
Suplemento de la Revista Mexicana de Fı́sica3 0308100 (2022) 1–6

Ghost dynamics from Schwinger-Dyson equations
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We discuss the coupled dynamics of the ghost dressing function and the ghost-gluon vertex through the Schwinger-Dyson equations that they
satisfy. In order to close the system of equations, we combine recent lattice data for the gluon propagator and an approximate STI-derived
Ansatz for the general kinematics three-gluon vertex. The numerical solution of the resulting coupled system exhibits excellent agreement to
lattice data, for both the ghost dressing function and the ghost-gluon vertex, and allows the determination of the coupling constant. Next, in
the soft gluon limit the full three-gluon vertex appearing in the ghost-gluon equation reduces to a special projection that is tightly constrained
by lattice simulations. Specializing the ghost-gluon Schwinger-Dyson equation to this limit provides a nontrivial consistency check on the
approximations employed for the three-gluon interaction and shows that the latter has an important quantitative effect on the ghost-gluon
vertex. Finally, our results stress the importance of eliminating artifacts when confronting lattice data with continuum predictions.
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1. Introduction

In the context of continuum methods for the study of nonper-
turbative QCD [1-22], such as Schwinger-Dyson equations
(SDEs), the ghost sector plays a distinguished role for the rel-
ative simplicity of its dynamical equations. In particular, the
ghost sector SDEs involve a reduced number of other Green’s
functions and, in Landau gauge, benefit from the Taylor the-
orem [23], which facilitates their nonperturbative renormal-
ization [8,24–26]. As such, they furnish ideal testing grounds
to assess the reliability of truncation schemes, probe the im-
pact of other Green’s functions, and evaluate the consistency
of SDEs with other methods, such as lattice simulations.

Furthermore, understanding the infrared (IR) behavior of
the ghost propagator and vertices themselves is important due
to their connections to proposed scenarios of color confine-
ment [27, 28] and because they affect other Green’s func-
tions [20,29-42]. In particular, the nonperturbative massless-
ness of the ghost [7, 8] implies the vanishing of the gluon
spectral function at the origin [43, 44] and causes IR diver-
gences in the three-gluon vertex [20, 32], which contribute
to the observed suppression of this function at small ener-
gies [18,20,31,32,34,35,37–42,45,46].

In the present work, we solve the coupled system of SDEs
governing the momentum evolution of the ghost propagator,
D(p2), and the form factor, denoted byB1(r, p, q), of the
classical (tree level) tensor structure of the ghost-gluon ver-
tex. For the gluon propagator which appears as ingredient, we
capitalize on lattice results [47–49], carefully extrapolated to
the continuum and to infinite volume [48, 49] and display-
ing the now firmly established IR saturation [40, 47, 50–55],
associated with the dynamical generation of a gluon mass
gap [6, 7, 41, 56, 57]. In this way, we are left with the three-
gluon vertex,Γαµν(q, r, p), as the most uncertain ingredient,

whose nonperturbative structure has only recently begun to
be unraveled [18,20,31,32,34,35,37–42,45,46].

Then, we use our system of equations to indirectly
probe the impact ofΓαµν(q, r, p). To this end, we em-
ploy two different methods: first, we implement an approx-
imation derived from the Slavnov-Taylor identity (STI) that
Γαµν(q, r, p) satisfies [20, 58] and which captures its main
known features; next, in the soft gluon limit the entire con-
tribution ofΓαµν(q, r, p) to our system of SDEs reduces [29]
to a special projection, denoted byLsg(q2), which has been
accurately determined on the lattice [38, 39, 42]. Comparing
the two solutions in the soft gluon limit, we find nearly pre-
fect agreement, thus validating the approximation employed
for the general kinematicsΓαµν(q, r, p).

With the approximation for the input three-gluon vertex
validated in the above way, we show thatΓαµν(q, r, p) has an
important quantitative impact onB1(q, r, p). Moreover, the
SDE results for both the ghost propagator and ghost-gluon
vertex are found to agree strikingly with lattice data.

2. Coupled system of SDEs

The coupled system of SDEs which will be the focal point
of this study is shown diagrammatically in Fig. 1. Note that,
while the SDE for the ghost propagator (top line) is left in-
tact, the equation for the ghost-gluon vertex is truncated at
the “one loop dressed” level, where we neglect one diagram
containing a 4-point function, which has been shown to have
only a2% effect on the outcome of this SDE [19,59].

It is convenient to factor out the tree level form from the
ghost propagator,Dab(p2) = iδabD(p2), to define the ghost
dressing function,F (p2), throughD(p2) = F (p2)/p2. For
the ghost-gluon vertex,Γabc

µ (r, p, q) = −gfabcΓµ(r, p, q),
wherer, p andq denote the anti-ghost, ghost, and gluon mo-
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FIGURE 1. Coupled system of SDEs for the ghost propagator a) and ghost-gluon vertex b). Wavy and dashed lines represent gluon and ghost
fields, respectively, white circles represent fully dressed propagators, whereas blue and red circles correspond to dressed ghost-gluon and
three-gluon vertices, respectively.

menta, respectively, we decomposeΓµ(r, p, q) into its most
general tensor form

Γµ(r, p, q) = rµB1(r, p, q) + qµB2(r, p, q) . (1)

Note that at tree level,B(0)
1 = 1 andB

(0)
2 = 0.

Then, since we perform our analysis in the Landau gauge,
the gluon propagator,∆ab

µν(q), is strictly transverse,

∆ab
µν(q) = −iδabPµν(q)∆(q2) ,

Pµν(q) := gµν − qµqν

q2
. (2)

Next, we take advantage of the Taylor theorem [23],
which states that in the Landau gauge the renormalization
constant,Z1, of the ghost-gluon vertex is finite. Furthermore,
if we impose as renormalization condition that the vertex re-
duces to its tree level in the limit when the ghost momentum
vanishes,i.e., , Γµ(r, 0,−r) = rµ, then [25,60]Z1 = 1.

Requiring in addition that the propagators reduce to their
tree levels,i.e., F (µ2) = 1 and ∆(µ2) = 1/µ2, at an
Euclidean momentumµ completely defines a self consis-
tent renormalization scheme [8,24-26], often called “Taylor
scheme” [20, 25, 61]. For the present analysis, we fix the
renormalization point atµ = 4.3 GeV.

Then, by virtue of the transversality of the gluon propa-
gator and the choice of the Taylor scheme, one obtains from
the ghost SDE of Fig. 1 [49]

F−1(p2) = 1 + Σ(p2)− Σ(µ2) , (3)

where the ghost self-energy,Σ(p2), reads

Σ(p2) = ig2CA

∫

k

∆(k2)D(s2)f(k, p)B1(−p, s,−k) , (4)

with f(k, p) := 1 − (k · p)2/(k2p2), s := k + p, CA

the Casimir eigenvalue of the adjoint representation [N for
SU(N)], g is the coupling constant, and we introduce the
integral measure

∫
k

:= (1/(2π)4)
∫

d4k.
Note that, also due to the transversality of∆ab

µν(q), only
the form factorB1 of the ghost-gluon vertex contributes to
the ghost SDE of Eq. (3). This form factor can be extracted
from the full vertex through the projector

εµ(r, q) :=
q2rµ − qµ(q · r)
q2r2 − (q · r)2 . (5)

Then, applying Eq. (5) to the second line of Fig. 1 yields
a dynamical equation for the form factorB1(r, p, q), namely

B1(r, p, q) = 1 +
ig2CArαpβ

2
[
(d1)αβ − (d2)αβ

]
, (6)

with the (di)αβ denoting the contributions from the corre-
spondingly named diagrams in Fig. 1 and read [49]

(d1)αβ =
∫

k

∆(k2)∆(t2)D(`2)B1(−`, p, t)εµ(r, q)P βρ(t)

× Pασ(k)Γµσρ(q, k,−t) ,

(d2)αβ =
∫

k

D(k2)D(t2)∆(`)B1(k,−t, q)B1(t, p,−`)

× εµ(q, k)kµPαβ(`) , (7)

wheret := k + q and` := k − r.
For Eqs. (3) and (6) to be a closed system of equations for

F (p2) andB1(r, p, q), we must provide externally the gluon
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FIGURE 2. STI derived form factorX1(q, r, p) of the three-gluon
vertex, for generalq2 andr2, when the angle betweenq andr is 0.

propagator and the three-gluon vertex which appears in the
(d1)αβ of Eq. (6) and is clearly the most complicated object.

For the present work, as an approximation, we retain only
the classical tensor structure ofΓαµν(q, r, p), namely [20]

Γαµν(q, r, p) ≈ (q − r)νgαµX1(q, r, p)

+ (r − p)αgµνX1(r, p, q)

+ (p− q)µgναX1(p, q, r) , (8)

where the form factorX1(q, r, p) is symmetric under the ex-
changeq ↔ r, such that Eq. (8) preserves the Bose symmetry
of the vertex. At tree levelX(0)

1 (q, r, p) = 1.
The nonperturbative behavior ofX1(q, r, p) can then be

determined from the STI that the three-gluon vertex satis-
fies [20,58]. Specifically,

rµΓαµν(q, r, p) = F (r2)
[
q2J(q2)Pµ

α (q)Hµν(q, r, p)

− p2J(p2)Pµ
ν (p)Hµα(p, r, q)

]
, (9)

whereHνµ(q, r, p) is the ghost-gluon kernel [60], related to
the ghost-gluon vertex byrνHνµ(r, p, q) = Γµ(r, p, q), and
J(q2) is the “kinetic term” of the gluon propagator, obtained
by decomposing the latter as

∆−1(q2) = q2J(q2)−m2(q2) , (10)

wherem(q2) is the dynamical gluon mass [6, 7, 41, 56, 57],
which accounts for the IR saturation of∆(q2). Solving
Eq. (9) allows us to expressX1 in terms ofF (p2), J(q2)
and certain form factors ofHνµ(q, r, p) [20,49].

In Fig. 2 we show the result of this procedure for
X1(q, r, p) for generalq2 and r2, when the angle between
q and r is zero [49], which is representative of its gen-
eral kinematics behavior. In that figure, we see that al-
though Eq. (2) only retains3 out of the14 independent ten-
sor structures [20, 58] of the three-gluon vertex,X1 alone

already encodes the most eminent features of this vertex,
such as the positive anomalous dimension in the ultravio-
let and the suppression with respect to the tree level in the
IR [18, 20, 31, 32, 34, 35, 37–42, 46], driven by the massless-
ness of the ghosts [32].

An important consistency check on our approximations
is provided by considering the soft gluon limit,q = 0, of the
ghost-gluon vertex SDE. In this limit, Eq. (6) can be shown
to reduceexactlyto [49]

B1(r2) = 1− ig2CA

z̃3

∫

k

D(`2)∆2(k2)f(k, r)(r · k)

×B1(`, r,−k)Lsg(k2)

+
ig2CA

2

∫

k

D2(k2)∆(`2)f(k, r)
k2(r · k)

`2

×B1(−k, r, `)B1(k2) , (11)

whereB1(k2) := B1(k,−k, 0) andLsg(q2) is a special pro-
jection of the three-gluon vertex in the soft gluon limit, which
has been accurately determined on the lattice [42] and is
shown in Fig. 3. Lastly,̃z3 ≈ 0.95 is a finite renormaliza-
tion constant which convertsLsg(q2) from the “asymmetric
MOM” renormalization scheme employed on the lattice to
the Taylor scheme used here [49].

Hence, while the right hand side of Eq. (11) still depends
on the general kinematicsB1, for which we can use the re-
sult of the coupled system of Eqs. (3) and (6), its direct de-
pendence on the three-gluon vertex is tightly controlled by
employing the lattice results forLsg(q2).

Finally, we transform Eqs. (3), (6) and (11) to Euclidean
space, followinge.g., Eq. (5.1) in [60], and for∆(q2) we use
the fit in Eq. (B5) in Ref. [49] to lattice data in Refs. [47–49],
extrapolated to the continuum and to infinite volume, both
shown in Fig. 4.

FIGURE 3. Lattice results for the soft gluon projection,Lsg(q2), of
the three-gluon vertex in Ref. [42] (points) and the fit of Eq. (4.6)
in Ref. [49] (blue solid line).
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FIGURE 4. Lattice data (circles) in Ref. [47–49] and a fit given by
Eq. (B5) in Ref. [49] (red solid line) for the gluon propagator.

3. Results

We start by solving the coupled system composed of Eqs. (3)
and (6) for various values ofαs(µ2) = g2/4π, employing
an iterative method. Then, we compare the resulting ghost
dressing function,F (p2), to the lattice data in Ref. [48, 49],
which is cured from discretization artifacts. Minimizing the
χ2, we obtain the valueαs(µ2) = 0.244, and forF (p2) the
red curve in Fig. 5, which agrees perfectly to the lattice result.

Using the value ofαs(µ2) determined above, we compare
in Fig. 6 the soft gluon limitB1(r2) obtained from the cou-
pled system (red dashed line) to the lattice results in Ref. [62]
(circles), finding excellent agreement. Other kinematic limits
are qualitatively similar toB1(r2) and are shown in Ref. [49].

Next, to evaluate the impact of the three-gluon vertex in
our results, we set it to tree level, which amounts to substi-
tutingX1 → 1 in Eq. (8). In this case, we obtain for the soft
gluonB1(r2) the green dot-dashed curve in Fig. 6. Compar-
ing it to the red dashed line of the same figure we observe

FIGURE 5. Ghost dressing function obtained by lattice simulations
in Refs. [48, 49] (points) compared to the solution of the coupled
system of Eqs. (3) and (6) (red solid line).

FIGURE 6. Soft gluon limitB1(r
2) of the ghost-gluon vertex ob-

tained by lattice simulations in Ref. [62] (circles), compared to the
results of the coupled SDEs of Eqs. (3) and (6) with the three-gluon
vertex dressed (red dashed) or at tree level (green dot-dashed), and
the result of the soft gluon SDE of Eq. (11) (blue solid).

that the IR suppression of the nonperturbative three-gluon
vertex has a significant impact on the radiative correction to
B1(r2), i.e., in the quantityB1(r2)− 1, which is reduced by
30% whenX1 is dressed.

The solution of the coupled system forF (p2) and the gen-
eral kinematicsB1(r, p, q) are then used as inputs in the soft
gluon SDE of Eq. (11), together with the fit for the lattice
Lsg(q2) of Ref. [42] shown in Fig. 3 and given by Eq. (B5)
in Ref. [49]. The solutionB1(r2) (blue solid line in Fig. 6) is
then compared to the result of the coupled system and found
to coincide almost exactly, indicating the accuracy of the STI-
derived approximation for the three-gluon vertex.

4. Conclusions

We conducted a detailed study of the coupled dynamics of the
ghost dressing function,F (p2), and the classical form factor
of the ghost-gluon vertex,B1(r, p, q), through the SDEs that
they satisfy. Within our truncation, the system of SDEs com-
posed of Eqs. (3) and (6) takes as inputs lattice data for the
gluon propagator and an STI-derived approximation for the
general kinematics three-gluon vertex, leaving a single pa-
rameter, namely the strong coupling constant, to be adjusted
by matchingF (p2) to lattice results.

For the valueαs(4.3 GeV) = 0.244, both F (p2) and
B1(r, p, q) display nearly perfect agreement to lattice results,
as can be seen in Figs. 5 and 6, and qualitative agreement
to many previous studies [19, 20, 26, 36, 45, 60, 63–66]. We
emphasize, however, that forF (p2) this level of agreement is
only achieved when comparing to the lattice data of [48, 49]
which have been cured from scale setting and discretization
artifacts, as explained in detail in Ref. [49]. This find explains
a discrepancy found in previous works [26,60], between SDE
results forF (p2) and the non extrapolated lattice data of [47],
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stressing the importance of treating with lattice artifacts when
comparing to predictions of continuum methods.

Our study controls for the effect of the three-gluon vertex
by using as benchmark the soft gluon limit of the SDE for
B1, in which the contribution from the three-gluon vertex be-
comesexactly[49] the lattice determinedLsg(q2) [42]. Then
we find, as shown in Fig. 6, that the IR suppression furnished
by the three-gluon vertex has a significant quantitative effect,
reducingB1 − 1 by 30%.

Finally, the agreement shown in Fig. 6 between the re-
sults forB1(r2) obtained from the soft gluon SDE and the

coupled system indicates that the contributions to the three-
gluon vertex omitted in the STI-derived Ansatz of Eq. (8) are
subleading, in accord with [20,42].

Acknowledgments

The author thanks the organizers of the 19th International
Conference on Hadron Spectroscopy and Structure for the
opportunity. The work of M. N. F. is supported by FAPESP,
under the grant No. 2020/12795-1.

1. C. D. Roberts and A. G. Williams, Dyson-Schwinger equations
and their application to hadronic physics,Prog. Part. Nucl.
Phys.33 (1994) 477.

2. R. Alkofer and L. von Smekal, The Infrared behavior of QCD
Green’s functions: Confinement dynamical symmetry break-
ing, and hadrons as relativistic bound states,Phys. Rept. 353
(2001) 281.

3. P. Maris and C. D. Roberts, Dyson-Schwinger equations: A
Tool for hadron physics,Int. J. Mod. Phys. E12 (2003) 297.

4. J. M. Pawlowski, Aspects of the functional renormalisation
group,Annals Phys.322(2007) 2831.

5. C. S. Fischer, Infrared properties of QCD from Dyson-
Schwinger equations,J. Phys. G32 (2006) R253.

6. A. C. Aguilar and J. Papavassiliou, Gluon mass generation in
the PT-BFM scheme,J. High Energy Phys.12 (2006) 012.

7. A. C. Aguilar, D. Binosi, and J. Papavassiliou, Gluon and ghost
propagators in the Landau gauge: Deriving lattice results from
Schwinger-Dyson equations,Phys. Rev. D78 (2008) 025010.

8. P. Boucaud, J. Leroy, L. Y. A., J. Micheli, O. Péne, and J.
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