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Light front wave functions from AdS/QCD models
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In this talk, we present an extension to the matching procedure proposed by Brodsky and de Teramond to obtain the two-body wave functions
in the light-front formalism for holographic models. We consider different static dilaton fields and AdS-like geometric deformations.
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1. Introduction

The hadronic wave function in terms of the quark and gluon
degrees of freedom plays an essential role in making predic-
tions for several QCD phenomena. However, in the process
of doing a direct extraction of this object, some drawbacks
arose. There are many non-perturbative approaches to ob-
tain properties of the distribution amplitudes and hadronic
wave functions from QCD. Some time ago, based on the
AdS/CFT correspondence, Brodsky and de Teramond sug-
gested a matching procedure to obtain mesonic Light-Front
Wave Functions (LFWF) in terms of fields dual to hadrons
and electromagnetic currents on the AdS side [1,2].

The LFWF obtained from the matching procedure later
was improved by adding different ingredients in the QCD
side (e.g., see [3–5]), But its direct effects on the AdS side
just were considered in [6], which is the focus of this talk.

This work is organized as follows. In Sec. 2 we sum-
marize the matching procedure, which allows us to relate the
AdS modes with a two-body bound state LFWF. In Sec. 3,
we study the largeQ2 limit in the Equation of Motion for the
modes dual to photons. We further notice that we obtain the
same equation as in the traditional quadratic dilaton in this
limit, used for many AdS/QCD models. This similarity is the
key ingredient that opens the door to relate the AdS modes
with the two-body LFWF for several holographic models. In
Sec. 4, we consider four AdS/QCD models and develop their
associated LFWF.

2. Two-body wave function in holographic
models

In Refs. [1,2], the authors showed that based on the compar-
ison of form factors, calculated in the light-front formalism
and the AdS/QCD models, it is possible to relate bulk modes
to light-front wave functions. Below we briefly discuss this
matching procedure, including a generalization that will al-
low us to use this formalism with general AdS/QCD models.

In the light-front formalism, the electromagnetic form
factor of the pion can be written as

F (Q2) = 2 π
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whereQ2 is the spacelike transferred momentum squared;
J0 is the Bessel function of zero-order, andζ is a variable
defined as
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representing thex-weighted transverse impact coordinate as-
sociated with the spectator system,bj is the internal distance
between constituents, and the sum is over the number of spec-
tators. In two-body caseζ2 = x(1− x)b2.

In (1), ρ̃(x, ζ) is the effective transverse density of par-
tons, which in the two-body case, is given by

ρ̃n=2(x, ζ) =

∣∣∣ψ̃q1q̄2(x, ζ)
∣∣∣
2

A2(1− x)2
, (3)

whereA is a normalization constant.
Now we pay attention to form factor calculations in the

gravity side on AdS/QCD models. The matrix element for
the spin-S current and the spin-J hadrons is given by [7]

〈b|Jµ1µ2...µs |a〉 = (charge)(kinematic factor)Fab(Q2), (4)

whereFab(Q2) is the form factor.
Assuming a minimal coupling, the hadronic matrix ele-

ment for the electromagnetic current in asymptotically AdS
spaces used in AdS/QCD models has the form [1,2]

ig5

∫
d4xdz

√
ge−φ(z)Al(x, z)Ψ ∗p′ (x, z)

←→
∂ lΨp(x, z), (5)

whereg5 is a five-dimensional effective coupling constant
andΨp(x, z) is a normalizable mode representing a hadronic
state,Ψp(x, z) ∼ e−ip·xΨ(z), with hadronic invariant mass
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given by pµpµ = M2. Additionally, it considers an elec-
tromagnetic probe polarized along Minkowski coordinates,
Aµ = εµe−iQ·xJ(Q, z), Az = 0, whereJ(Q, z) has the
value 1 at zero momentum transfer. Since we are normalizing
the bulk solutions to the total charge operator, and as a bound-
ary limit, the external current isAµ(x, z → 0) = εµe−iQ·x.
ThusJ(Q2 = 0, z) = J(Q2, z = 0) = 1.

Considering an asymptotically AdS space with a metric
defined as

ds2 = e2A(z)(ηµνdxµdxν − dz2), (6)

whereηµν is the Minkowski 4D spacetime metric,z is the
holographic coordinate,A(z) defines the warp factor for an
asymptotically AdS space,i.e., e2A(z→0)) = R2/z2. Ad-
ditionally, the model considers a dilaton fieldφ(z), which
breaks the conformal invariance. With these ingredients,
the corresponding expression for the form factors related to
scalar hadrons in AdS is

F (Q2) =

∞∫

0

dz e3A(z)−φ(z)Ψ(z)J(Q2, z)Ψ(z), (7)

whereΨ(z) andJ(Q2, z) are the AdS modes dual to scalar
hadrons and photons. These modes are the solutions of the
bulk equation of motion (EOM) in the Sturm Liouville form
associated with each bulk field. The latter form factor can be
transformed into the following expression

F (Q2) =

∞∫

0

dz Φ(z)J(Q2, z)Φ(z), (8)

whereΦ(z) corresponds to the solutions of the EOM trans-
formed into an Schr̈odinger-like form, whileJ(Q2, z) re-
mains as the same solution used before.

In order to generalize the ideas exposed in Refs. [1,2],i.e.,
to put (8) in the same mathematical form as (1), we have to
find a matching between AdS hadronic modes and the LFWF.
The crucial step (not considered in general by any AdS/QCD
model before) is to write the electromagnetic current as [4]

J(Q2, z) =

1∫

0

dx g(Q2, x) J0

(
ζQ
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)
. (9)

This rule allows us, after puttingz = ζ and consideringx
variable with the same physical interpretation as in Eq. (1), to
compare both form factors, allowing us to establish a match-
ing that gives a relationship between the AdS modes and the
LFWF:

∣∣∣ψ̃q1q̄2(x, ζ)
∣∣∣
2

= A2 x(1− x) g(Q2, x)
|Φ(ζ)|2

2πζ
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Here the factorA is constrained by the probability condi-
tionPq1q̄2 =

∫ 1

0
dx

∫
d2b |ψ̃q1q̄2(x, b)|2 ≤ 1 with Pq1q̄2 being

the probability of finding the Fock valence state|q1q̄2〉 inside
the mesonM .

Recalling that in two-body case we haveζ2 = x(1−x)b2,
the relationship between AdS modes and the LFWF is written
as follows
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In general, is not so difficult to obtainΦ(ζ) numerically
in most of the known AdS/QCD models. However, obtaining
g(Q2, x) is a problem still not addressed. The expression (10)
has been used in AdS/QCD models whereg(Q2, x) = 1 as in
the hard wall [1], and in the soft wall with quadratic dilaton
[2]. In the latter, there is an extra condition:g(Q2, x) = 1,
which is only achieved in the largeQ2 case.

3. General soft-wall model at highQ2

As we mention in the last section, this function equals one in
the hard wall [1]. It can be approximated to one in the large
Q2 limit for the traditional soft wall model with quadratic
dilaton in the AdS geometry [2]. This section will analyze
what happens if we consider an arbitrary dilaton and with a
generic asymptotically AdS geometry.

To do this extension, we will consider a general AdS-like
warp factor given by

A(z) = ln

(
R

z

)
+ h(z) , (12)

TABLE I. Summary of the AdS/QCD models used to construct the LF wave function.

Model Dilaton Deformation Ref.

1 φ1(z) = κ2 z2 h1(z) = 0 [10]

2 φ2(z) = µ2
G z2 tanh

(
µ4

G2

µ2
G

z2

)
h2(z) = 0 [11]

3 φ3(z) = κ2 z2 + M z + tanh

(
1

M z
−G

)
h3(z) = 0 [12]

4 φ4(z) = 0 h4(z) =
1

2
k z2 [13]
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whereR is the AdS radius andh(z → 0) is a deformation
function that vanishes in the limitz → 0. The EOM for the
currentJ(Q2, z) reads as [8]

∂2
zJ(Q2, z)−

[
1
z
− ∂z (h(z)− φ(z))

]

× ∂zJ(Q2, z) + Q2J(Q2, z) = 0. (13)

Notice that to get the LFWF, we consider a matching in-
volving the expression (8), where the modes dual to hadrons
must be normalizable. Since we are interested in the current
J(Q2, z) written in the largeQ2 limit, holographically, we
can fulfill this condition with the lowz limit. In other words,
largeQ2 is equivalent to the limitz → 0 in this context. In
this limit, the Eq. (13) reduces to

∂2
zJ(Q2, z)−

(
1
z

)
∂zJ(Q2, z) + Q2J(Q2, z) = 0 , (14)

which is the same equation to the hard-wall case, i.e.
g(Q2, x) = 1. Recall that the asymptotically AdS condi-
tion is translated into the vanishing of the deformation func-
tion at the conformal boundary. This condition ensures the
field/operator matching condition via the conformal dimen-
sion of the bulk fields [9].

Thus, for a general asymptotically AdS space, we have
the expression for the two-body LF wave function:

∣∣∣ψ̃q1q̄2(x, ζ)
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= A2 x(1− x)
|Φ(ζ)|2
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, (15)

that in terms ofx andb is written as
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. (16)

Therefore, the expression (11) with g(Q2, x) = 1 is gen-
eral and valid to obtain a two-parton holographic LFWF for
other models different from the usual soft-wall or hard-wall.

4. Examples

In this section, we compare the LFWF obtained for different
dilatons. The recipe is as follows once we have defined the
dilaton and the AdS-like warp factor, we construct the holo-
graphic potential for scalar modes defined by

V (z) =
15
4 z2

+
1
4

[
φ′(z)2 + 9 h(z)2

]− 3
2
φ′(z) h′(z)

− 1
2

[φ′′(z)− 3 h′′(z)]− 3
2 z

[φ′(z)− 3 h′(z)]

+
e2 h(z)M2

5 R2

z2
, (17)

whereM2
5 R2 is the bulk mass associated with the scalar

modes. We will fixM2
5 R2 = −3 in our analysis. This par-

ticular choice implies that we have dual scalar meson states.

FIGURE 1. From left to right, the set of dilaton fields, deformation functions, holographic potentials, and AdS modes considered in this work
with the following conventions: for model 1, we used black lines; for model 2, we use dashed lines; for model 3, we use dot-dashed lines
and model 4 is depicted with dotted lines.
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FIGURE 2. The LFWFψ̃q1q̄2(x, b) for each model discussed in this work. From left to right: model 1, model 2, model 3 and model 4.

The bulk Schr̈odinger-like modes are obtained by solving
the Schr̈odinger-like EOM on the AdS side with the general
holographic potential (17). With these modes, we will con-
struct the two-body LF wave function (16).

We will consider four different models from the
AdS/QCD literature, characterized by their specific form of
the dilaton field and the deformation function used. A sum-
mary of these models can be found in Table I.

In Fig. 1, it is depicted a comparison between the four
dilatons and deformation functions, with their corresponding
holographic potentials, given by the general expression (17),
and its AdS Schrodinger-like modes calculated from such po-
tentials.

In Fig. 2 we plot the LFWF calculated for each one of
the four models discussed in this paper. Notice that although
they are qualitatively similar, they have different behavior in
b andx, which can impact the shape of hadron properties cal-
culated, for example in pion form factor calculations, these
wave functions must produce a difference in howQ2F (Q2)
goes to constant value according to counting rules at highQ2.

5. Conclusions

The relation between AdS modes and the LFWF is an inter-
esting topic that has been restricted the hard-wall [1] and soft-
wall models with quadratic dilaton [2] or their phenomeno-
logical modifications in the QCD side (e.g., see [3–5]).

There are plenty of AdS/QCD models considering dif-
ferent dilatons or asymptotically AdS geometries, which try
to catch many aspects of hadronic phenomenology that the
standard hard-wall or soft-wall with quadratic dilaton do not
address. For these sorts of AdS/QCD models, it was not
studied their LFWF extension. Mainly because the match-
ing procedure, allowing us to compare form factors at both
sides and extract the LFWF in terms of AdS modes, was not
discussed before in the specialized literature up to [6], which
was used as the basis for this presentation. Therefore, the
approach considered here could be interesting because it al-
lows computing the LFWF associated with these AdS/QCD
approaches.

The key point to calculate the LFWF related to AdS
modes is to know appropriately the distributiong(x,Q2) de-
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fined in the expression (10). As it was discussed in Sec. 3, for
the largeQ2 limit case, this distribution is equal to one. Thus,
we can obtain a two-body holographic LFWF for a wide va-
riety of AdS/QCD models.

Acknowledgments

The authors would like to thank the financial support pro-
vided by FONDECYT (Chile) under Grants No. 1180753
(A.V.) and No. 3180592 (M. A. M. C).

1. S. J. Brodsky and G. F. de Teramond, Hadronic spectra and
light-front wavefunctions in holographic QCD,Phys. Rev.
Lett. 96 (2006) 201601,https://doi.org/10.1103/
PhysRevLett.96.201601 .

2. S. J. Brodsky and G. F. de Teramond, Light-Front Dynam-
ics and AdS/QCD Correspondence: The Pion Form Factor in
the Space- and Time-Like Regions,Phys. Rev. D77 (2008)
056007,https://doi.org/10.1103/PhysRevD.77.
056007 .

3. S. J. Brodsky and G. F. de Teramond, AdS/CFT and Light-
Front QCD, Subnucl. Ser.45 (2009) 139-183,https://
doi.org/10.1142/9789814293242 0008 .

4. A. Vega, I. Schmidt, T. Branz, T. Gutsche and V. E. Lyubovit-
skij, Meson wave function from holographic models,Phys.
Rev. D80 (2009) 055014,https://doi.org/10.1103/
PhysRevD.80.055014 .

5. S. S. Chabysheva and J. R. Hiller, Dynamical model for longi-
tudinal wave functions in light-front holographic QCD,Annals
Phys.337(2013) 143-152,https://doi.org/10.1016/
j.aop.2013.06.016 .

6. A. Vega and M. A. Martin Contreras, Two-body light front
wave functions from general AdS/QCD models,Phys. Rev.
D 102 (2020) 036017, https://doi.org/10.1103/
PhysRevD.102.036017 .

7. S. Hong, S. Yoon and M. J. Strassler, On the couplings of
vector mesons in AdS / QCD,JHEP 04 (2006) 003,https:
//doi.org/10.1088/1126-6708/2006/04/003 .

8. T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Dila-
ton in a soft-wall holographic approach to mesons and baryons,
Phys. Rev. D85 (2012) 076003,https://doi.org/10.
1103/PhysRevD.85.076003 .

9. E. Witten, Anti-de Sitter space and holography,Adv. Theor.
Math. Phys.2 (1998) 253-291,https://doi.org/10.
4310/ATMP.1998.v2.n2.a2 .

10. A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Lin-
ear confinement and AdS/QCD,Phys. Rev. D74 (2006)
015005,https://doi.org/10.1103/PhysRevD.74.
015005 .

11. D. Li and M. Huang, Dynamical holographic QCD model
for glueball and light meson spectra,JHEP 11 (2013) 088,
https://doi.org/10.1007/JHEP11(2013)088 .

12. N. R. F. Braga and L. F. Ferreira, Quasinormal modes for
quarkonium in a plasma with magnetic fields,Phys. Lett.
B 795 (2019) 462-468,https://doi.org/10.1016/j.
physletb.2019.06.050 .

13. E. Folco Capossoli, M. A. Martı́n Contreras, D. Li, A. Vega and
H. Boschi-Filho, Hadronic spectra from deformed AdS back-
grounds,Chin. Phys. C44 (2020) 064104,https://doi.
org/10.1088/1674-1137/44/6/064104 .

Supl. Rev. Mex. Fis.3 0308098

https://doi.org/10.1103/PhysRevLett.96.201601�
https://doi.org/10.1103/PhysRevLett.96.201601�
https://doi.org/10.1103/PhysRevD.77.056007�
https://doi.org/10.1103/PhysRevD.77.056007�
https://doi.org/10.1142/9789814293242_0008�
https://doi.org/10.1142/9789814293242_0008�
https://doi.org/10.1103/PhysRevD.80.055014�
https://doi.org/10.1103/PhysRevD.80.055014�
https://doi.org/10.1016/j.aop.2013.06.016�
https://doi.org/10.1016/j.aop.2013.06.016�
https://doi.org/10.1103/PhysRevD.102.036017�
https://doi.org/10.1103/PhysRevD.102.036017�
https://doi.org/10.1088/1126-6708/2006/04/003�
https://doi.org/10.1088/1126-6708/2006/04/003�
https://doi.org/10.1103/PhysRevD.85.076003�
https://doi.org/10.1103/PhysRevD.85.076003�
https://doi.org/10.4310/ATMP.1998.v2.n2.a2�
https://doi.org/10.4310/ATMP.1998.v2.n2.a2�
https://doi.org/10.1103/PhysRevD.74.015005�
https://doi.org/10.1103/PhysRevD.74.015005�
https://doi.org/10.1007/JHEP11(2013)088�
https://doi.org/10.1016/j.physletb.2019.06.050�
https://doi.org/10.1016/j.physletb.2019.06.050�
https://doi.org/10.1088/1674-1137/44/6/064104�
https://doi.org/10.1088/1674-1137/44/6/064104�

