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Accessing pion GPDs through the Sullivan process: is it feasible?
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Describing hadronic structure is one of the most intriguing problems in physics. In this respect, generalized parton distributions (GPDs)
constitute an outstanding tool, allowing to draw “three dimensional pictures” of hadron’s inside. Starting from contemporary models for
pion’s GPDs fulfilling all constraints imposed by QCD, we compute Compton form factors of pions subjected to deeply virtual Compton
scattering. We show CFF’s behaviour to be gluon-dominated at EIC’s kinematics. Finally we evaluate lepton-beam-spin asymmetries in the
Sullivan process, demonstrating the existence of such and thus triggering optimism about the possibility of probing pion’s 3D structure at
electron-ion colliders.
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1. Introduction

Among all hadrons, pions are one of the most intriguing sys-
tems of study [1,2]. As Nambu-Goldstone bosons of QCD’s
dynamical breakdown of chiral symmetry, they constitute a
unique laboratory for the study of emergent strong phenom-
ena. Moreover, as “two-bodies” bound-states they are the
simplest systems tied by the strong interaction. Therefore,
gaining insights into pion’s structure is of great interest [1,3-
7] and the most direct tool we have for this purpose is lepton
scattering.

Unfortunately targeting pions is a really challenging task,
requiring indirect approaches to be explored in order to probe
pion’s structure. In this respect, the so-called Sullivan pro-
cess [8] provides a remarkable tool. In a nutshell, given that
the necessary conditions are met (see Sec. 2), the paradig-
matic case of electron-proton scattering can also take place
through Deeply Virtual Compton Scattering (DVCS) with a

pion in the meson cloud of the nucleon; opening a clear win-
dow to the study of pion’s structure. Moreover two mech-
anisms contribute to such process [9]: Bethe-Heitler (BH)
and DVCS, which is related with Generalized Parton Distri-
butions (GPDs) [10].

GPDs were introduced more than two decades ago as
extensions for the “classical” Parton Distribution Functions
(PDFs) to off-forward kinematics [10,13]. They were shown
to offer access to the three-dimensional structure of hadrons
[14] and a direct connection with QCD’s fundamental de-
grees of freedom through the energy-momentum tensor [15].

As interesting as they are, GPDs are notoriously difficult
to extract from experiment and theory [16,17]. The first mod-
els for pion GPDs fulfilling all the requirements from quan-
tum field theory are contemporary [18,19], but the possibility
of accessing them at future experimental facilities demands
further scrutiny. We herein report on a recent effort address-
ing this last point [20].
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2. Accessing pion GPDs: the Sullivan process

As shown in a seminal paper by J. D. Sullivan [8], the
cross-section for exclusive electron-nucleon scattering in
the Bjorken limit receives sizeable contributions from pion-
nucleon final states when the momentum transferred between
the initial and final nucleon states,t, remains small and near
the threshold for pion production:|t| . 0.6 GeV2 [21]. Un-
der these conditions, such process can be interpreted in the
so-calledone-pion-exchangeapproximation,i.e. in terms of
pion-photon scattering amplitudes. Moreover, the invariant
mass of the nucleon-π system being cut asM2

Nπ & 4 GeV2,
possible contamination from nucleon resonances is mini-
mized [8,9], allowing to interpret the Sullivan process in
terms of direct interaction between a photon and a slightly
off-shell pion.

Following these arguments, the amplitude for the Sullivan
process (ep → eπnγ) can be “factorized” as:

Mep→eπnγ = Mp→πnMeπ→eπγ , (1)

drawing a clear path toward the experimental analysis of
pion’s structure through the amplitude foreπ → eπγ.

Two subprocesses give contributions to such amplitude
[9]: Bethe-Heitler scattering, which provides direct access
to the pion’s Electromagnetic Form Factor (EFF) and has al-
ready been exploited for its extraction at large photon virtu-
alities [22]. And a DVCS contribution:

Meπ→eπγ = MBH +MDVCS. (2)

DVCS amplitudes are parametrized by Compton Form
Factors (CFFs) [10]. These being defined as convolutions of
a perturbatively calculable kernel with GPDs [12,23-26], the
DVCS contribution toeπ → eπγ allows for a direct study of
pion’s three-dimensional structure.

Cross sections being defined as the modulus squared of
the corresponding amplitude, here Eq. (2), three contri-
butions to that of the Sullivan process are identified: pure
DVCS (BH), parametrized by modulus squared CFFs (EFFs);
and a third contribution, the interference term between two
such subprocesses, directly related with the real and imag-
inary parts of the CFFs [9,23]. Moreover, at leading twist,
pure DVCS and BH contributions exhibit no dependence
on lepton-beam-spin polarization while the interference term
does [9]. Therefore, the lepton’s Beam Spin Asymmetry
(BSA),A:

A : =
σ↑ − σ↓

σ↑ + σ↓

∣∣∣∣
eπ→eπγ

=
SImIm (Hπ)

BH + DVCS+ CReRe(Hπ)
, (3)

grants access to the real and imaginary parts of CFFs,Hπ;
thus allowing to employ the Sullivan process to measure them
(at least formaly) or, equivalently, to gain insights into the
pion’s three-dimensional structure through GPDs.

Furthermore, the coefficients of each term in Eq. (3) are
shown to be proportional tocos φπ (CRe) and sin φπ (SRe)

[9,27], with φπ the angle between the planes defined by (in-
coming and outgoing) leptons and pions in the center of mass
frame ofπγ in the final state [28]. This means that not only
ratios Im(Hπ) /Re(Hπ) can be measured through the Sul-
livan process, but also to exploit theφπ dependence of its
interference to separately access the real and imaginary parts
of CFFs.

The clarity of the above described procedure does not pre-
clude the feasibility of a practical analysis of pion’s structure
to be obscured by experimental artefacts. Given that various
experimental facilities devoted to the study of hadron struc-
ture are planned [5-7], a feasibility study of the methodology
presented herein is timely.

Thus we choose to perform an analysis of the Sullivan
process at the future Electron-Ion Collider (EIC) [5]. Rely-
ing on state-of-the-art models for pion GPDs [19], we evalu-
ate Compton form factors at Next-to-Leading Order (NLO)
in the strong coupling constant. From their analysis we
demonstrate that pion’s response to Compton scattering in
the Bjorken limit is gluon-dominated. Finally we compute
lepton-beam-spin asymmetries, showing that a clearly non-
zero asymmetry might be expected at the foreseen EIC, thus
triggering optimism about the possibility of probing pion’s
three-dimensional structure [20].

3. Modelling of pion GPDs

The first ingredient needed for the present study is a reliable
model for pion’s3D structure. However, modelling of hadron
GPDs is a difficult task. Mainly because their dependence
on: x, average momentum fraction of the active quark;ξ,
half the longitudinal momentum transferred; andtπ, squared
momentum transfer between pion states, are constrained by
a set of properties [13,29]. In fact, only modern strategies
have been able to build models fulfilling all of them by con-
struction [18,19]. It is precisely such approach to which we
stick.

In summary, under the assumption of chiral symmetry,
DGLAP GPDs (|x| ≥ |ξ|) can be built from the usual PDFs
[19,30,31]; with the positivity property granted [19]. Then,
the covariant extension formalism [18,32] can be employed
for the kinematic completion of the model within the ERBL
domain (|x| ≤ |ξ|); polynomiality and support properties be-
ing also satisfied (Fig. 1).

According to [19], modelling of pion GPDs is therefore
reduced (in a first stage) to that of the PDF. In this respect
we choose to start from the results presented inRef. [33],
where realisticAns̈atze for the pion’s PDF were obtained
from continuum Schwinger methods, showing a large-x be-
haviour which remains compatible with that extracted from
experimental data including soft-gluon (threshold) resumma-
tion [34-36].

The corresponding DGLAP GPD model was presented in
Ref. [31], and further elaborated with its kinematic comple-
tion in Ref. [19]. It was also shown to fulfil by construction
with the support property of GPDs [37]; with the bounds
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FIGURE 1. Diagram describing contemporary modelling strategies
for pion GPDs allowing to fulfil every fundamental property re-
quired by quantum field theory as introduced in Ref. [19].

imposed by positivity of the underlying Hilbert-space norm
[38-41], and also to preserve Lorentz invariance, as exhibited
through polynomiality [42-44], they all general properties of
GPDs. Furthermore, they have been also shown to account
for partial conservation of the axial current [45,46], as one
might expect in the case of the pion. Moreover, the resulting
model exhibits agreement with available extractions for elec-
tromagnetic [22,47] and Gravitational Form Factors (GFFs)
[48] of the pion, specially in the low-tπ domain. Even more,
the GPD thus obtained showed to be continuous along the
x = ξ line, as required by analyticity, for the amplitudes of
DVCS to be finite [49,50].

The resulting model puts the cap on a long effort devel-
oped during the last decade [18,32,46,51-53], showing that
a realistic description of pion’s3D structure can be achieved
from continuum Dyson-Schwinger computations. The model
presented in Ref. [19] exhibiting not only the formal require-
ments needed on a GPD, but also those of a phenomeno-
logical origin, constitutes a serious candidate for a realistic
description of pion’s structure. Its foundations on very first
principles of quantum field theory together with its agreement
with existing data for observables like EFFs, GFFs (specially
in the region to be probed at EICs) or PDFs, points toward the
possibility of obtaining solid predictions on the phenomenol-
ogy to be observed at future colliders. Its use in the present
study being self-justified and confidence on the model’s in-
dependence of the results pushed forward.

3.1. GPD evolution

Given a formal description of pion’s structure through GPDs,
facing an analysis of the phenomenology to be observed at
the foreseen EIC crucially requires QCD’s scale-evolution to
handled. The EIC will operate at energies in the range of tens
of GeV2s [5], therefore running the GPD model from its def-
inition scale to an experimentally relevant one is mandatory.

As described by [19,31], in the sense of scale-
dependence, the model was built under a sole assumption:

the existence of a scale,µH , at which the entire parton con-
tent of the pion is described by two dressed valence-quarks.
Such hypothesis has proved to yield successful descriptions
at the PDF level [33,54]. Moreover, in the case of the pion, it
has been recently found that its existence is a solid prediction
of available Lattice-QCD and Drell-Yan data [31,36].

For these reasons we choose a description of pion’s struc-
ture to be given at a reference scale by theu- and d̄-GPDs
developed in Ref. [19]. We take GPD scale-evolution to
be driven by the process independent effective coupling in-
troduced in Ref. [55], which accounts for saturation in the
infrarred regime by means of dynamical generation for a
gluon mass-scale. Thus, the reference scale is set accord-
ingly to µH = 0.331 GeV [54], and the Leading Order (LO)
QCD evolutions for GPDs solved throughApfel++ soft-
ware [56,57].

4. Compton form factors

With a realistic model for pion GPDs evolved to experimen-
tally relevant energy scales, we are now in a position to em-

FIGURE 2. DVCS Compton Form Factors at a factorization scale
of 2 GeV2. Upper panel- Real part.Lower panel- Imaginary part.
Legend- Red line: LO evaluation; blue line: NLO without gluon
GPDs. Black line: full NLO result.
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FIGURE 3. Expected lepton-beam-spin asymmetries as a function ofQ2 for ξ ∈ [
10−3, 10−2

]
. Legend- Red circles: LO evaluation; blue

triangles: NLO without the gluon GPDs. Black squares: full NLO result. (data taken from [20]).

ploy them in computing CFFs,Hπ, the coefficient functions
parametrizing the amplitudes for DVCS [10,24,58,59]:

Hπ

(
ξ, t, Q2

)
=

∑

i={q},g

1∫

−1

dx

ξ
Ki

(
x

ξ
,
Q2

µ2
F

)

×Hi
π

(
x, ξ, tπ; µ2

F

)
, (4)

with the sum extended over all possible quark flavours and
gluons; and whereKi is a convolution kernel calculable in
perturbation theory.

Interestingly, the gluon-type contribution to the convo-
lution kernel,Kg (z), vanishes at LO. It is only from NLO
on contributions in the strong running coupling when gluon
content within the probed hadron enters the game [24,59-61],
affecting the behaviour of the hadrons subjected to deeply
virtual Compton scattering. For this reason we compute the
pion’s DVCS CFFs through three different approaches: (i) at
LO, (ii) at NLO and finally, (iii) at NLO but manually setting
the gluon contribution to zero.

With the help ofPARTONSframework [62], calculation
of CFFs through these three approaches is feasible. As an
illustration, results at a factorization scale of2 GeV2 are
shown in Fig. 2. There, it is clearly seen that both LO and
NLO without gluon calculations, yield very similar results.
The real and imaginary parts of the CFFs being positive def-
inite and decreasing functions of the skewness. On the con-
trary, the full NLO result shows that gluon content within the
pion gives the dominant contribution to the DVCS CFF. Spe-
cially in the low-ξ region, which is the one to be probed at
the EIC [5]. Crucially, the observed behaviour drastically
changes. Even flipping sign for both, real and imaginary
parts. In this respect, it is important to notice that gluon dom-
inance yield a CFF roughly behaving asξ−1.4. A result which
remains compatible with those independently obtained from
DVCS dispersion relations with one subtraction constant
constant [63]; once again supporting, as argued in Sec. 3,
supporting a limited model dependence of our predictions.

5. Beam-spin asymmetries at the EIC

Finally, after the development of the preceding sections, we
are in a position to evaluate the cross-section for the Sulli-

van process. To this end we build a Monte Carlo event gen-
eration algorithm. We account for the prescriptions given in
Ref. [9], in charge of assuring the interpretation of the process
in the one-pion-exchange approximation; and also the EIC’s
detector characteristics specified in Ref. [5]. In that way, the
phase-space of kinematic configurations is generated, and the
formulae given in Ref. [9] exploited for the corresponding
evaluation of the cross-sectionsi. Finally, lepton’s BSA are
computed as defined in Eq. (3).

The obtained results are shown in Fig. 3 forξ ∈[
10−3, 10−2

]
and four different bins inQ2. In agreement

with those results discussed in Sec. 4, LO and NLO without
gluon contribution asymmetries are nearly indistinguishable.
As expected, a sinusoidal shape is observed for the asym-
metry at all explored scales [29]. Only an enhancement in
their amplitudes is observed as the virtuality of the probing
photon increases. In contrast, the result yielded by the full
NLO calculation exhibits a markedly different behaviour. At
low Q2, as a manifestation of gluon-dominance, the asymme-
try changes sign with respect to the LO and NLO/NoGluon
ones. As photon’s virtuality increases, its amplitude is now
reduced; turning compatible with zero at moderate scales.
Moreover, at high enoughQ2, the NLO result approaches the
tendency of LO results, as expected from perturbation theory.

6. Conclusions

In the light of the results discussed herein, two main con-
clusions can be drawn. First, gluon content within the pion
gives the dominant contribution to its behaviour in DVCS at
low virtuality and smallξ. Second, a clearly non-vanishing
lepton-beam-spin asymmetry is to be observed at the future
EIC, thus opening the possibility to experimentally access,
for the first time, pion’s three dimensional structure; and even
allowing to pin down the regime of gluon-dominance through
an observable sign change.
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Sabatìe. Towards a Pion Generalized Parton Distribution Model
from Dyson-Schwinger Equations. arXiv:1406.7425, (2014).

53. C. Mezrag, H. Moutarde, and J. Rodriguez-Quintero. From
Bethe-SalpeterWave functions to Generalised Parton Distribu-
tions.Few Body Syst.57 (2016) 729.

54. Z.-F. Cuiet al., Kaon and pion parton distributions.Eur. Phys.
J. C,80 (2020) 1064.
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