
Suplemento de la Revista Mexicana de Fı́sica3 0308017 (2022) 1–5

Nonlinear Regge trajectories in the context of bottom-up holography
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Motivated by the non-holographic phenomenology, where the mesonic constituent mass breaks linearity in Regge trajectories, we discuss
how to implement nonlinear Regge trajectories by deforming the static (monoparametric) quadratic dilaton into a non-quadratic one. This
deformation adds an extra parameter into the dilaton, which measures the constituent mass effect, accounting for nonlinearity in the hadronic
trajectory. We applied this model to the description of the isovector multiplet spectrum. The set of isovector parameters defines a set of
hadronic calibration curves for the dilaton slope and linearity deviation parameter, allowing us to extrapolate the model to other vector states,
such as heavy-light mesons or vector non-qq̄ hadrons. In other words, this approach allows us to consider the hadronic inner structure by
modifying the dilaton profile.
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1. Introduction

One of the most interesting problems in non-perturbative
QCD is hadronic spectroscopy. The existence of hadronic
bounded states is direct evidence of confinement. These
emerging hadronic spectra are taxonomically organized in
structures calledRegge Trajectories(RT). Each known
hadronic state belongs to a given trajectory, defined in its
quantum numbers: radial or angular momentum [1,2].

Confinement emerges at the holographic bottom-up level
due to breaking the conformal symmetry slightly at the bulk
[3]. In pure AdS, free normalizable modes form a continuous
Eigenspectrum. By deforming the background AdS geom-
etry [4, 5] or adding a dilaton field [3], we can obtain dis-
crete eigenspectra, dual to hadronic Regge trajectories at the
boundary. This manuscript will explore the latter: by using a
dilaton field in the bulk action, we will generate a radial mass
spectrumM2

n(n), wheren is the radial quantum number, dual
to hadronic RTs.

This work is organized as follows: first, in Sec. 2, we
will give a brief discussion about confinement emergence
and AdS geometry to motivate the bottom-up AdS/QCD idea.
Then, we move to Sec. 3, where we will introduce the holo-
graphic non-linear RT from a static quadratic dilaton defor-
mation, following Ref. [6]. We will test our approach with the
isovector meson family. Then, in Sec. 4, we will apply this
idea to other mesonic species as the vector kaons and vec-
tor heavy-light mesons. We will also use this non-quadratic
dilaton idea to describe holographically the vector tetraquark
candidate [7]Zc(3900) by analyzing its inner structure. Fi-
nally, in Sec. 5, we conclude our work.

2. AdS space, Confinement and Hadrons

In its original form, AdS/CFT does not hold with the idea of
confinement. Normalizable free bulk fields acquire a continu-
ous spectrum since the associated Schrodinger-like potential
does not produce bounded states, a clear signal of confine-
ment emergence. We have to break the bulk conformal in-
variance softly to circumvent this issue. We can deform the
bulk geometry or introduce extra bulk fields to do so. In this
manuscript, we will follow the latter.

As it was proved in Ref. [3], by including a static dilaton
Φ(z) in the AdS bulk action

IHadron=
∫

d5x
√−g e−Φ(z) LHadron, (1)

we can obtain a discrete spectrum, which is dual to the
hadrons living at the boundary. The Lagrangian density
LHadron carries all of the holographic information concern-
ing hadrons at the conformal boundary. Thus, equations of
motion coming fromLHadronwill allow us to construct Regge
Trajectories (RT) as their mass eigenvalues.

Following this idea, we will start from the Poincare patch
metric, defined as

dS2 =
R2

z2

[
dz2 + ηµν dxµ dxν

]
, (2)

where R is the AdS curvature radius,ηµν is the four-
dimensional Minkowski metric andz is the holographic co-
ordinate. In this geometry, the conformal boundary lies at
z → 0 [8].
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3. Non-linear Regge Trajectories

Regge trajectories (RT) are defined as a taxonomic form to
systematically organize hadronic masses in their quantum
numbers, such as radial number, angular momentum, or spin.
In general, Regge trajectories can be written as

M2
n = A (n + B)ν

, (3)

whereA is the Regge slope,B is the intercept, andν is the
linearity of the trajectory. The Bethe-Salpeter analysis makes
it possible to connect the linearity with the constituent mass,
implying that in the massless limit,ν → 1.

Holographically, RTs emerge from the eigenvalue prob-
lem −ψ′′ + V (z) ψ = M2

n ψ, calculated with the
Schr̈odinger-like potential defined as

V (z) =
1
4

(
β

z
+ Φ′ (z)

)2

+
1
2

(
β

z2
− Φ′′(z)

)
+

M2
5 R2

z2
, (4)

whereβ = −3 + 2 S defines the hadronic spinS, R is the
AdS curvature radius, and the bulk field massM2

5 defines the
hadronic identity through the dimension∆ of the operator
creating hadrons. In general we have for the bulk mass

M2
5 R2 = (∆− S)(∆ + S − 4). (5)

Notice thatψ(z) is a normalizable field defined from the
bulk fields via the so-calledBogoliubov transformation[3,6].
This normalizableψ(z) mode is dual to hadrons of spinS at
the boundary. In our particular case, we will focus on the
radial isovector family (ω, φ, J/ψ andΥ mesons), character-
ized by the quantum numbersIG JPC = 0−(1−−). Holo-
graphically, the isovector family is defined by the following
parameter choice:M5 = 0 andβ = −1.

As it was proved in [3], when the dilaton is chosen to
be quadratic,i.e., Φ(z) = κ2 z2, the holographic trajectory
is linear, implyingν = 1. In this formalism,κ defines the
Regge slope and carries energy (GeV) units.

Following the Bethe-Salpeter frame [1,9], non-vanishing
constituent quark massesmq cause the trajectory linearity to
deviate from one. Furthermore, whenmq → ∞, we get
ν → 2/3.

Holographically, this phenomenology is reflected in the
dilaton profile deformationΦ(z) = (κ z)2−α, where linear-
ity in RTs is recovered whenα = 0, implying massless con-
stituent quarks. When the constituent mass is increased,α
increases also. Table I summarizes our holographic results
compared with experimental data (PDG) [10].

TABLE I. Summary of results for different families of isovector radial mesonic states considered in this work. All of the mass spectra
displayed in this table are calculated with the parameters mentioned on each sub-table header, using (4) with the deformed dilatonΦ(z) =
(κ z)2−α. The Regge trajectories are also presented in units of GeV2. The last column on each set of data is the relative error per state.
Experimental results are read from PDG [10].

ω with α = 0.04 and κ = 498 MeV φ with α = 0.07 and κ = 585 MeV

n MExp (MeV) MTh (MeV) R. E. (%) n MExp (MeV) MTh (MeV) R. E. (%)

1 782.65± 0.12 981.43 25.4 1 1019.461± 0.016 1139.43 11.8

2 1400− 1450 1374 3.6 2 1698± 20 1583 5.8

3 1670± 30 1674 0.25 3 2135± 8± 9 1921 10

4 1960± 25 1967 1.7 4 Not Seen − −
5 2290± 20 2149 6.2 5 Not Seen − −

M2 = 0.9514(0.012 + n)0.9798 with R2 = 0.999 M2 = 1.268(0.0244 + n)0.9650 with R2 = 0.999

ψ with α = 0.54 and κ = 2150 MeV Υ with α = 0.863 and κ = 11209 MeV

n MExp (MeV) MTh (MeV) R. E. (%) n MExp (MeV) MTh (MeV) R. E. (%)

1 3096.916± 0.011 3077.09 0.61 1 9460.3± 0.26 9438.5 0.23

2 3686.109± 0.012 3689.62 0.1 2 10023.26± 0.32 9923.32 0.78

3 4039± 1 4137.5 2.44 3 10355± 0.5 10277.2 0.75

4 4421± 4 4499.4 1.77 4 10579.4± 1.2 10558.6 0.19

5 Not Seen − − 5 10889.9+3.2
−2.6 10793.5 0.88

6 Not Seen − − 6 10992.9+10.0
−3.1 10995.7 0.03

M2 = 8.07(0.287 + n)0.6315 with R2 = 0.999 M2 = 76.511(0.901 + n)0.2369 with R2 = 0.999
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TABLE II. Summary of results for the vector kaonK∗ radial mesonic states, withI(JP ) = 1/2(1−). The last column is the relative error
per state. Notice that we also show the linear and non-linear radial experimental RTs, altogether with the theoretical fit for the sake of clarity.
The values ofκ andα are extrapolated from Eqs. (6) and (7). See [6] for further details. Experimental results are read from PDG[10].

K∗ with m̄ = 413 MeV, α = 0.055, and κ = 531.24 MeV

n State MExp (MeV) MTh (MeV) R. E. (%)

1 K∗(892) 895.55± 0.8 1038.4 16.2

2 K∗(1410) 1414± 15 1451.0 2.6

3 K∗(1680) 1718± 18 1754.5 2.1

Experimental Linear R. T.: M2 = 1.075(−0.2157 + n) with R2 = 0.9992.

Experimental Non-Linear R. T.: M2 = 1.157(−0.6102 + n)0.718 with R2 = 1.

Theoretical Non-Linear R. T.: M2 = 1.175(−0.0911 + n)0.902 with R2 = 1.

TABLE III. Summary of results for vector heavy-light mesonic states contrasting our theoretical results with the available experimental data.
The last column is the relative error per state. Experimental results are read from PDG [10]. The values ofκ andα are extrapolated from
Eqs. (6) and (7). See [6] for further details.

State I(JP ) q1 q2 m̄ (MeV) κ (MeV) α MExp (MeV) MTh (MeV) R. E. (%)

K∗(782) 1/2(1−) d s̄ 413 531.24 0.055 895.55± 0.8 1038.4 16.2

D∗0(2007) 1/2(1−) c ū 943 1070.8 0.261 2006.85± 0.05 1902.5 5.20

D+0(2010) 1/2(1−) c d̄ 945 1073.6 0.262 2010.26± 0.05 1906.4 5.16

D∗+
s 0(??) c s̄ 1018 1179.1 0.296 2112.2± 0.4 2051.7 2.86

B∗+ 1/2(1−) u b̄ 2533 4681.2 0.800 5324.70± 0.22 4561.2 14.3

B∗0 1/2(1−) d b̄ 2535 4687.3 0.801 5324.70± 0.22 4564.4 14.27

B∗0
s 0(1−) s b̄ 2608 4901.2 0.809 5415+1.8

−1.5 4683.0 13.52

4. Other hadronic families

The parameters used to describe the isovector family,i.e., κ
andα, define arunning behaviorwith the constituent mass

α(m̄) = 0.8454− 0.8485 e−0.4233 m̄2
, (6)

κ(m̄) = 15.21− 14.81 e−0.0524m̄2
. (7)

Thus, if we properly determine a consistent parametriza-
tion for the constituent mass, we can extrapolate the RTs for
other hadronic species.

In this spirit, we will define the following parametriza-
tion for constituent masses, regarding the constituent type, as
follows

mcons=
quarks∑

i

P q
i mi

+
gluons∑

i

P g
i mg+

meson cores∑

i

PM
i mM , (8)

where we are considering hadronic structures made of
quarks, gluons and meson cores, as in the non-qq̄
hadrons. Notice thatP constituent

i defines the probability
to have a particular constituent inside the hadron, thus

∑
i,constituentP

constituent
i = 1, andmconstituentis the constituent

mass.
We will apply these conditions to the heavy-light meson

sector and to possible tetraquark structures.

4.1. Vector Kaons

Vector kaons, identified asI(JP ) = 1/2(1−), with S = ±1
and C = B = 0, are constructed by consideringP g

i =
PM

i = 0. Thus, the constituent mass̄m is given by

m̄K∗ =
ms + md

2
. (9)

Using this constituent mass trigger in Eqs. (6) and (7) we
calculate the parametersα andκ for the vector kaons. As in
the unflavored case, the bulk mass is fixed toM2

5 R2 = 0.
Results in this case are summarized in Table II.

4.2. Heavy-Light vector mesons

In the case of the heavy-light sector, we considerP g
i =

PM
i = 0. Thus, the constituent mass̄m contribution is fixed

as the average constituent quark mass. Therefore, we have

m̄HL =
mH + mL

2
. (10)
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TABLE IV. This table summarizes the holographic results for three different structures for theZc(3900) candidate to tetraquark. As a
holographic prediction, the preferred structure is the hadronic molecule, with the smallest relative error. Experimental results are taken from
PDG [10].

Holographic test for Zc(3900) with IG(JCP ) = 1+(1+−)

Experimental mass:3887.2± 2.3 MeV.

α = 0.539 and κ = 2151 MeV

∆ = 6 and m̄diquark-antidiquark

Theoretical mass:4004.8 MeV Relative error: 3.0%

∆ = 6 and m̄hadronic molecule

Theoretical mass:3816.3 MeV Relative Error:1.82%

∆ = 5 and m̄Hybrid meson

Theoretical mass:3721.9 MeV Relative error:4.24%.

With this constituent mass trigger, we can use Eqs. (6)
and (7) to calculate the non-quadratic dilaton parametersα
and κ. As in the case of isovector mesons, the bulk mass
M2

5 R2 = 0. Numerical results are exposed in Table III.

4.3. Tetraquark candidates

Another interesting possibility we can explore using the
(α, κ)-running Eqs. (6) and (7) is the holographic modeling
of non-q q̄ hadronic states.

At the holographic level, the only hadronic fingerprint we
have at hand is the bulk mass, which exclusively depends on
the constituent number. However, the bulk mass is not sensi-
tive to inner configuration. Thus, holographic tests of possi-
ble multiquark states are difficult. It is necessary to introduce
another observable that breaks this bulk massdegeneracy.In
our non-quartic dilaton proposal we can use the average con-
stituent mass (8) to explore these multiquark structures with
fixed number of constituent quarks.

Let us consider theZc(3900) meson withIG(JCP ) =
1+(1+−), which is a vector tetraquark candidate (See [7]
for further details). This particular state can be modeled
as a diquark-antidiquark pair, hadrocharmonium, hadronic
molecule or hybrid mesons.

These structures can be parametrized in terms of the con-
stituent mass equation as

m̄diquark-Antidiquark= m̄c, (11)

m̄hadronic molecule= 0.283mJ/ψ + 0.717 mρ, (12)

m̄hybrid meson= 0.49 mq 0.49mq̄ + 0.02 mG, (13)

where we have used̄mu(d) = 336 MeV, m̄c = 1550 MeV,

m̄G = 700 MeV, mJ/Ψ = 3077.9 MeV andmρ = 770 MeV
as constituent quark and core meson masses (see PDG [10]).
Numerical results for each structure are summarized in Ta-
ble IV. Further analysis concerning other non-qq̄ hadrons can
be found in [6].

In Table IV we have considered multiquark structures,
which have associated the∆ = 6 conformal dimension, and
gluonic excitations with∆ = 5. With these values of∆
we can compute the corresponding bulk mass using Eq. (5).
Our holographic analysis for theZc(3900) meson suggests
the hadronic molecule structure is preferred since its hadronic
mass has the smallest relative error.

5. Conclusions

In this work we have introduce a different dilaton profile to
address isovector meson masses,i.e., Φ(z) = (κ z)2−α. This
non-quadratic profile inducesnon-linear Regge Trajectories
at the conformal boundary. This non-linearity, measured with
the parameterν, defines(α, κ)−parameter running with the
hadronic constituent mass. This feature allows us to explore
vector kaons and heavy light systems with a single input pa-
rameter, the constituent massm̄, given in Eq. (8). The RMS
error obtained by fitting 27 vector meson states with 15 pa-
rameters is near to13%.
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