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Light front wave functions from AdS/QCD models
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In this talk, we present an extension to the matching procedure proposed by Brodsky and de Teramond to obtain the two-body wave functions
in the light-front formalism for holographic models. We consider different static dilaton fields and AdS-like geometric deformations.
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1. Introduction In the light-front formalism, the electromagnetic form
factor of the pion can be written as
The hadronic wave function in terms of the quark and gluon 1 oo
degrees of freedom plays an essential role in making predic- F(Q?) = 27r/dx l—x /dCC
0

tions for several QCD phenomena. However, in the process x

of doing a direct extraction of this object, some drawbacks 0

; @)

arose. There are many non-perturbative approaches to ob- J 11—z - 1
tain properties of the distribution amplitudes and hadronic < Jo( CQ T p(z,¢), @
AdS/CFT correspondence, Brodsky and de Teramond sug/NereQ” is the spacelike transferred momentum squared;
gested a matching procedure to obtain mesonic Light-Fronfo S the Bessel function of zero-order, agds a variable
and electromagnetic currents on the AdS side [1, 2]. T

The LFWF obtained from the matching procedure later ¢= \/ 1—xz
side €.g, see [3-5]), But its direct effects on the AdS side representir?g the-weighted transverse impact coorqlinate as-
just were considered in [6], which is the focus of this talk. ~ sociated with the spectator systeimjs the internal distance

_ _ _ 2

marize the matching procedure, which allows us to relate théators. In t\ﬁ/o bod_y cas¢’ = x_(l z)b". .
AdS modes with a two-body bound state LFWF. In Sec. 3, " ). p(x,¢) is the effective transverse density of par-

wave functions from QCD. Some time ago, based on the
Wave Functions (LFWF) in terms of fields dual to hadronsd€fined as
n—1
> b
was improved by adding different ingredients in the QCD =t
This work is organized as follows. In Sec. 2 we sum- Petween constituents, and the sum is over the number of spec-
we study the larg€)? limit in the Equation of Motion for the tons, which in the two-body case, is given by

modes dual to photons. We further notice that we obtain the -~ 2

. . . . . . . _ waqz (1‘74-)‘
same equation as in the traditional quadratic dilaton in this rea(z,C) = A3)
limit, used for many AdS/QCD models. This similarity is the Y A2(1—a)?

key ingredient that opens the door to relate the AdS modeghere A is a normalization constant.

with the two-body LFWF for several holographic models. In - Now we pay attention to form factor calculations in the
Sec. 4, we consider four AdS/QCD models and develop theigravity side on AJS/QCD models. The matrix element for
associated LFWF. the spin-S current and the spin-J hadrons is given by [7]

(b|JHi#z1=|q) = (chargg(kinematic factoyF,,(Q?), (4)

whereF,;,(Q?) is the form factor.
Assuming a minimal coupling, the hadronic matrix ele-
ment for the electromagnetic current in asymptotically AdS

spaces used in AdS/QCD models has the form [1, 2]
In Refs. [1, 2], the authors showed that based on the compar-

ison of form factors, calculated in the light-front formalism g, d4xdz\/§e*¢(z)Al(x, 2)U 0 (2, z)?llll,,(:c, z), (5)
and the AdS/QCD maodels, it is possible to relate bulk modes

to light-front wave functions. Below we briefly discuss this where g5 is a five-dimensional effective coupling constant
matching procedure, including a generalization that will al-and¥,,(z, z) is a normalizable mode representing a hadronic
low us to use this formalism with general AdS/QCD models.state,¥,(z, z) ~ e~ *¥(z), with hadronic invariant mass

2. Two-body wave function in holographic
models
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given by p,p* = M?. Additionally, it considers an elec- This rule allows us, after putting= ¢ and considering
tromagnetic probe polarized along Minkowski coordinatesyvariable with the same physical interpretation as in By.tp

A, = €79 J(Q,2), A, = 0, where J(Q, 2) has the compare both form factors, allowing us to establish a match-
value 1 at zero momentum transfer. Since we are normalizingg that gives a relationship between the AdS modes and the
the bulk solutions to the total charge operator, and as a bound+WF:
ary limit, the external current id,,(x, 2 — 0) = €,e~‘?*,

~ 2 2
ThusJ(Q? = 0.2) = J(Q%, = = 0) = 1. B0 = 42200 2)9(@%2) 2 o)
Considering an asymptotically AdS space with a metric 2m¢
defined as

Here the factord is constrained by the probability condi-
ds? = ) (n,, da"da” — dz?), (6)  tionPuq = [, dx [ d®b|g,q(x,b)* < 1with P, 4, being

) ) ] ) o the probability of finding the Fock valence stdigg,) inside
wherer,,, is the Minkowski 4D spacetime metrie,is the 14 meson\/.

holographic coordinated(z) defines the warp factor for an
: ; 2A4(z—0)) _ p2/,2 _ ’ ; . .

a_symptotlcally AdS space.e., ¢ . T R%/25. A,d the relationship between AdS modes and the LFWF is written

ditionally, the model considers a dilaton fiefd ), which ¢, o

breaks the conformal invariance. With these ingredients,

Recalling that in two-body case we hajfe= z(1—x)b?,

the corresponding expression for the form factors related to | 2 (1 — z
2 Va(l—1z)
scalar hadrons in AdS is Va1 (T, b)‘ A=
< 2
F(@) = [ d:e 020 au), () xg(@.) [ (Va=a)[".

0
In general, is not so difficult to obtai@(¢) numerically

2
whereW(z) andJ(Q", z) are the AdS modes dual to scalar i, most of the known AdS/QCD models. However, obtaining
hadrons and photons. These modes are the solutions of t@?QZ x) is a problem still not addressed. The expressi@) (

bulk equation of motion (EOM) in the Sturm Liouville form o< yeen used in AdS/QCD models whef@?, z) = 1 as in
associated with each bulk field. The latter form factor can bqhe hard wall [1], and in the soft wall with ql’Jadratic dilaton

transformed into the following expression [2]. In the latter, there is an extra conditiop{Q?,z) = 1,

oo which is only achieved in the largg? case.
F(@) = [ d:0(2)0(@% 2)000), ®

0 3. General soft-wall model at high?

where®(z) corresponds to the solutions of the EOM trans-

formed into an Sclidinger-like form, whileJ(Q? z) re-  As we mention in the last section, this function equals one in

mains as the same solution used before. the hard wall [1]. It can be approximated to one in the large
In order to generalize the ideas exposed in Refs. [L2], @2 limit for the traditional soft wall model with quadratic

to put ) in the same mathematical form d),(we have to  dilaton in the AdS geometry [2]. This section will analyze

find a matching between AdS hadronic modes and the LFWFRwhat happens if we consider an arbitrary dilaton and with a

The crucial step (not considered in general by any AdS/QCjeneric asymptotically AdS geometry.

model before) is to write the electromagnetic currentas [4]  To do this extension, we will consider a general AdS-like

warp factor given by

J(Q?,2) —/1dxg(Q27f) Jo <CQ\/7)' ®) A(z) =1In (R) + h(z), (12)

0 z

TABLE |. Summary of the AdS/QCD models used to construct the LF wave function.

Model Dilaton Deformation Ref.
1 p1(z) = K22 hi(z) =0 [10]
4
2 ¢2(2) = pZ 2° tanh (’Lg‘z z2) ha(z) =0 [11]
3 $3(z) = k* 2° + M z + tanh (]\/}z — G) hs(z) =0 [12]
4 $a(2) =0 ha(z) = %k 2 [13]
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where R is the AdS radius and(z — 0) is a deformation thatin terms ofc andb is written as
function that vanishes in the limit — 0. The EOM for the
currentJ(Q?, z) reads as [8]

! Funaa(o0)| =42 VLD o (ati=agn) [ as)
925@ )~ [L 0. 01(2) - 0(2)

Therefore, the expressiaf ) with g(Q?, =) = 1 is gen-
x 0,J(Q% 2) +Q*J(Q% 2)=0. (13) eral and valid to obtain a two-parton holographic LFWF for

Notice that to get the LFWF, we consider a matching in_other models different from the usual soft-wall or hard-wall.
volving the expressiorBj, where the modes dual to hadrons
must be normalizable. Since we are interested in the current
J(Q?, =) written in the largeQ? limit, holographically, we 4. EXxamples
can fulfill this condition with the lowe limit. In other words, ] . ) .
large Q? is equivalent to the limit — 0 in this context. In I this section, we compare the LFWF obtained for different
this limit, the Eq. [L3) reduces to dilatons. The recipe is as follows once we have defined the

1 dilaton and the AdS-like warp factor, we construct the holo-

D2T(Q? 2) — (Z) 9.J(Q%, 2) + Q*J(Q?% 2) =0, (14) graphic potential for scalar modes defined by

which is the same equation to the hard-wall case, i.e. 15 1:, . 9 3, ,
g(Q?,x) = 1. Recall that the asymptotically AdS condi- Viz) = 27 [¢'(2)" +91(=)°] = §¢ (2) 1 (2)
tion is translated into the vanishing of the deformation func- 1., . 3., ,
tion at the conformal boundary. This condition ensures the =5 [07(2) =3h7()] = 5 [¢'(2) = 31 (2)]
field/operator matching condition via the conformal dimen- oh

; i e2h2) M2 R?
sion of the bulk fields [9]. + 57 (17)

Thus, for a general asymptotically AdS space, we have 22

the expression for the two-body LF wave function: . . .
P y where M2 R? is the bulk mass associated with the scalar

2 Ty e . . "
Dores (@ C)‘Q — A2a(1- ) [2(0)] (15) Modes. We will fix)Z R? = —3 in our analysis. This par-
gz on¢ ticular choice implies that we have dual scalar meson states.
[ - 0.01 -
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FIGURE 1. From left to right, the set of dilaton fields, deformation functions, holographic potentials, and AdS modes considered in this work
with the following conventions: for model 1, we used black lines; for model 2, we use dashed lines; for model 3, we use dot-dashed lines
and model 4 is depicted with dotted lines.
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FIGURE 2. The LFWF1),, 5, (z, b) for each model discussed in this work. From left to right: model 1, model 2, model 3 and model 4.

The bulk Schdinger-like modes are obtained by solving 5.  Conclusions
the Schédinger-like EOM on the AdS side with the general
holographic potentiall(7). With these modes, we will con- The relation between AdS modes and the LFWF is an inter-
struct the two-body LF wave functiod€). esting topic that has been restricted the hard-wall [1] and soft-
We will consider four different models from the wall models with quadratic dilaton [2] or their phenomeno-

AdS/QCD literature, characterized by their specific form Oflog|cal modifications in the QCD side g, see [3-5]).
the dilaton field and the deformation function used. A sum-  There are plenty of AdS/QCD models considering dif-
mary of these models can be found in Table I. ferent dilatons or asymptotically AdS geometries, which try
) o _ ) to catch many aspects of hadronic phenomenology that the
In Fig. 1, it is depicted a comparison between the fourgiandard hard-wall or soft-wall with quadratic dilaton do not

dilatons and deformation functions, with their corresponding, yqress. For these sorts of AdS/QCD models, it was not
holographic potentials, given by the general expresslafi ( sy died their LFWF extension. Mainly because the match-

and'its AdS Schrodinger-like modes calculated from such POing procedure, allowing us to compare form factors at both
tentials. sides and extract the LFWF in terms of AdS modes, was not
In Fig. 2 we plot the LFWF calculated for each one of discussed before in the specialized literature up to [6], which
the four models discussed in this paper. Notice that althougas used as the basis for this presentation. Therefore, the
they are qualitatively similar, they have different behavior in@pproach considered here could be interesting because it al-
b andz, which can impact the shape of hadron properties callows computing the LFWF associated with these AdS/QCD
culated, for example in pion form factor calculations, these2pproaches.
wave functions must produce a difference in hQ&F' (Q?) The key point to calculate the LFWF related to AdS
goes to constant value according to counting rules atQigh  modes is to know appropriately the distributigfx, Q?) de-
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