 1
π

Im [B(µ2)].

One can easily check that the model spectral functions violate
the positivity constraints [1]:

Pa = ρA(µ2) ≥ 0 and Pb = µρA(µ2)− ρB(µ2) ≥ 0 ,

which is not a problem as the quark cannot be an asymptotic
state, as it should be confined within the hadron.

Remembering that we can write the functionsA(k2) and
B(k2) as a sum of polynomials, and combining with the
spectral representation,

∞∫

0

dµ2 ρA(µ2)
k2 − µ2 + iε

=
3∑

i=1

∞∫

0

dµ2 Di δ(µ2 −m2
i )

k2 − µ2 + iε
, (9)

we find the spectral density:

ρA(µ2)=D1 δ(µ2 −m2
1)+D2 δ(µ2 −m2

2)+D3 δ(µ2 −m2
3).

ForB(k2), the spectral decomposition is given by:

∞∫

0

dµ2 ρB(µ2)
k2 − µ2 + iε

=
3∑

i=1

∞∫

0

dµ2 Ei δ(µ2 −m2
i )

k2 − µ2 + iε
. (10)

We obtain, forρB , the following final expression

ρB(µ2) = E1 δ(µ2 −m2
1) + E2 δ(µ2 −m2

2)

+ E3 δ(µ2 −m2
3) + m0 ρA(µ2).
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In the present work, we use the Nakanishi Integral Rep-
resentation (NIR), (see in [9,10] for more references), in or-
der to write the Bethe-Salpeter amplitude for the pion quark-
antiquark bound state. The first step is to write the pion-
quark-antiquark vertex, denoted byΓπ(k, p), which com-
poses the pion Bethe-Salpeter amplitude, diagrammatically
represented in the right panel of Fig. 1. The most general
form is given by:

Γπ(k, p) = γ5[ıEπ(k, p) + /PFπ(k, p)

+ kµpµ /kGπ(k, p) + σµνkµpνHπ(k, p)]. (11)

The pion Bethe-Salpeter amplitude has the form:

Ψπ(k, p) = SF (k + p
2 ) Γπ(k, p)SF (k − p

2 ), (12)

with the vertex function [5]

Γπ(k, p) = ıN γ5 M(k)|m0=0 = −ı
Nγ5m

3

k2 − λ2 + ıε
, (13)

dominated by the dressed quark mass function in the chiral
limit. N is a normalization factor.

After defining the structure of the pion vertex, we can
write its BS amplitude, incorporating the dressed quark prop-
agator, which also carries DCSB effects. Using the compact
notation for the propagators, one has that:

Ψπ(k, p) = − [
A

(
k2

q

)
/kq + B

(
k2

q

)] Nγ5m
3

k2 − λ2 + ıε

× [
A

(
k2

q̄

)
/kq̄ + B

(
k2

q̄

)]
. (14)

Here the quark and antiquark momentum are:kq = (k+p/2)
andkq̄ = (k − p/2), respectively. This BS amplitude can
be written in terms of its Dirac operator structure and scalar
functions:

Ψπ(k, p) = γ5 χ1(k, p)+ 6 kqγ5 χ2(k, p)

+ γ5kq̄ χ3(k, p)+ 6 kqγ5kq̄ χ4(k, p) . (15)

We aim to obtain the NIR weight functions of each scalar
functionχi(k, p) within the present chosen analytical model
for the BS amplitude. For this purpose, we introduce the use-
ful identity given below:

1
[(k + p

2 )2 − µ′2 + ıε][k2 − λ2 + ıε][(k − p
2 )2 − µ2 + ıε]

=

∞∫

0

dγ

1∫

−1

dz
F (γ, z ;µ′, µ)

[k2 + z k · P + γ + ıε]3
, (16)

where

F (γ, z ; µ′, µ)=
2 θ(1+z−2α) θ(α−z) θ(1−α) θ(α)

|2λ2+M2/4−µ′2−µ2| ,

and

α(γ, z ; µ′, µ) =
γ − z(µ2 − λ2 −M2/4) + λ2

2λ2 + M2/4− µ2 − µ′2
.

We can identify the four scalar functions of our model as:

χ1(k, p) = −B(k2
q)

m3N
k2 − λ2 + ıε

B(k2
q) ,

χ2(k, p) = −A(k2
q)

m3N
k2 − λ2 + ıε

B(k2
q) ,

χ3(k, p) = −B(k2
q)

m3N
k2 − λ2 + ıε

A(k2
q) ,

χ4(k, p) = −A(k2
q)

m3N
k2 − λ2 + ıε

A(k2
q) . (17)

In terms of the spectral representation of the dressed quark
propagator the scalar amplitudes are

χi(k; p) = −
∞∫

0

dµ′2
ρxi

(
µ′2

)

[(k + p/2)2 − µ′2 + ıε]

× N m3

[k2 − λ2 + ıε]

∞∫

0

dµ2 ρyi

(
µ2

)

[(k − p/2)2 − µ2 + vε]
, (18)

with the following convention(x1, y1) ≡ (B, B), (x2, y2) ≡
(A,B), (x3, y3) ≡ (B,A), and (x4, y4) ≡ (A,A). Using
the integral relation from Eq. (16), we have that:

χi(k, p) = −Nm3

∞∫

0

dγ

1∫

−1

dz

∞∫

0

dµ
′2

∞∫

0

dµ2

× ρxi

(
µ′2

)
ρyi

(
µ2

) F (γ, z;µ′, µ)
[k2 + z k · p− γ + iε]3

. (19)

A close inspection of Eq. (19) allows one to write the
scalar amplitudes in terms of the Nakanishi integral repre-
sentation,

χi(k, p) =

1∫

−1

dz

∞∫

0

dγ
Gi (γ, z)

[k2 + z k · p− γ + iε]3
,

where the weight functions are:

Gi (γ, z) =
3∑

j=1

3∑

k=1

Ci;jk F (γ, z;mj , mk) , (20)

with the coefficients given by:

C1;jk = −Nm3 (Ej + m0Dj) (Ek + m0Dk) ,

C2;jk = −Nm3Dj (Ek + m0Dk) ,

C3;jk = −Nm3 (Ej + m0Dj)Dk ,

C4;jk = −Nm3DjDk . (21)
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FIGURE 2. a)G1 weight function dependence withz for γ = 0.45 GeV2 (dashed line) and0.75 GeV2 (solid line). b)G4(γ, z) as a function
of z with γ = 0.45 GeV2 (dashed line) and0.75 GeV2 (solid line). The arbitrary value ofN = 100 is used.

FIGURE 3. a)G2 (γ, z)+G3 (γ, z) as a function ofz for γ = 0.45 GeV2 (solid line) and0.75 GeV2 (dashed line). b)G3 (γ, z)−G2 (γ, z)

as a function ofz for γ = 0.45 GeV2 (dashed line) and0.45 GeV2 (solid line). The arbitrary value ofN = 100 is used.

Taking into account the properties under the exchange of
indices of the coefficients above and the explicit form of
the NIR, we have the following symmetry properties for the
scalar amplitudes:

χ1(k, p) = χ1(−k, p), χ2(k, p) = χ3(−k, p) ,

χ4(k, p) = χ4(−k, p) , (22)

which of course are consistent with the ones easily derived
from Eq. (17) with the explicit form of these amplitudes.
These symmetry properties are also associated with the even
character inz for

G1(γ, z) = G1(γ,−z) and G4(γ, z) = G4(γ,−z) . (23)

The weight functionsG2 and G3 in Eq. (20) are neither
even or odd inz. However, due to the symmetry property
of the functionF (γ, z;mj , mk) = F (γ,−z; mk,mj) and
C2;jk = C3,kj , they are related byG2(γ, z) = G3(γ,−z).
Therefore, we chose to study combinations of them, namely,
G3(γ, z)+G2(γ, z) andG3(γ, z)−G2(γ, z), which are even
and odd inz, respectively.

After the formal developments done so far, in what fol-
lows we present the numerical results for the four Nakanishi

weight functions. For our purpose we study the dependence
on z of Gi(γ, z) for γ values of 0.45 and 0.75 GeV2, which
are within the scale of the mass poles of the dressed quark
propagator and running mass function. The results are pre-
sented in Figs. 2 and 3. The teeth-like structure of the weight
functions is due to the overlap between the theta functions
present in the functionF (γ, z; µ,mu′), which are computed
over the masses of the quark propagator poles, weighted by
the coefficientsCi;jk from Eq. (21), containing the residue of
the functionsA(k2) andB(k2) in the propagator. The differ-
ent signs in the residue factorsEi andDi, which come with
Ci;jk are reflected in the jumping of the signs ofGi whenz
is varied, such behavior would be softened if smooth spectral
functions associated with the quark propagator are in place,
however if the positivity relations are to be violated an os-
cillating pattern should be expected for the Nakanishi weigth
functions.

We observe in Figs. 2 and 3 that allGi(γ, z = ±1) van-
ish due to the property ofF (γ, z = ±1;µ, µ′) = 0, which
is essential to ensure that the pion valence light-front wave
function has the correct support in the longitudinal momen-
tum fraction, vanishing at the end-points. TheGi are quite
sensitive to the variation ofγ from 0.45 to 0.75 GeV2, which
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reflects the relevance of the infrared physics of QCD to form
the pion bound state, and responsible to give mass to the
dressed quarks from the DCSB mechanism. Essentially, the
observed symmetry properties ofGi with z can be traced
back to the charge conjugation symmetry by the exchange
of the quark and antiquark in the pion, as in our model theu
andd quarks are identical with respect to their self-energies.

Finally, we should mention that the four weight func-
tions analyzed in this contribution can be used to describe
the scalar functions associated with the decomposition of the
Bethe-Salpeter amplitude in the usual orthogonal basis of
Dirac operators (seee.g. [9, 10]), and this will be covered in
a future work, as well as the pion valence wave function [11]
and momentum distributions [12], which can be written in
terms of the Nakanishi weight functions provided here.
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