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The light-quark mass dependence of the nucleon axial charge
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The light-quark mass dependence of the nucleon axial isovector charge (gA) has been analysed up to NNLO,O(p4), in relativistic chiral
perturbation theory using extended-on-mass-shell renormalization, without and with explicit∆(1232) degrees of freedom. In the∆-less
case at this order, thegA(Mπ) dependence of lattice QCD simulations cannot be reproduced using low energy constants extracted from
pion-nucleon phenomenology. A good description of these LQCD data is only accomplished in the theory with∆. From this fit we obtain
gA(Mπ(phys)) = 1.260 ± 0.012 close to the experimental results andd16 = −0.88 ± 0.88 GeV−2 in agreement withπN → ππN . The
sizeable errors are of theoretical origin, reflecting the difference betweenO(p3) andO(p4) at largeMπ.
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1. The axial charge in baryon ChPT

The axial isovector chargegA is a fundamental property of
the nucleon, associated to the difference in the spin fractions
carried byu andd quarks. The matrix element of the ax-
ial isovector currentAa

µ(x) = q̄(x) (γµγ5τ
a/2) q(x), with

q = (u, d)T the quark doublet, taken between nucleon states,
can be written as

〈N(p′)|Aa
µ(0)|N(p)〉 = ū(p′)

×
[
γµFA(q2) +

qµ

2mN
FP (q2)

]
γ5

τa

2
u(p) , (1)

whereτa are the Pauli matrices andq = p′−p is the momen-
tum transferred to the nucleon;p2 = p′2 = m2

N . FA(q2) and
Fp(q2) are the nucleon axial and induced pseudoscalar form
factors. The axial charge is nothing butgA ≡ FA(q2 = 0).
Accurately extracted from neutronβ decay (see Ref. [1] for
a recent determination),gA is a benchmark for lattice QCD
(LQCD) studies [2].

Chiral perturbation theory (ChPT) is the effective theory
of QCD at low energies. It allows to determine the light
(u, d) quark mass dependence of hadronic observables in
terms of low-energy constants (LECs) and perform model-
independent extrapolations of LQCD to the physical point.
ChPT can also account for finite volume and lattice spac-
ing corrections in a systematic way [3, 4]. Moreover, it has
proved helpful to deal with the contamination from excited
states [5–7]. The synergy between ChPT and LQCD can also
be used to determine LECs which are difficult to access ex-
perimentally. This is the case ofd16, present in theO(p3) part
of theπN Lagrangian. This parameter has been regarded as
one of the most important sources of uncertainty in the quark
mass dependence of nuclear properties such as ground-state
and binding energies [8–10]. On the other hand, this LEC
dictates the slope of the light-quark mass (or, equivalently,

pion-mass,Mπ) dependence ofgA close to the chiral limit.
Therefore, it is natural to extract it from LQCD at low pion
masses (see [11] and references therein).

In order to describe theMπ dependence ofgA and ex-
tract d16, we have calculated the axial charge in relativis-
tic baryon ChPT (BChPT) up to NNLO with explicit∆.
We use the extended-on-mass-shell (EOMS) renormalization
scheme [12], so that not only the power counting, but also the
analytic properties of the loops are preserved.

Up to NNLO≡ O(p4) ≡ O(M3
π) with explicit ∆, gA can

be cast as

gA = g̊A + 4d16M
2
π + g

(3) /∆
A(loop)(̊gA;Mπ)

+ g
(3)∆
A(loop)(̊gA, hA, g1; Mπ)

+ g
(4) /∆
A(loop)(̊gA, c1, c2, c3, c4;Mπ)

+ g
(4)∆
A(loop)(̊gA, hA, g1, c1, a1, b4, b5;Mπ) . (2)

Details about the relevant terms in the Lagrangian, Feynman
diagrams and renormalization can be found in Ref. [11].

2. Pion mass dependence of the axial coupling
using LECs from πN scattering

Before extracting the LECs from LQCD, we investigate
how well do the LECs extracted from experiments describe
gA(Mπ). In Ref. [13], elasticπN and inelasticπN −→
ππN scattering have been studied up toO(p4) in covariant
ChPT using a modified version of the EOMS approach [14].
The c1−4 LECs that entergA(Mπ) at O(p4) in the ∆-less
model were extracted, together withd16, owing to the inclu-
sion of πN → ππN in the combined analysis. We have
converted these LECs from their modified EOMS to the con-
ventional one (details in Ref. [11]). The chiral limit axial cou-
pling, g̊A, is determined fromgA(Mπ=Mπ(phys)=135 MeV,
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FIGURE 1. gA(Mπ) at O(p3) (red) andO(p4) (blue) using
phenomenological input from Ref. [13]. The LQCD data from
CalLat 18 [15] (black circles), Mainz 19 [16] (red crosses),
RQCD 19 [7] (green triangles) and NME 21 [17] (blue squares) are
shown at finitea values, without (small) discretization corrections.

TABLE I. g̊A andd16 used to predictgA(Mπ) in the /∆ model.

O(p3) O(p4)

g̊A 1.251± 0.051 1.089± 0.030

d16 (GeV−2) −2.2± 1.1 −1.86± 0.80

g̊A, d16, ci) = gA(phys) = 1.2754(13)exp(2)RC [1]. The val-
ues ford16 and g̊A are given in Table I whilec1−4 are the
same as in the second column of Table II. Up to higher or-
ders, the pion decay constant and the nucleon mass in the
chiral limit are Fπ ' Fπ(phys) = 92.2 MeV and m̊ '
mN(phys) + 4c1M

2
π(phys), with mN(phys) = 939 MeV.

The obtainedgA(Mπ) atO(p3) andO(p4) are shown in
Fig. 1 together with recent LQCD determinations. 1σ error
bands from the LECs’ uncertainties are depicted. We assume
Gaussian-distributed errors. Correlations are neglected since
the uncertainty is clearly dominated by thed16 error.

The O(p3) agrees with the lattice determinations, al-
though the tension increases withMπ. On the contrary, it
is clear that theO(p4) prediction does not describe theMπ

dependence of LQCD data. We have checked that alternative
c1−4 determinations [18,19] do not reduce the disagreement.
This conflict between the light-quark mass dependence of
gA atO(p4) and phenomenology was already noted in non-
relativistic heavy-baryon (HB) ChPT [20, 21], and we have
shown that it is also present in the relativistic version of the
theory. This disagreement atO(p4) could be caused by an
accidental slow convergence ofgA in BChPT. On the other
hand, adding degrees of freedom (dofs) such as the∆ [21]
resonance might solve the problem. Some of the additional
LECs needed to obtaingA(Mπ) with explicit ∆ have not
been phenomenologically determined, so that we do not give

any prediction in this model. We do studygA with explicit ∆
in our own fits to LQCD in the next Sec. 3.

3. Analysis of LQCD data and LEC determi-
nation

3.1. Data set and fit strategy

Recent developments, in particular about excited-state con-
tamination, have led to LQCD results that agree with the
gA experimental value at the level of a few percent [2].
Therefore, we only have in our data set results with an im-
proved treatment of these effects. We analyse renormalized
{gi

A} data at different{M i
π, ai} values, wherea stands for

the lattice spacing, from CalLat 18 [15], Mainz 19 [16],
RQCD 19 [7] (withms ∼ ms(phys)) and NME 21 [17] (fit
{4Nπ, 3∗} averaged overZ1 andZ2 renormalizations). We
only consider large lattices (MπL ≥ 3.5), for which we can
neglect finite volume effects.

In order to evaluate the performance of BChPT atO(p3)
andO(p4) for gA(Mπ), and to extract̊gA and d16 LECs,
we perform fits to the ensemble of LQCD results introduced
above. For this purpose we define

χ2 =
∑

i

(
gA(M i

π, ai)− gi
A

)2

(∆gi
A)2

+ χ2
prior . (3)

Additionally, we account for discretization correc-
tions as gA(M i

π, ai) = gA(M i
π) + xja

nj

i , where
xj are free parameters, withj = 1, 2, 3, 4 for
{CalLat 18, Mainz 19, RQCD 19, NME 21}, respectively,
and then1,4 = 1, n2,3 = 2 are action specific. Let us
stress that these corrections are small and do not change the
extracted LECs, although they reduce theχ2/dof.

In order to improve the description of the data and re-
duce correlations [22], we assume naturalness for free LECs,
Λn−1 cn ∼ 1, and therefore we define:

χ2
prior =

∑

free LECs

(
Λn−1 cn

5

)2

; (4)

cn denotes a LEC ofO(pn) andΛ = 1 GeV∼ 4πFπ [23,24].
We anticipate that a prior for̊gA is superfluous, since it is tied
to a natural value by lowMπ data.

The large contribution ofO(p4) discussed in the previous
section indicates that the error associated with the truncation
of the chiral series should be included. Following [25] we
estimate it as:

|∆g
(n+1)
A | =max

{
Qn+1|g(0)

A |, Qn|∆g
(1)
A |,

..., Q|∆g
(n)
A |

}
, (5)

where∆g
(m)
A = g

(m)
A − g

(m−1)
A encompasses all the mono-

mials that start at orderm andQ is the expansion variable,
which in this case isQ = Mπ/Λ. Notice that in ourO(p3)
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fits we deliberately do not assume any information about
O(p4), and therefore the truncation error for these calcula-
tions is different than the one for theO(p4) case ([11] for
details).

Altogether, in Eq. (3) (∆gi
A)2 = (∆gi

ALQCD)2 +
(∆gAχ(M i

π))2. In this way, however, LQCD and truncation
errors are not independent. Therefore, following Ref. [14],
we plot them as two different error bands forgA(Mπ). More-
over, as a measure of the agreement of our best-fit curve with
the data, we also give theχ2

0 value without truncation error:

χ2
0 =

∑

i

(
gA(M i

π, ai)− gi
A

)2

(∆gi
ALQCD)2

. (6)

We have also investigated the convergence by varying the
range ofMπ in which the fit is performed. We have seen
that theχ2 and the LECs reach a plateau when the maximum
Mπ included is between 300 and 400 MeV (see Fig. 5 of
Ref. [11]). The consideration of theoretical errors allows to

extend the analysis to a broader range ofMπ because LQCD
points with largeMπ, where the convergence is worse, have
a larger combined uncertainty.

3.2. Fit results

The fit results for the different models are displayed in Fig. 2.
Starting by theO(p3) /∆, we actually find that the description
in this model is misleadingly good. Looking at the results of
theO(p4) /∆ fit, one can see a large contribution fromO(p4)
as in Sec. 2. These terms are much larger than the trunca-
tion error of theO(p3) fit, estimated fromO(p) andO(p3).
Therefore anO(p4) calculation is necessary to account real-
istically for theMπ dependence.

In theO(p4) /∆ calculation thec1−4 enter the picture.
We fix them to their central phenomenological values [13]
in Table II (letting them vary constrained to their uncertain-
ties yields substantially the same result). The accord of the

FIGURE 2. gA(Mπ) LQCD fits withO(p3) andO(p4) relativistic BChPT without and with∆(1232) as explicitdof. Gray (dark) bands

correspond to errors determined by propagating LEC uncertainties. Blue bands represent the estimated theoretical uncertainties∆g
(4,5)
Aχ . The

LQCD points are the same as in Fig. 1.
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TABLE II. LEC values, both fixed and fitted to LQCD data, in the four different models under study.

O(p3) /∆ O(p4) /∆ O(p3) ∆ O(p4) ∆

g̊A (free) 1.1302± 0.0098 1.453± 0.048 1.1383± 0.0099 1.240± 0.046

d16 (GeV−2) (free) −0.925± 0.055 −9.77± 0.87 1.224± 0.040 −0.88± 0.88

hA - - 1.35 1.35

g1 - - −2.29 −2.29

c1 (GeV−1) - −0.89± 0.06 - −1.15± 0.05

c2 (GeV−1) - 3.38± 0.15 - 1.57± 0.10

c3 (GeV−1) - −4.59± 0.09 - −2.54± 0.05

c4 (GeV−1) - 3.31± 0.13 - 2.61± 0.10

a1 (GeV−1) - - - 0.90

b̃4 (GeV−2) (free) - - - −12.3± 1.0

m̊ (GeV) 0.874 0.874 0.855 0.855

m̊∆ (GeV) - - 1.166 1.166

χ2/dof 36.06/(43− 6) = 0.98 13.31/(43− 2) = 0.33 37.60/(43− 6) = 1.02 11.14/(43− 7) = 0.31

χ2
0/dof 11.48 2995.63 11.87 13.93

O(p4) /∆ model with the data is poor. It is reflected in the
largeχ2

0 and the unnaturald16 value despite being constraint
by a prior. It has been shown in HB ChPT [20] that agree-
ment can be achieved by including contributions ofO(p5,6).
We have instead followed a different path, introducing the∆
as an explicitdof. This option is supported in Ref. [21] based
on the Adler-Weisberger sum rule and a HB ChPTgA calcu-
lation.

In the model with∆ we fix hA to its large-Nc value,
hA = 1.35 [13], close to its phenomenological value [19].
The large-Nc limit gives |g1| = 2.29 [13, 19]. We choose
the negative value, suggested byπN elastic scattering [19]
and our own analysis of theFA (to be reported elsewhere).
In addition, we fixm̊∆ ' m∆(phys) − 4 a1M

2
(phys) with

m∆(phys) = 1232 MeV anda1 = 0.90 GeV−1 from [26].
When performing the fit up toO(p3) and comparing it

with theO(p4) the situation resembles the/∆ case: theO(p4)
fit yieldsO(p4) terms that are larger than the error estimated
in theO(p3) one. Consequently, it is necessary to introduce
the wholeO(p4).

In the light of our results, the calculation that we regard
as a realistic description ofgA(Mπ) is theO(p4) one with
explicit ∆. Here we fix thec1−4 to the values extracted from
πN scattering [14], which account for the∆ pole, in good
agreement withπN + ππN fits [13]. In addition, we have
two more LECs,b4 and b5. These appear atO(p4) in the
combinatioñb4 = b4 + (12/13) b5. Hence, we only fit as
a free parameter̃b4 and neglect the higher order monomials
proportional tob5.

The result of this fit satisfactorily describes the trend of
gA(Mπ) predicted in the lattice up to relatively highMπ.
The theoretical error is sizeable at highMπ due to the large
contribution ofO(p4) terms. Still, the description of LQCD

points and convergence are highly improved with respect to
theO(p4) /∆ model. The last column of Table II displays the
extracted LECs. Thẽb4 seems unnatural, but one should re-
mind that it is a combination of LECs. We have noted that
correlations among LECs are large. This reflects a certain
degeneracy that could be partially lifted adding an extra di-
mension,i.e. studying also theq2 dependence of theFA.
The extractedd16 = −0.88 ± 0.88 GeV−2 is in good agree-
ment with the determinations fromπN → ππN with ex-
plicit ∆ pole [13], which, translated to standard EOMS is
d16(pheno) = −1.0 ± 1.0 GeV−2. Although thegA is in
principle the most suitable observable to extractd16, the con-
vergence issues lead to an error comparable with the phe-
nomenological one. The̊gA value is higher than in theO(p3)
fits, leading to agA(Mπ(phys)) = 1.260± 0.012 close to the
experimental value.

4. Conclusions

We have studied theMπ dependence of the nucleon axial
coupling up toO(p4) (NNLO) in relativistic BChPT with
EOMS renormalization. At this order, but without explicit
∆, we have shown that thegA obtained using LECs ex-
tracted fromπN elastic and inelastic scattering does not de-
scribe theMπ dependence of lattice data. This feature has
been earlier noticed in HB ChPT [20, 21], and persists in the
relativistic theory.O(p4) terms become large already from
Mπ & 200 MeV, suggesting thatO(p3) analyses ofgA(Mπ)
underestimate theoretical uncertainties.

In line with the conclusions of Ref. [21], we can satisfac-
torily describe the LQCD data forgA(Mπ) atO(p4) only af-
ter the∆ is included as an explicitdof. However, although in
a much smaller degree than in the/∆ model, a rapid increase
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in the size ofO(p4) terms withMπ is observed and reflected
in the theoretical uncertainty. Together with the large corre-
lations, which could be reduced by fitting theq2 dependence
of the axial form factor, this implies that heavier resonances
and/orO(p5) terms are still required to reach a good conver-
gence and reduce theoretical uncertainties. Setting the baryon
masses in the loops to the values obtained by the LQCD sim-
ulations might be also worth exploring in view of the findings
of Ref. [27] although this would correspond to the resumma-
tion of baryon selfenergy insertions of higher order. For this

purpose it would be convenient to have more input about the
∆ pole position for the different lattice ensembles.

From ourO(p4) fit we have obtainedgA(Mπ(phys)) =
1.260 ± 0.012 close to the experimental result andd16 =
−0.88 ± 0.88 GeV−2 in good agreement withπN phe-
nomenology. As a consequence of the aforementioned issues,
errors are still sizeable ford16. Our ongoing work to extend
the study to the whole axial form factor (at lowq2) may pro-
vide more information aboutd16, as well as other LECs such
asd22.
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