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Multi-meson model applied toD → hhh
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In this work, we discuss a new phenomenological model suited to all SU(3) mesonic two-body final-state interactions up to energies around
2 GeV to replace the standard isobar model. We show that the new model provides a clear indication of the mechanism responsible for the
sharp rise observed in theππ phase around 1 GeV. The phenomenological amplitudes proposed here are suited to any number of resonances,
incorporate chiral symmetry at low energies, include coupled channels, and respect unitarity.
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1. Introduction

The current situation in three-body hadronic decay is pro-
gressing on the experimental side. More comprehensive in-
vestigations can be done nowadays, using the very large and
pure samples provided by the LHC experiments, and still
more data is expected in the near future, including neutral
particles, with Belle II, BES III and LHCb (Run 2) experi-
ments. These decays involve two distinct sets of interactions.
They begin with a primary vertex, in which the lightSU(3)
quarks produced in the weak reaction disturb the surrounding
QCD vacuum and give rise to an initial set of mesons. This
state then evolves by means of purely hadronic final state in-
teractions (FSIs), whereby mesons rescatter many times be-
fore being detected. There are, however, many challenges on
the theoretical side to fully describe the dynamics of those
decays, in particular, the role of hadronic final state interac-
tions and their rich structure. In a model forD → KKK [1]
we developed the first seed of the present model where the
meson-meson amplitudes where derived in the K-Matrix ap-
proximation and resulted in a good fit to LHCb data [2].
A considered extension of these ideas results in an SU(3)
meson-meson tool kit [3], where we explore the main charac-
teristics of a two-body interaction in a coupled-channel and
multi-resonance description to be used in amplitude analyses
of hadron decays.

The main model used to analyse data and characterize
resonances is the standard isobar model. Its basic assump-
tion is that a decay amplitude can be represented by a coher-
ent sum of both non-resonant and two-body resonant contri-
butions, with the latter described by a Briet-Wigner function
depending on resonance massmk and a widthΓk, given by

[line shape]k → [BW]k =
1

[s−m2
k + i mk Γk]

. (1)

There are, however, some limitations in this approach that
result in serious flaws of the data analysis models already
rather clear, such as: it violates two-body unitarity when there
is more than one resonance with the same quantum num-
bers, it does not incorporate isospin and, especially impor-
tant, it is totally unsuited for dealing with coupled channels.
In the SU(3) sector, scattering amplitudes for pions, kaons
and etas are strongly coupled and cannot be represented as
sums of individual contributions. At present, as one knows,
QCD cannot be directly applied to heavy meson decays, but
their effective counterparts can. Effective lagrangians rely
just on hadron masses and coupling constants, ensuring that
the physical meaning of parameters is preserved from pro-
cess to process. This differs from the standard isobar model
where the physical meaning of parameters it yields from data
fits can be distorted due to the above mentioned conceptual
gaps.

In this presentation we explore the two-body scattering
amplitudes, departing from effective lagrangians aiming at
constructing guess functions for heavy-meson decays. The
meson-meson interaction amplitudes are directly associated
with observed quantities and also important substructures of
hadronic decay amplitudes.

2. Scattering amplitude

Generally, any three-body heavy meson decay can be repre-
sented by the series of diagrams given in Fig. 1, where
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FIGURE 1. Full three-body decay series.

FIGURE 2. a) Decay amplitude in the2 + 1 approximation; b) the resonance form factor; c) scattering amplitudeA represented by the
iteraction of the KernelK with the loop of mesons.

W represents the weak vertex topologies,A is the two-body
interaction amplitude,F the resonance form-factor produc-
tion (Fig. 2b)) and the first diagram represents the (2+1) ap-
proximation where the interaction with the third particle is
neglected, as given by diagrams in Fig. 2a). Independently of
the weak interaction topologies and the approximation used
to describe the three-body dynamics, the meson-meson inter-
action amplitudeA is a main building block.

In this presentation I showed the main characteristics of
the amplitudeA and how to include multiple resonances
without disturbing unitarity. For details and comparison with
the standard isobar model we point the reader to Ref. [3].

The scattering amplitudeA(J,I)
(k`|ab) for the process

Pk P` → Pa Pb in a channel with spinJ and isospinI is
described by the perturbative series in Fig. 2c) and defined
as:

A = K × (1 + [loop×K] + [loop×K]2

+ [loop×K]3 + · · · ) , (2)

loop = ØR + i ØI . (3)

The geometric series in Eq. (2) can be summed and one has

A =
K
D

, D = 1− (loop×K) . (4)

A very important feature of this result is that the amplitudeA
is unitary, providedK is real. This property is quite general
and derives from the structure of the denominatorD, which is
suitably complex owing to the well defined imaginary func-
tion i ØI in Eq. (3). The dynamical content of meson-meson
(PP ) interactions is incorporated into the kernelsK(J,I)

(kl|ab),
which are real functions of masses and coupling constants
based on ChPT lagrangians [4–6]. All kernels are written as

sums of a leading-order (LO) chiral polynomial [4] and next-
to-leading-order (NLO) resonance contributions [6]. They in-
clude crossed amplitudes at tree level, but no loops int- and
u-channels. To summarize, the amplitude includes four kinds
of ingredients, namely:

a. Coupled channels -this sector of the problem is rather
standard and model independent. In our notation, the
coupling among the various channels is implemented
by the mixing matricesM (J,I)

ab as in Eq. (15).

b. Multi-resonance dynamics - We add as many res-
onances per channel needed. While in kernels, reso-
nances have no widths and are characterized just by
their naked poles. The width will rise from the unita-
rization procedure. The inclusion of several resonances
is performed by adding these poles in the unitarization
scheme.

c. Unitarization - We neglect four-meson intermediate
states and the unitarization of amplitudes is directly as-
sociated with thes-channel two-meson propagatorsØ
that occur in the full scattering amplitude. These func-
tions contain real and imaginary parts:Ø = ØR+i ØI .
The latter, given by Eq. (17), are free from ambiguities
and constitute the only source of imaginary terms in the
amplitudesA(J,I)

(k`|ab). In particular, resonance widths
are necessarily proportional toØI . The real compo-
nent,ØR, has infinite components which are replaced
by renormalization constants. The form of this com-
ponent in the case of several resonances is given by
Eq. (19).

d. Free parameters -The parameters entering our am-
plitudes consist basically of masses and coupling con-
stants and, in principle, are completely free. Thus, our
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amplitudes are guess functions with open parameters,
to be determined by fits do data. Most of the symbols
used to label these parameters were borrowed from chi-
ral perturbation theory, especially Ref. [6]. Their nu-
merical meanings, however, are not exactly the same.
In chiral perturbation theory, the values of parame-
ters are extracted by comparing results from calcula-
tions performed to a given order with observables. As
loops are divergent and need to be renormalized, values
for parameters quoted in the literature also depend on
renormalization scales. This kind of procedure is the-
oretically consistent and yields a precise description of
low-energy phenomena.

3. ππ S-wave example

To illustrate the model we tookππ scattering amplitude S-
wave as an example. With(J, I) = (0, 0), ππ can couple to
KK̄ and toηη, the four pion channel was neglected at this

point. In the scalar-isoscalar sector,SU(3) gives rise to octet
and singlet statesSo andS1, which can be combinations of
the observed resonancesfa = f(1370) andfb = f(980).
All the functions needed for the amplitude are described in
the next section.

To show the importance of going beyond the standard res-
onance Breit-Wigner description, in Fig. 3a), we neglectKK̄
andηη couplings and compare results from two versions of
Eq. (6). One of them keeps just its third term, representing
an octet resonance (R), and the other also includes the first
term, describing a contact chiral interaction (C+R), which is
one of the signatures of post QCD physics. One notes that
the contact term is rather important and the dominance of the
resonance is restricted to a narrow band around its massmfb.

The opening of theKK̄ channel is studied in Fig. 3b), for
the same C+R case considered before, keeping the resonance
mass fixed atmfb = 0.98 GeV, while adopting two fake val-
ues forMK , namely0.48 and0.50 GeV, so as to have the

FIGURE 3. a) predictions for real (full curves) and imaginary (dashed curves) parts of the scalar-isoscalarππ amplitude a) for a single
resonance (R) and the same resonance superimposed to a chiral contact term (C+R), and b) for a single resonance superimposed to a non-
resonant background (NR+R) for no coupled channels (black) and a coupledKK̄ channel with threshold below (blue) and above (red) the
resonance mass.

FIGURE 4. a) Predictions for phase shifts and b) inelasticity parameters for the scalarππ amplitude with an extra resonance of mass
mR′ = mf0 = 1.7 GeV.
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KK̄ threshold both below and above it. As expected, all
curves coincide below the thresholds. Above them, however,
one learns that the impact of the coupling is important, since
the previous C+R form provides a very poor representation
for the new results, irrespective of the value ofMK chosen.

The model proposed here allows for the inclusion of any
number of resonances. In order to illustrate this procedure,
we consider the case of an extra resonanceR′ and begin by
resorting to Eq. (5). New resonances mean, of course, new
masses and coupling constants and, as the number of chan-
nels is large, one could have, in principle, too many new de-
grees of freedom to be fitted by data. In order to be con-
servative, we suggest that the same forms displayed after the
arrows in Eqs. (9)-(14) be used, with([cd or c̃d] [s−mass2]+
c(R|ab)) → [cd or c̃d] )α (s −mass2) + βR′ µ

2). In the case
of thes-dependent couplings, this preserves theSU(3) struc-
ture, with a scale given by chiral perturbation theory [6],
cd = 0.032 GeV andc̃d = 0.018 GeV, whereasµ = 1 GeV

is just a scale. These choices allow bothα andβ to be dimen-
sionless free parameters and one may guess that their values
will be not far from−1 ≤ α, β ≤ 1.

In Fig. 4 we present the phase shifts and inelasticity pa-
rameters forππ for a choice of values ofα andβ. The high
energy region is more sensitive to the inclusion of the extra
resonance and, its shape is strongly affected by a background
due to channel-coupling.

The unitarization proceedure of adding new resonances
can be done sistematically. Owing to renormalization, the
real parts of the functionsΩ must be supplemented by arbi-
trary constants, to be fixed by experiment and that is why a
model dependence comes in. In our model, we fix the sub-
tracted constant by forcing the real part ofΩ to be zero at all
the resonance masses and introduce a form factor to ensure
that loop corrections do not spoil chiral symmetry results at
low energies. The final renormalization constant for three-
resonances is given in Eq. (19).

4. Relevant functions

Functions needed to describeππ → ππ scattering amplitude, with(J, I) = (0, 0) in a three-coupled channel example.

A
(0,0)
(ππ|ππ) =

1
D(0,0)

( [{
1−M

(0,0)
22

}{
1−M

(0,0)
33

}
−M

(0,0)
23 M

(0,0)
32

]
K(0,0)

(ππ|ππ)

+
[
M

(0,0)
12

{
1−M

(0,0)
33

}
+ M

(0,0)
13 M

(0,0)
32

]
K(0,0)

(KK|ππ)

+
[
M

(0,0)
13

{
1−M

(0,0)
22

}
+ M

(0,0)
12 M

(0,0)
23

]
K(00)

(88|ππ)

)
, (5)

K(′,′)
(ππ|ππ) =

(2s−M2
π)

F 2
− G(fa|ππ|ππ)

s−m2
fa

− G(fb|ππ|ππ)

s−m2
fb

−
G2

(f ′|ππ)

s−m2
f ′

, (6)

K(′,′)
(ππ|KK) =

√
3s

2F 2
− G(fa|ππ|KK)

s−m2
fa

− G(fb|ππ|KK)

s−m2
fb

− G(f ′|ππ)G(f ′|KK)

s−m2
f ′

, (7)

K(′,′)
(ππ|∀∀) =

√
3M2

π

3F 2
− G(fa|ππ|88)

s−m2
fa

− G(fb|ππ|88)
s−m2

fb

− G(f ′|ππ)G(f ′|88)
s−m2

f ′
, (8)

G(So|ππ) = −
√

2
F 2

(cd s− [cd − cm] 2M2
π) → −

√
2

F 2
(cd [s− 2M2

π ] + c(So|ππ)), (9)

G(So|KK) =
√

6
3 F 2

(cds− [cd − cm]2M2
K) →

√
6

3 F 2
(cd[s− 2M2

K ] + c(So|KK)), (10)

G(So|88) =
√

6
3 F 2

(cd[s− 2M2
8 ) + cm[16M2

K − 10M2
π ]/3) →

√
6

3 F 2
(cd [s− 2M2

8 ] + c(So|88)), (11)

G(S1|ππ) =
2
√

3
F 2

(c̄d s− [c̄d − c̄m]2M2
π) → 2

√
3

F 2
(c̄d [s− 2M2

π ] + c(S1|ππ)), (12)

G(S1|KK) =
4

F 2
(c̄d s− [c̄d − c̄m]2M2

K) → 4
F 2

(c̄d [s− 2M2
K ] + c(S1|KK)), (13)

G(S1|88) =
2

F 2
(c̄ds− [c̄d − c̄m]2M2

8 ) → 2
F 2

(c̄d[s− 2M2
8 ] + c(S1|88)). (14)

In RChPT [6], one has|cd| = 0.032 MeV, |cm| = 0.042 MeV, |c̃d| = |cd|/
√

3 and|c̃m| = |cm|/
√

3.
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M
(0,0)
11 = −K(0,0)

(ππ|ππ) [ΩS
ππ/2] , M

(0,0)
12 = −K(0,0)

(ππ|KK) [ΩS
KK/2] , M

(0,0)
13 = −K(0,0)

(ππ|88) [ΩS
88/2] ,

M
(0,0)
21 = −K(0,0)

(ππ|KK) [ΩS
ππ/2] , M

(0,0)
22 = −K(0,0)

(KK|KK) [ΩS
KK/2] , M

(0,0)
23 = −K(0,0)

(KK|88) [ΩS
88/2] ,

M
(0,0)
31 = −K(0,0)

(ππ|i88) [ΩS
ππ/2] , M

(0,0)
32 = −K(0,0)

(KK|88) [ΩS
KK/2] , M

(0,0)
33 = −K(0,0)

(88|88) [ΩS
88/2], (15)

where

ΩS
ab = −Πab(s)

16π2
, (16)

andΠab(s) represents the regular parts of loop integrals defined in detail in the Appendix of Ref. [3]. The imaginary component
is model independent and reads

[ΩS
ab]

I = − 1
8π

Qab√
s

θ(s− [Ma + Mb]2) , (17)

Qab =

√
l

2
√

s
=

1
2

√
s− 2(M2

a + M2
b ) + (M2

a −M2
b )2/s , (18)

whereθ is the Heaviside step function. The real part includes the renormalization constant for three resonances and the final
propagator is given by:

ΩS
ab(s) →

1
16π2

(
Fx(s)

[s−m2
y] [s−m2

z]
[m2

x −m2
y] [m2

x −m2
z]

ΠR
ab(m

2
x) + Fy(s)

[m2
x − s] [s−m2

z]
[m2

x −m2
y] [m2

y −m2
z]

ΠR
ab[m

2
y]

+ Fz(s)
[m2

x − s][m2
y − s]

[m2
x −m2

z][m2
y −m2

z]
ΠR

ab[m
2
z]−Πab(s)

)
. (19)

5. Final remarks

The standard isobar model (SIM) was produced more than 50
years ago and is still widely used, in spite of its many limita-
tions. In the case of heavy-meson decays into three mesons,
the model relies on the (2+1) approximation, whereby strong
final state interactions involve just a two-body interacting
system in the presence of a spectator. The assumption that
meson-meson amplitudes are strongly dominated by reso-
nances is essential to the model. We argue that QCD has a
strong impact on this picture and that the SIM may be re-
liable for vector mesons in uncoupled channels but is not
suited for scalar mesons. Nowadays, a proper description of
low-energy meson-meson interactions requires contact with
chiral perturbation theory, which implements QCD by means
of effective lagrangians. Although originally developed for
low-energy processes, this theory can be reliably extended
through the inclusion of resonances and unitarization tech-
niques. Another problem of the SIM concerns the coupling
of channels. This effect is compulsory and we have shown
that resonances cannot be considered as dynamically isolated
objects beyond coupling thresholds. This happens because
pole dominance in a given channel is contaminated by back-
ground effects occurring elsewhere.

We present an alternative phenomenological meson-
meson amplitudes to theSU(3) sector, which is suitable for

amplitude analyses of heavy-meson decays. Their main fea-
tures include:

a. Unitarization - All amplitudes are automatically uni-
tary for energies below the first coupling threshold.

b. Coupled channels -The treatment of coupled chan-
nels is standard and gives rise to the expected inelas-
ticities.

c. Dynamics - Interactions are described by chiral la-
grangians, which include both pure pseudoscalar ver-
tices and bare resonances, with free masses and cou-
pling constants. This ensures that chiral symmetry is
obeyed at low-energies and also gives rise to fitting pa-
rameters with well defined physical meaning.

d. Model for meson loops -Two-meson loops are an im-
portant component of scattering amplitudes. In thes-
channel, they are given by real functions below thresh-
old and acquire an imaginary part above it. The lat-
ter is fully determined by theory whereas the former
involve unknown renormalization constants. We pro-
pose a model for these real parts, which comply with
chiral symmetry and can accommodate any number of
resonances.
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e. Systematic inclusion of resonances -The model can
accommodate any number of resonances in each given
channel.

f. Free parameters have physical meaning -The free
parameters of the model are resonance masses and
constants describing their couplings to pseudoscalar
mesons. Thus, their conceptual meaning is both rather
conventional and process independent, whereas their
empirical values can be extracted from different re-
actions. This allows one to envisage a situation in
which one could compare various sets of values for
thesameparameters as determined, for instance, from
chiral perturbation theory, meson-meson scattering up
to 2 GeV, D → πππ, D → ππK and other pro-
cesses. This would definitely promote understanding
and, hopefully, much needed progress.

In this constructive approach, all imaginary terms in the
amplitudes can be traced back to loops, which are also re-
sponsible for the finite widths of resonances. The parame-
ters to be fitted are just resonance masses and coupling con-
stants, which have a rather transparent physical meaning. As
examples, we have discussed scalar amplitudes, phase shifts
and inelasticity parameters forππ scatterings, employing the
low-energy parameters given in Ref. [6]. One notices that the
main differences occur close to the first inelastic threshold,
showing that the new model provides a clear indication for
the mechanism responsible for the sharp rise observed in the
ππ phase around 1 GeV.
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