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Kaon and nucleon states with hidden charm
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In this talk we discuss the formation of exotic hadrons with hidden charm arising from three-body interactions. To be more specific, in the
strangeness sector, we predict the existence of a mesonic state,K∗(4307), which is dynamically generated from the three-body interactions
of the KDD̄∗ system, has a mass around4307 MeV and quantum numbersI(JP ) = 1/2 (1−). In the baryonic sector, we predict the
existence ofN∗ states, which are generated from the three-body interactions of theNDD̄∗ system, with masses around4400 ∼ 4600 MeV,
widths of2 ∼ 20 MeV and positive parity.
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1. Introduction

In the latest years, due to the available access to higher energy
regions, claims of observation of exotic states have increased,
drawing a lot of attention to the subject. A classical example
of these exotic states are the so calledX, Y andZ families
(see,e.g., Refs. [1–5]).

Interestingly, all heavy exotic hadrons found experimen-
tally in the recent years have two characteristics in common:
1) the meson states can be interpreted as tetraquarks or as
states obtained from the dynamics involved in two-meson
systems, while the baryon states can be understood as pen-
taquarks or as states originated from meson-baryon interac-
tions; 2) most states have hidden or explicit charm content
but somehow strangeness seems to miss the focus.

In this talk we present the results obtained for two dif-
ferent systems with hidden charm which we have studied:
KDD̄∗ and NDD̄∗. In the former case, such study was
motivated by the fact that theDD̄∗, KD, KD∗ subsystems
have attractive interactions in s-wave, generating the states
X(3872) and Zc(3900) (in case of theDD̄∗ interaction),
Ds0(2317) andDs1(2460) (from theKD andKD∗ inter-
actions). It is also interesting to note that considering all in-
teractions in s-wave, the quantum numbers of the generated
state would be compatible with aK∗, but with a mass be-
ing in the charmonium sector. Finding of such a state can
stimulate experimental studies of kaons which seem to have
stopped at3100 MeV [6], even though data at higher ener-
gies are available. In case of theNDD̄∗ system and the pos-

sible formation ofN∗ states with hidden charm, recently the
LHCb collaboration announced the existence of possible hid-
den charm pentaquarks with non-zero strangeness and mass
around4459 MeV [7]. Such masses are close to the thresh-
olds of theNDD̄∗/ND̄D∗ system. As mentioned above,
the interaction in theDD̄∗ subsystem is attractive, generating
the statesX(3782) andZc(3900). Interestingly, the interac-
tions in theND andND∗ subsystems are also attractive and
form, for example, the stateΛc(2595). In this way, it is quite
probable thatN∗ states with a three-body nature arise as a
consequence of the dynamics involved in theNDD̄∗ system.

2. Formalism

We are interested in two different systems constituted of three
hadrons. In order to study the dynamics of these systems we
can solve the Faddeev equation to obtain theT -matrix for the
system.

For a three-body system, if the third particleP3 is lighter
than the cluster composed of the two other particles (P1 and
P2), and we are looking for the possible formation of bound
states, we can rely on the fixed center approximation (FCA)
to solve the Faddeev equations. ConsideringN (K) asP3

for the NDD̄∗ (KDD̄∗) system, withDD̄∗ clustering as
X(3872) or Zc(3900), with isospin 0 or 1 respectively, both
our systems,NDD̄∗ and KDD̄∗, satisfy the above men-
tioned criteria, that is, for each of the systemsP3 is lighter
than the cluster, such that we can use the FCA to solve the
Faddeev equations.
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In the following, we are going to briefly present the for-
malism. More details can be found in Refs. [8,9].

Our goal is to obtain the three-bodyT -matrices for the
KDD̄∗ andNDD̄∗ systems. By using the FCA we are able
to decompose the amplitudeT as a sum of two partitions,T31

andT32, which satisfy the following coupled equations

T = T31 + T32,

T31 = t31 + t31GaT32,

T32 = t32 + t32GaT31. (1)

In Eq. (1), t31 andt32 are two-bodyt-matrices describing the
interactions in theKD(ND) andKD̄∗(ND̄∗) subsystems,
respectively, whileGa is the propagator of theP3 particle,
that is, the propagator ofK (N), in the cluster, and it is given
by

GK =
1

2Ma

∫
d3q

(2π)3
Fa(q)

q2
0 − q2 −m2

K + iε
,

GN =
1

2Ma

∫
d3q

(2π)3
mN

ωN (q)
Fa(q)

q0 − ω(q) + iε
. (2)

In Eq. (2), Fa is a form factor related to the molecular nature
of the cluster and can be written as [10–12]

Fa(q) =
1
N

∫

|p|,|p−q|<Λ

d3p fa(p)fa(p− q),

fa(p) =
1

ωa1(p)ωa2(p)
· 1
Ma − ωa1(p)− ωa2(p)

, (3)

with Ma being the mass of the cluster,N = Fa(q = 0) is
a normalization constant,Λ represents a cut-off∼700 MeV
andωai =

√
m2

ai + p2.
Further, to solve Eq. (1), we need thet31 and t32 two-

body t-matrices. To illustrate the method for calculating
them, we consider, for example, theKDD̄∗ system and first
determine the expression fort31 in terms of different isospin
contributions.

The KDD̄∗ system has three possibleK−cluster
isospin configurations: |KX, I = 1/2, I3 = 1/2〉,
|KZc, I = 1/2, I3 = 1/2〉 and |KZc, I = 3/2, I3 = 3/2〉.
Considering for instance the state|KX, I = 1/2, I3 = 1/2〉,
the amplitudet31 is given by

〈KX, I = 1/2, I3 = 1/2| t31 |KX, I = 1/2, I3 = 1/2〉 .
Remembering thatt31 is related to the interaction between
theK and theD, we need to express theKX state in terms
of the isospin of theKD subsystem. This can be done by
using Clebsch-Gordan coefficients to write

|KX, I = 1/2, I3 = 1/2 >= |KX, 1/2, 1/2〉

=
1
2

[
|KD, 1, 1〉 ⊗

∣∣∣∣D̄∗,
1
2
,−1

2

〉

− 1√
2

(|KD, 1, 0〉+ |KD, 0, 0〉)⊗
∣∣∣∣D̄∗,

1
2
,
1
2

〉]
. (4)

TABLE I. t31 amplitudes for theKDD̄∗ system in terms of the
two-bodyt-matrices for theKD subsystem.

KX KZc

KX 1
4

(
3tI=1

KD + tI=0
KD

) √
3

4

(
tI=1
KD − tI=0

KD

)

KZc

√
3

4

(
tI=1
KD − tI=0

KD

)
1
4

(
tI=1
KD + 3tI=0

KD

)

Using the preceding equation, thet31 amplitude for the
KX → KX transition in isospin1/2 can be written as fol-
lows

〈KX| t31 |KX〉 ≡ t1(11) =
1
4
(3tI=1

KD + tI=0
KD), (5)

where, to simplify the notation, we use the subscript11 to de-
noteKX → KX. In Eq. (5) tI=a

KD is the two-bodyt-matrix
for theKD subsystem with isospinI = a, wherea = 0, 1.
The systemKZc can also have total isospin1/2, thus, it can
couple toKX. This means that we also need to consider the
transitionsKX → KZc andKZc → KZc in order to ob-
tain t31. Repeating the process previously explained to get
Eq. (5), we can summarize the different contributions tot31
as presented in Table I.

Analogously, in case oft32 we obtain the same results as
in Table I but changingD → D̄∗ and adding a global minus
sign to the non-diagonal terms.

Similarly, the results for theNDD̄∗ system are com-
pletely analogous to those obtained for theKDD̄∗ system
since the same clusters are formed and bothK andN have
isospin1/2.

As we can see in Table I, to determinet31 and t32,
and thus solve Eq. (1), we need the two-bodyt-matrices
for theND/KD, ND̄/KD̄, ND∗/KD∗, ND̄∗/KD̄∗ sub-
systems. These amplitudes can be obtained by solving the
Bethe-Salpeter equation

tAB = VAB + VABGABtAB , (6)

whereGAB is the two body loop function for a channel made
of hadronsA andB, andVAB is the corresponding kernel,
which is obtained from an effective Lagrangian based on ap-
propriate symmetries. The loop functionGAB needs to be
regularized either with cut-off or with dimensional regular-
ization.

To determine theKD, KD̄∗ two-body t-matrices, we
have considered the following effective Lagrangian based on
heavy-quark spin symmetry [16–18]

L =
1

4f2

{
∂µP [φ, ∂µP ] P † − P [φ, ∂µ] ∂µP †

}
, (7)

whereP andφ are given by

P =
(
D0 D+ D+

s

)
, (8)
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φ =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η


 . (9)

In the case of theND/ND̄∗/ND∗/ND̄ two-body t-
matrices, we consider two models: the first one is based on
theSU(4) and heavy-quark spin symmetries [13, 14], while
the second one is based on theSU(8) spin flavor symme-
try [15].

It is interesting to note that different to theKD andKD∗

systems, theND and ND∗ systems can be coupled in s-
wave: the stateND (ND∗) in s-wave,i.e., orbital angular
momentumL = 0, has spin-parityJP = 1/2− (JP =
1/2−, 3/2−). To consider this fact, we follow Ref. [14]
and obtain the transition amplitudeDN → D∗N through
box diagrams describing the processesND → ND and
ND∗ → ND∗ (for more details we refer the reader to Ref.
[14]).

In case of the model based on theSU(8) spin flavor sym-
metry, theDN → D∗N transition is already included in the
SU(8) effective Lagrangian used in Ref. [15].

3. Results

In Figs. 1 and 2 we show the results obtained for|T |2 as
a function of

√
s for the KDD̄∗ system and the configura-

tions KX andKZc. As we can see, in both cases, a peak
around4300 MeV shows up in the processesKX → KX
andKZc → KZc, consideringKX andKZc as coupled
channels when solving Eq. (1). In the KZc case, we have
included the width of theZc state by making the following
transformationM → M − iΓ/2, with Γ ∼ 28 MeV, in the
corresponding form factor of Eq. (3). We have also varied the
cut-off present in Eq. (3) from 700 to 750 MeV, but as can be
seen in the Figs. 1 and 2 the results do not depend strongly
on the cut-off.

FIGURE 1. Modulus squared of the three-bodyT -matrix for the
transitionKX → KX considering the coupling between theKX
andKZc channels.

FIGURE 2. Modulus squared of the three-bodyT -matrix for the
transitionKZc → KZc considering the coupling between theKX
andKZc channels.

FIGURE 3. |T |2 for the transitionNZc → NZc with I(JP ) =

1/2 (1/2+) as a functions of
√

s.

In |T |2 of theKX → KX transition shown in Fig. 1 we
can also see a peak around4375 MeV, which is related to the
threshold of the three-body system.

We have also computed|T |2 for the transitionKZc →
KZc with isospin3/2 but no signal of formation of a bound
state is found.

In Figs. 3-6, we show the results for|T |2 versus
√

s
for theNDD̄∗ system as obtained with the inputs from the
model of Refs. [13, 14]. In case of Figs. 3 and 6, the re-
sults shown correspond to the transitionsNX → NX and
NZc → NZc, respectively, withI(JP ) = 1/2 (1/2−),
while Figs. 4 and 5 show the corresponding results in case
of I(JP ) = 1/2 (3/2+). In all casesNX and NZc are
treated as coupled channels. In all four graphics we can see
that there are two peaks close to4400 MeV and 4550 MeV,
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FIGURE 4. |T |2 for the transitionNX → NX with I(JP ) =

1/2(3/2+) as a functions of
√

s.

FIGURE 5. |T |2 for the transitionNZc → NZc with I(JP ) =

1/2 (3/2+) as a functions of
√

s.

respectively. Varying the cut-off of Eq. (3) from 700 MeV
to 770 MeV causes a small shift, about3 − 5 MeV, on the
masses of the states obtained. Similar results are found when
using the model of Ref. [15] to calculate the input two-body
amplitudes. The results obtained with different models for
the two-body interactions (SU(4) heavy-quark spin symme-
try model orSU(8) model) as well as the different cut-off

FIGURE 6. |T |2 for the transitionNX → NX with I(JP ) =

1/2 (1/2+) as a functions of
√

s.

TABLE II. Masses and widths of the three-body states found in the
study of theNDD̄∗ system.

Spin-parity Mass(MeV) Width (MeV)

1/2+ 4404− 4410 2

1/2+ 4556− 4560 ∼ 4− 20

3/2+ 4467− 4513 ∼ 3− 6

3/2+ 4558− 4565 ∼ 5− 14

used in the form factor computation provide us uncertainties
in the masses and widths of the states which we summarize
in Table II.

4. Conclusions

From our study we can conclude that adding a Kaon or a Nu-
cleon to a cluster formed byDD̄∗ generates states with hid-
den charm and a three-body molecular nature, that is, states
whose inner structure can be described by the hadronic in-
teractions without considering the quarks and gluons interac-
tions.

Our findings for theKDD̄∗/KD̄D∗ system imply that a
K∗ meson around4307 MeV should be observed in experi-
mental investigation, while for theNDD̄∗ systemN∗ states
with JP = 1/2+, 3/2+ and masses around4400−4600 MeV
are predicted.
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