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Proton image and momentum distributions on the light-front
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The proton has been studied in a fully dynamical three-body model on the light-front. The model is based on the concept of a strongly
interacting diquark, either bound or virtual, which is generated from a zero-range interaction between the two active quarks. The obtained
results for the Dirac electromagnetic form factor and also the density in the Ioffe-time space are shown and discussed. Additionally, we
present results for the parton distribution function of the proton.
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1. Introduction

The wave function of the proton on the null-plane,x+ =
t + z = 0, can in the Fock space be expressed in terms of
its fundamental degrees of freedom (i.e. strongly interacting
quarks and gluons), where each contribution is associated
with a well-defined probabilility. From the light-front (LF)
wave function (seee.g. [1]) many important physical quan-
tities can be obtained,e.g.the electromagnetic form factors,
the parton distribution function (PDF), the generalized parton
distributions (GPDs) and the transverse momentum distribu-
tion (TMDs). Furthermore, the wave function in the config-
uration space associated with the null-plane, spanned by the
transverse momentum coordinates and the Ioffe times, is ob-
tained through a Fourier transform of the corresponding one
in momentum space (seee.g.[2]).

However, it is worthy to point out that the light-front hy-
perplane and the observables associated with it are solely de-
fined in Minkowski space. Consequently, they cannot be di-
rectly obtained from calculations which resides in Euclidean
space, such as Lattice QCD. For this reason studies of the
proton performed directly in Minkowski space are important.
One example of such an approach is the Basis Light-Front
Quantization [3] which recently was adopted to study the pro-
ton [4].

In this work the proton is studied within a three-body
model on the null-plane, by introducing a strongly interact-
ing diquark (either bound or virtual one) where the two active
quarks are interacting through contact interaction. The three-
body LF and Bethe-Salpeter (BS) equations for the zero-
range interaction were introduced already in 1992 by Fred-
erico [5]. The valence LF equation was then further studied
by Carbonell and Karmanov in Ref. [6]. More recently, the
three-body BS equation including the infinite number of Fock
components in the BS amplitude was solved by Ydreforset
al. in Euclidean space [7] and in Minkowski space [8,9].

In this contribution we will present some results for the
Dirac electromagnetic form factor and the PDF, and also for

the Ioffe-time distribution. A more comprehensive treatment
of the adopted formalism and also much more results from
this study can be found in Ref. [10].

2. Brief summary of the three-body model

The model of the proton adopted in this work is based on
the three-boson model introduced by Frederico in the seminal
work [5], and is based on the zero-range interaction between
the quarks. The valence LF wave function then reads [9]

Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)

=
Γ(x1,~k1⊥) + Γ(x2,~k2⊥) + Γ(x3,~k3⊥)
√

x1x2x3M2
0 (x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)

, (1)

where

M2
0 (x1,~k1⊥, x2,~k2⊥, x3,~k3⊥) =

~k2
1⊥ + m2

x1

+
~k2

2⊥ + m2

x2
+

~k2
3 + m2

x3
. (2)

Furthermore,Γ(xi, ki⊥) (with i = 1, 2, 3) denotes the Fad-
deev component of the vertex function of the three-body
bound state which obeys the integral equation [5,10]

Γ(x, k⊥) =
F(M2

12)
(2π)3

1−x∫

0

dx′

x′(1− x− x′)

×
∞∫

0

d2k′⊥
Γ(x′, k′⊥)

M̂2
0 −M2

N

, (3)

with

M̂2
0 = M2

0 (x,~k⊥, x′,~k′⊥, 1− x− x′,−(~k⊥ + ~k′⊥)). (4)
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TABLE I. Constituent mass, scattering length, di-quark mass and three-body mass for the two considered models in this work. Additionally,
it is shown the computed radius defined asr1 = ~c

√−6[dF1/dQ2]|Q2=0 whereF1 denotes the valence Dirac form factor.

Model m [MeV] a [m−1] M2 [MeV] MN [m] rF1 [fm]

I 317 -1.84 ... 2.97 0.97

II 362 3.60 681 2.60 0.72

and the two-quark scattering amplitude reads

F(M2
12) =

Θ(−M2
12)

1
16π2y log 1+y

1−y − 1
16πma

+
Θ(M2

12)Θ(4m2 −M2
12)

1
8π2y′ arctany′ − 1

16πma

. (5)

Here,a denotes the scattering length and the effective two-
quark off-shell mass squared

M2
12 = (1− x)M2

N − k2
⊥ + (1− x)m2

x
. (6)

As it was shown in Appendix A of Ref. [10], Eq. (3)
can be derived by projecting the three-boson Bethe-Salpeter
equation (seee.g.Ref. [9]) onto the light-front by using the
quasipotential technique (seee.g.[11,12]).

In the present work, Eq. (3) was solved by adopting a bi-
cubic spline decompostion, for more details see [9]. We stud-
ied the proton within two possibilities for diquarks, namely
an unbound case witha < 0 and a bound one witha > 0,
corresponding to the two parameter sets in Table I. In these
calculations the scattering lengtha was fitted to reproduce the
global behaviour of the Dirac form factor atQ2 6 1 GeV2,
which will be discussed in the next section.

3. Valence Dirac form factor and parton dis-
tribution function

The valence contribution to the Dirac form factor of the pro-
ton takes the form

F1(Q2) =





3∏

i=1

∫
d2ki⊥
(2π)2

1∫

0

dxi



 δ

(
1−

3∑

i=1

xi

)

× δ

(
3∑

i=1

~kf
i⊥

)
Ψ†3(x1,~k

f
1⊥, ...)Ψ3(x1,~k

i
1⊥, ...), (7)

whereQ2 = ~q⊥ · ~q⊥ and the magnitudes of the momenta of
the final (f ) and initial (i) states are given by

|~kf(i)
i⊥ |2 =

∣∣∣∣~ki⊥ ± ~q⊥
2

xi

∣∣∣∣
2

, i = 1, 2

|~kf(i)
3⊥ |2 =

∣∣∣∣±
~q⊥
2

(x3 − 1)− ~k1⊥ − ~k2⊥

∣∣∣∣
2

. (8)

Here− is to be used forf and+ for i.

FIGURE 1. The calculated Dirac form factor (solid and dashed
lines) compared with the empirical fit (dot-dashed line) of
Ref. [13].

The calculated Dirac form factor for the two parameters
sets of Table I is compared with the experimental fit of [13]
in Fig. 1. It is seen that both parameter sets give a reason-
able reproduction of the experimental data atQ2 < 1 GeV2.
However, the model II with a bound diquark give a better
agreement for larger values of the momentum transfer. The
calculated value of the radius of 0.72 fm (see Table I) is also
in fair agreement with the experimental one of 0.757 fm [14].

The single parton distribution function (PDF) is given by

f1(x1) =
1

(2π)6

1−x1∫

0

dx2

1∫

0

dx3δ(1− x1 − x2 − x3)

×
∫

d2k1⊥d2k2⊥d2k3⊥δ(~k1⊥ + ~k2⊥ + ~k3⊥)

× |Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)|2

= I11 + I22 + I33 + I12 + I13 + I23, (9)

and obeys the relation

1∫

0

f1(x1)dx1 = F1(0) = 1. (10)
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FIGURE 2. The contributions to the PDF for Model I (left panel) and Model II (right panel).

In Eq. (9) the Faddeev contributions take the forms

Iii =
1

(2π)6

1−x1∫

0

dx2

1∫

0

dx3

x1x2x3
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×
∫
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× [Γ(xi,~ki⊥)]2

(M2
N −M2

0 (x1,~k1⊥, x2,~k2⊥, x3,~k3⊥))2
, (11)

and fori 6= j

Iij =
2

(2π)6

1−x1∫

0

dx2

1∫

0

dx3

x1x2x3
δ(1− x1 − x2 − x3)

×
∫
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(M2
N −M2
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. (12)

Moreover, due to the symmetry of the wave function with re-
spect to the exchange of particles 2 and 3, one has the equal-
ities

I22 = I33, I12 = I13. (13)

In the two panels of Fig. 2, the computed contributions
to the PDF are shown for models I and II, respectively. In
each panel the total PDF is also displayed with a thick line.
As it is seen in the left panel, fora = −1.84/m, the differ-
ent contributions have similar shapes. On the contrary, for
the bound diquark case in the right panel, they show quite
different behaviours. Also, a significant damping is seen for
x1 > 0.7. As was pointed out in Ref. [10], this is related to
the fact that fora > 0 the lowest energy solution is unphys-
ical, i.e. havingM2

N < 0. The lowest physical state is then
an excited state and the vertex functionΓ(x, k⊥) has nodes.
The unphysical ground state can be removed by introducing
a momentum cut-offµ ∼ 1 GeV. Calculations with such a

cut-off are already under development and will be published
elsewhere.

4. Ioffe-time image of the proton

The proton wave function can also be written in the configu-
ration space related to the null plane(x+ = 0), in terms of
the transverse variablesbi⊥ and the Ioffe-times̃xi = b−i p+.
The valence LF wave function in this representation is ob-
tained as a Fourier transform of the momentum-space one,
i.e.

Ψ̃3(x̃1,~b1⊥, ...) =

{
3∏

i=1

∫
d2ki⊥
(2π)2

1∫

0

dxi

2π
eix̃ixi−i~bi⊥·~ki⊥

}

× δ

(
1−

3∑

i=1

xi

)
δ

(
3∑

i=1

~ki⊥

)
Ψ3(x1,~k1⊥, ...). (14)

The image of the proton is then provided by the probability
density |(Ψ3(x̃1,~b1⊥, ...)|2. In Ref. [15] such a study was
done for the pion.

In this work we consider for simplicity the special case:

Φ(x̃1,x̃2) = Ψ̃3(x̃1,~0⊥, x̃2,~0⊥)

=

1∫

0

dx1e
ix̃1x1

1−x1∫

0

dx2

1∫

0

dx3

× δ(1− x1 − x2 − x3)eix̃2x2φ(x1, x2, x3), (15)

with the distribution amplitude

φ(x1, x2, x3) =
∫

d2k1⊥d2k2⊥d2k3⊥δ(~k1⊥ + ~k2⊥ + ~k3⊥)

×Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥). (16)

In Fig. 3, we show the square of the magnitude of the
wave function with respect tõx1 for two values ofx2, namely
x̃2 = 0 andx̃2 = 10, for the two considered parameter sets.
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FIGURE 3. The modulus squared of the Ioffe-time distribution ver-
susx̃1 for two fixed values of̃x2, i.e. x̃2 = 0 andx̃2 = 10. Results
are displayed for Model I (blue lines) and Model II (red lines).

The results for Model I and II are almost the same. Addition-
ally, for x̃2 = 10 and x̃1 > 10, a dramatic decrease of the
amplitude is seen. An oscillatory pattern at larger values of
x̃1 can also be noticed. We see an exponential damping of the
probability density versus the relative difference between the
Ioffe time of the two quarks. One would expect this effect to
be even more significant if confinement is included, since it
is more effective at larger distances.

5. Conclusion

In this work we have studied the proton on the null plane
(x+ = 0) in a fully dynamical three-body model in the
valence approximation, based on a contact interaction be-
tween the quarks. The diquark picture has been implemented
through the assumption of a pole in the two-quark scattering
amplitude, corresponding to either a virtual or bound two-
body state. We have computed the Dirac electromagnetic
form factor and also the parton distribution function. We also
performed the Fourier transform to obtain the wave function
in terms of the Ioffe-time variables, which together with the
transverse variables provide the image of the proton.

In the near future, we plan to improve our model by intro-
ducing a momentum cut-off to remove the unphysical ground
state which occur in the model for the bound diquark case.
We will also attempt to introduce the spin degree-of-freedom
in the model.
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